Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Deciphering Tumour Tissue Organization by 3D Electron Microscopy and machine learning

2021 ◽  
Author(s):  
Baudouin Denis de Senneville ◽  
Fatma Zohra Khoubai ◽  
Marc Bevilacqua ◽  
Alexandre Labedade ◽  
Kathleen Flosseau ◽  
...  

Despite recent progress in the characterization of tumour components, the tri-dimensional (3D) organization of this pathological tissue and the parameters determining its internal architecture remain elusive. Here, we analysed the spatial organization of patient-derived xenograft tissues generated from hepatoblastoma, the most frequent childhood liver tumour, by serial block-face scanning electron microscopy using an integrated workflow combining 3D imaging, manual and machine learning-based semi-automatic segmentations, mathematics and infographics. By digitally reconstituting an entire hepatoblastoma sample with a blood capillary, a bile canaliculus-like structure, hundreds of tumour cells and their main organelles (e.g. cytoplasm, nucleus, mitochondria), we report unique 3D ultrastructural data about the organization of tumoral tissue. We found that the size of hepatoblastoma cells correlates with the size of their nucleus, cytoplasm and mitochondrial mass. We also discovered that the blood capillary controls the planar alignment and size of tumour cells in their 3D milieu. Finally, a set of tumour cells polarized in the direction of a hot spot corresponding to a bile canaliculus-like structure. In conclusion, this pilot study allowed the identification of bioarchitectural parameters that shape the internal and spatial organization of tumours, thus paving the way for new investigations in an emerging field that we call onconanotomy.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Baudouin Denis de Senneville ◽  
Fatma Zohra Khoubai ◽  
Marc Bevilacqua ◽  
Alexandre Labedade ◽  
Kathleen Flosseau ◽  
...  

AbstractDespite recent progress in the characterization of tumour components, the tri-dimensional (3D) organization of this pathological tissue and the parameters determining its internal architecture remain elusive. Here, we analysed the spatial organization of patient-derived xenograft tissues generated from hepatoblastoma, the most frequent childhood liver tumour, by serial block-face scanning electron microscopy using an integrated workflow combining 3D imaging, manual and machine learning-based semi-automatic segmentations, mathematics and infographics. By digitally reconstituting an entire hepatoblastoma sample with a blood capillary, a bile canaliculus-like structure, hundreds of tumour cells and their main organelles (e.g. cytoplasm, nucleus, mitochondria), we report unique 3D ultrastructural data about the organization of tumour tissue. We found that the size of hepatoblastoma cells correlates with the size of their nucleus, cytoplasm and mitochondrial mass. We also found anatomical connections between the blood capillary and the planar alignment and size of tumour cells in their 3D milieu. Finally, a set of tumour cells polarized in the direction of a hot spot corresponding to a bile canaliculus-like structure. In conclusion, this pilot study allowed the identification of bioarchitectural parameters that shape the internal and spatial organization of tumours, thus paving the way for future investigations in the emerging onconanotomy field.


2019 ◽  
Author(s):  
Andrea Fera ◽  
Qianping He ◽  
Guofeng Zhang ◽  
Richard D. Leapman

SummaryStain density is an important parameter for optimizing the quality of ultrastructural data obtained from several types of 3D electron microscopy techniques, including serial block-face electron microscopy (SBEM), and focused ion beam scanning electron microscopy (FIB-SEM). Here, we show how some straightforward measurements in the TEM can be used to determine the stain density based on a simple expression that we derive. Numbers of stain atoms per unit volume are determined from the measured ratio of the bright-field intensities from regions of the specimen that contain both pure embedding material and the embedded biological structures of interest. The determination only requires knowledge of the section thickness, which can either be estimated from the microtome setting, or from low-dose electron tomography, and the elastic scattering cross section for the heavy atoms used to stain the specimen. The method is tested on specimens of embedded blood platelets, brain tissue, and liver tissue.


2018 ◽  
Author(s):  
Tin Ki Tsang ◽  
Eric A. Bushong ◽  
Daniela Boassa ◽  
Junru Hu ◽  
Benedetto Romoli ◽  
...  

ABSTRACTElectron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native states. However, the applicability of cryofixation is limited by its incompatibilities with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation and high temporal resolution. Here we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing quality ultrastructural preservation for diverse EM applications.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Tin Ki Tsang ◽  
Eric A Bushong ◽  
Daniela Boassa ◽  
Junru Hu ◽  
Benedetto Romoli ◽  
...  

Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications.


2011 ◽  
Vol 17 (S2) ◽  
pp. 2-3 ◽  
Author(s):  
M Ellisman ◽  
X Shu ◽  
V Lev-Ram ◽  
T Deerinck ◽  
R Tsien ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3176-3177
Author(s):  
Nanami Takagi ◽  
Norio Yamashita ◽  
Yuki Tsujimura ◽  
Hiroshi Takemura ◽  
Sze Keat Chee ◽  
...  

Export Citation Format

Share Document