Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Dynamic localisation of DamX regulates bacterial filamentation and division during UPEC dispersal from host cells

2021 ◽  
Author(s):  
Bill Soderstrom ◽  
Daniel O. Daley ◽  
Iain G. Duggin

Uropathogenic Escherichia coli (UPEC) cells can grow into highly filamentous forms during infection of bladder epithelial cells, but this process is poorly understood. Herein we found that some UPEC filaments released from infected bladder cells in vitro grew very rapidly and by more than 100 μm before initiating division, whereas others did not survive, suggesting that filamentation is a stress response that promotes dispersal. The DamX bifunctional division protein, which is essential for UPEC filamentation, was initially non-localized but then assembled at multiple division sites in the filaments prior to division. DamX rings maintained consistent thickness during constriction and remained at the septum until after membrane fusion was completed, like in rod cell division. Our findings suggest a mechanism involving regulated dissipation of DamX, leading to division arrest and filamentation, followed by its reassembly into division rings to promote UPEC dispersal and survival during infection.

2016 ◽  
Vol 79 (11) ◽  
pp. 1965-1970 ◽  
Author(s):  
SANGEETHA ANANDA BASKARAN ◽  
ANUP KOLLANOOR-JOHNY ◽  
MEERA SURENDRAN NAIR ◽  
KUMAR VENKITANARAYANAN

ABSTRACTEscherichia coli O157:H7 is a major foodborne pathogen that can cause serious human illness characterized by hemorrhagic diarrhea and kidney failure. The pathology of enterohemorrhagic E. coli O157:H7 (EHEC) infection is primarily mediated by verotoxins, which bind to the globotriaosylceramide receptor on host cells. Antibiotics are contraindicated for treating EHEC infection because they lead to increased verotoxin release, thereby increasing the risk of renal failure and death in patients. Thus, alternative strategies are needed for controlling EHEC infections in humans. This study investigated the effect of subinhibitory concentrations of five plant-derived antimicrobial agents (PDAs) that are generally considered as safe, i.e., trans-cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on EHEC motility, adhesion to human intestinal epithelial cells, verotoxin production, and virulence gene expression. All tested PDAs reduced EHEC motility and attachment to human intestinal epithelial cells (P < 0.05) and decreased verotoxin synthesis by EHEC. The reverse transcription real-time PCR data revealed that PDAs decreased the expression of critical virulence genes in EHEC (P < 0.05). The results collectively suggest that these PDAs could be used to reduce EHEC virulence, but follow-up studies in animal models are necessary to validate these findings.


2016 ◽  
Vol 84 (11) ◽  
pp. 3220-3231 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Tomohiro Agata ◽  
Hirofumi Asano ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Uropathogenic Escherichia coli (UPEC) is a major pathogen that causes urinary tract infections (UTIs). This bacterium adheres to and invades the host cells in the bladder, where it forms biofilm-like polymicrobial structures termed intracellular bacterial communities (IBCs) that protect UPEC from antimicrobial agents and the host immune systems. Using genetic screening, we found that deletion of the fur gene, which encodes an iron-binding transcriptional repressor for iron uptake systems, elevated the expression of type I fimbriae and motility when UPEC was grown under iron-rich conditions, and it led to an increased number of UPEC cells adhering to and internalized in bladder epithelial cells. Consequently, the IBC colonies that the fur mutant formed in host cells were denser and larger than those formed by the wild-type parent strain. Fur is inactivated under iron-restricted conditions. When iron was depleted from the bacterial cultures, wild-type UPEC adhesion, invasion, and motility increased, similar to the case with the fur mutant. The purified Fur protein bound to regions upstream of fimA and flhD , which encode type I fimbriae and an activator of flagellar expression that contributes to motility, respectively. These results suggest that Fur is a repressor of fimA and flhD and that its repression is abolished under iron-depleted conditions. Based on our in vitro experiments, we conclude that UPEC adhesion, invasion, IBC formation, and motility are suppressed by Fur under iron-rich conditions but derepressed under iron-restricted conditions, such as in patients with UTIs.


2008 ◽  
Vol 76 (9) ◽  
pp. 3869-3880 ◽  
Author(s):  
Natalia Korotkova ◽  
Yuliya Yarova-Yarovaya ◽  
Veronika Tchesnokova ◽  
Nina Yazvenko ◽  
Mike A. Carl ◽  
...  

ABSTRACT The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, β1 integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an “invasin,” is not required for β1 integrin recruitment or bacterial internalization.


2008 ◽  
Vol 76 (7) ◽  
pp. 3019-3026 ◽  
Author(s):  
Richard R. Kulesus ◽  
Karen Diaz-Perez ◽  
E. Susan Slechta ◽  
Danelle S. Eto ◽  
Matthew A. Mulvey

ABSTRACT Hfq is a bacterial RNA chaperone involved in the posttranscriptional regulation of many stress-inducible genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Escherichia coli (UPEC) isolate UTI89 to effectively colonize the bladder and kidneys in a murine urinary tract infection model system. The disruption of hfq did not affect bacterial adherence to or invasion of host cells but did limit the development of intracellular microcolonies by UTI89 within the terminally differentiated epithelial cells that line the lumen of the bladder. In vitro, the hfq mutant was significantly impaired in its abilities to handle the antibacterial cationic peptide polymyxin B and reactive nitrogen and oxygen radicals and to grow in acidic medium (pH 5.0). Relative to the wild-type strain, the hfq mutant also had a substantially reduced migration rate on motility agar and was less prone to form biofilms. Hfq activities are known to impact the regulation of both the stationary-phase sigma factor RpoS (σS) and the envelope stress response sigma factor RpoE (σE). Although we saw similarities among hfq, rpoS, and rpoE deletion mutants in our assays, the rpoE and hfq mutants were phenotypically the most alike. Cumulatively, our data indicate that Hfq likely affects UPEC virulence-related phenotypes primarily by modulating membrane homeostasis and envelope stress response pathways.


2014 ◽  
Vol 82 (7) ◽  
pp. 2890-2901 ◽  
Author(s):  
Marilena Gallotta ◽  
Giovanni Gancitano ◽  
Giampiero Pietrocola ◽  
Marirosa Mora ◽  
Alfredo Pezzicoli ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of thespy0269gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interactin vitrowith the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cellsin vitroand thatLactococcus lactisexpressing Spy0269 on its cell surface could adhere to mammalian cellsin vitroand to mice nasal mucosain vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (StreptococcuspyogenesAdhesion andDivision protein).


2021 ◽  
Author(s):  
Ewa Jasińska ◽  
Agnieszka Bogut ◽  
Agnieszka Magryś ◽  
Alina Olender

Abstract Purpose: Determination of the association between ica genes and phenotypic biofilm formation in staphylococcal isolates involved in conjunctivitis, their antibiotic resistance as well as detection of selected virulence characteristics: adhesion to epithelial cells and in vitro cytotoxicity.Methods: The study included 26 Staphylococcus aureus (SA) and 26 Staphylococcus epidermidis (SE) isolates. The presence of icaAD genes and ica operon was determined by the PCR assay. Phenotypic biofilm formation was verified using the microtiter plate assay. Antibiotic resistance was performed using the disc diffusion method. Staphylococcal ability to attach to host cells was assessed by flow cytometry. Cytotoxicity on epithelial cells was evaluated by LDH assay.Results: The ica genes were detected in 26.9% of SE and in 42.3% of SA isolates. Only 15.3% of isolates (SE) were positive for both the icaAD and the ica operon. Phenotypically, 19.2% of SE isolates were strong biofilm producers, among which three were both icaAD- and ica operon-positive. 26.9% of SA isolates were strong biofilm producers. Methicillin resistance (MR) was detected in 34.6% of SE and 26.9% of SA isolates. 75% of MR isolates were multidrug resistant. SA isolates adhered to host cells more extensively than SE. SA isolates released higher level of LDH than SE.Conclusions: Adherence abilities were commonly observed in staphylococci associated with conjunctivitis. However, low prevalence of isolates positive for a complete and functional ica locus and low prevalence of strong biofilm producers was detected. SA adhered to a greater extent to eukaryotic cells than SE and were more cytotoxic.


1995 ◽  
Vol 9 (1) ◽  
pp. 31-36 ◽  
Author(s):  
B.B. Finlay

The interactions that occur between pathogenic micro-organisms and their host cells are complex and intimate. We have used two enteric pathogens, Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC), to examine the interactions that occur between these organisms and epithelial cells. Although these are enteric pathogens, the knowledge and techniques developed from these systems may be applied to the study of dental pathogens. Both S. typhimurium and EPEC disrupt epithelial monolayer integrity, although by different mechanisms. Both pathogens cause loss of microvilli and re-arrangement of the underlying host cytoskeleton. Despite these similarities, both organisms send different signals into the host cell. EPEC signal transduction involves generation of intracellular calcium and inositol phosphate fluxes, and activation of host tyrosine kinases that results in tyrosine phosphorylation of a 90-kDa host protein. Bacterial mutants have been identifed that are deficient in signaling to the host. We propose a sequence of events that occur when EPEC interacts with epithelial cells. Once inside a host cell, S. typhimurium remains within a vacuole. To define some of the parameters of the intracellular environment, we constructed genetic fusions of known genes with lacZ, and used these fusions as reporter probes of the intracellular vacuolar environment. We have also begun to examine the bacterial and host cell factors necessary for S. typhimurium to multiply within epithelial cells. We found that this organism triggers the formation of novel tubular lysosomes, and these structures are linked with intracellular replication.


1994 ◽  
Vol 106 (5) ◽  
pp. 1150-1161 ◽  
Author(s):  
Marlene Dytoc ◽  
Ludwik Fedorko ◽  
Philip M. Sherman

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 760 ◽  
Author(s):  
Radhakrishnan Vishnubalaji ◽  
Hibah Shaath ◽  
Nehad M. Alajez

The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from primary normal human bronchial epithelial cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks, including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells. Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis employing ingenuity pathway analysis (IPA) revealed activation of functional categories related to cell death, while those associated with viral infection and replication were suppressed. Several interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of antiviral IFN innate response. Gene ontology and functional annotation of differently expressed genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark. Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while their precise role in the host response to SARS-CoV-2 remains to be investigated.


2020 ◽  
Vol 21 (9) ◽  
pp. 3047 ◽  
Author(s):  
Pravil Pokharel ◽  
Juan Manuel Díaz ◽  
Hicham Bessaiah ◽  
Sébastien Houle ◽  
Alma Lilián Guerrero-Barrera ◽  
...  

TagB, TagC (tandem autotransporter genes B and C), and Sha (Serine-protease hemagglutinin autotransporter) are recently described members of the SPATE (serine protease autotransporters of Enterobacteriaceae) family. These SPATEs can cause cytopathic effects on bladder cells and contribute to urinary tract infection in a mouse model. Bladder epithelial cells form an important barrier in the urinary tract. Some SPATEs produced by pathogenic E. coli are known to breach the bladder epithelium. The capacity of these newly described SPATEs to alter bladder epithelial cells and the role of the serine protease active site were investigated. All three SPATE proteins were internalized by bladder epithelial cells and altered the distribution of actin cytoskeleton. Sha and TagC were also shown to degrade mucin and gelatin respectively. Inactivation of the serine catalytic site in each of these SPATEs did not affect secretion of the SPATEs from bacterial cells, but abrogated entry into epithelial cells, cytotoxicity, and proteolytic activity. Thus, our results show that the serine catalytic triad of these proteins is required for internalization in host cells, actin disruption, and degradation of host substrates such as mucin and gelatin.


Export Citation Format

Share Document