Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

A Novel Real-Time Thermal Analysis and Layer Time Control Framework for Large Scale Additive Manufacturing

Author(s):  
Sepehr Fathizadan ◽  
Feng Ju ◽  
Kyle Rowe ◽  
Alex Fiechter ◽  
Nils Hofmann

Abstract Production efficiency and product quality need to be addressed simultaneously to ensure the reliability of large scale additive manufacturing. Specifically, print surface temperature plays a critical role in determining the quality characteristics of the product. Moreover, heat transfer via conduction as a result of spatial correlation between locations on the surface of large and complex geometries necessitates the employment of more robust methodologies to extract and monitor the data. In this paper, we propose a framework for real-time data extraction from thermal images as well as a novel method for controlling layer time during the printing process. A FLIR™ thermal camera captures and stores the stream of images from the print surface temperature while the Thermwood Large Scale Additive Manufacturing (LSAM™) machine is printing components. A set of digital image processing tasks were performed to extract the thermal data. Separate regression models based on real-time thermal imaging data are built on each location on the surface to predict the associated temperatures. Subsequently, a control method is proposed to find the best time for printing the next layer given the predictions. Finally, several scenarios based on the cooling dynamics of surface structure were defined and analyzed, and the results were compared to the current fixed layer time policy. It was concluded that the proposed method can significantly increase the efficiency by reducing the overall printing time while preserving the quality.

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Sepehr Fathizadan ◽  
Feng Ju ◽  
Kyle Rowe ◽  
Alex Fiechter ◽  
Nils Hofmann

Abstract Production efficiency and product quality need to be addressed simultaneously to ensure the reliability of large-scale additive manufacturing. Specifically, print surface temperature plays a critical role in determining the quality characteristics of the product. Moreover, heat transfer via conduction as a result of spatial correlation between locations on the surface of large and complex geometries necessitates the employment of more robust methodologies to extract and monitor the data. In this article, we propose a framework for real-time data extraction from thermal images and a novel method for controlling layer time during the printing process. A FLIR™ thermal camera captures and stores the stream of images from the print surface temperature, while the Thermwood Large Scale Additive Manufacturing (LSAM™) machine is printing components. A set of digital image processing tasks were performed to extract the thermal data. Separate regression models based on real-time thermal imaging data are built on each location on the surface to predict the associated temperatures. Subsequently, a control method is proposed to find the best time for printing the next layer given the predictions. Finally, several scenarios based on the cooling dynamics of surface structure were defined and analyzed, and the results were compared to the current fixed layer time policy. It was concluded that the proposed method can significantly increase the efficiency by reducing the overall printing time while preserving the quality.


Author(s):  
Matteo Bugatti ◽  
Bianca Maria Colosimo

AbstractThe increasing interest towards additive manufacturing (AM) is pushing the industry to provide new solutions to improve process stability. Monitoring is a key tool for this purpose but the typical AM fast process dynamics and the high data flow required to accurately describe the process are pushing the limits of standard statistical process monitoring (SPM) techniques. The adoption of novel smart data extraction and analysis methods are fundamental to monitor the process with the required accuracy while keeping the computational effort to a reasonable level for real-time application. In this work, a new framework for the detection of defects in metal additive manufacturing processes via in-situ high-speed cameras is presented: a new data extraction method is developed to efficiently extract only the relevant information from the regions of interest identified in the high-speed imaging data stream and to reduce the dimensionality of the anomaly detection task performed by three competitor machine learning classification methods. The defect detection performance and computational speed of this approach is carefully evaluated through computer simulations and experimental studies, and directly compared with the performance and computational speed of other existing methods applied on the same reference dataset. The results show that the proposed method is capable of quickly detecting the occurrence of defects while keeping the high computational speed that would be required to implement this new process monitoring approach for real-time defect detection.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Woochul Kang ◽  
Jaeyong Chung

With ubiquitous deployment of sensors and network connectivity, amounts of real-time data for embedded systems are increasing rapidly and database capability is required for many embedded systems for systematic management of real-time data. In such embedded systems, supporting the timeliness of tasks accessing databases is an important problem. However, recent multicore-based embedded architectures pose a significant challenge for such data-intensive real-time tasks since the response time of accessing data can be significantly affected by potential intercore interferences. In this paper, we propose a novel feedback control scheme that supports the timeliness of data-intensive tasks against unpredictable intercore interferences. In particular, we use multiple inputs/multiple outputs (MIMO) control method that exploits multiple control knobs, for example, CPU frequency and the Quality-of-Data (QoD) to handle highly unpredictable workloads in multicore systems. Experimental results, using actual implementation, show that the proposed approach achieves the target Quality-of-Service (QoS) goals, such as task timeliness and Quality-of-Data (QoD) while consuming less energy compared to baseline approaches.


2014 ◽  
Vol 571-572 ◽  
pp. 497-501 ◽  
Author(s):  
Qi Lv ◽  
Wei Xie

Real-time log analysis on large scale data is important for applications. Specifically, real-time refers to UI latency within 100ms. Therefore, techniques which efficiently support real-time analysis over large log data sets are desired. MongoDB provides well query performance, aggregation frameworks, and distributed architecture which is suitable for real-time data query and massive log analysis. In this paper, a novel implementation approach for an event driven file log analyzer is presented, and performance comparison of query, scan and aggregation operations over MongoDB, HBase and MySQL is analyzed. Our experimental results show that HBase performs best balanced in all operations, while MongoDB provides less than 10ms query speed in some operations which is most suitable for real-time applications.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 649
Author(s):  
Yifeng Liu ◽  
Wei Zhang ◽  
Wenhao Du

Deep learning based on a large number of high-quality data plays an important role in many industries. However, deep learning is hard to directly embed in the real-time system, because the data accumulation of the system depends on real-time acquisitions. However, the analysis tasks of such systems need to be carried out in real time, which makes it impossible to complete the analysis tasks by accumulating data for a long time. In order to solve the problems of high-quality data accumulation, high timeliness of the data analysis, and difficulty in embedding deep-learning algorithms directly in real-time systems, this paper proposes a new progressive deep-learning framework and conducts experiments on image recognition. The experimental results show that the proposed framework is effective and performs well and can reach a conclusion similar to the deep-learning framework based on large-scale data.


2014 ◽  
Vol 635-637 ◽  
pp. 1128-1131
Author(s):  
Xing Hong Kuang ◽  
Zhe Yi Yao ◽  
Shi Ming Wang

With the development of economy, the global satellite navigation system with its high speed, high efficiency, high precision measurement and positioning a series of significant advantages, favored by various industry data collection and monitoring of personnel resources , the advent of satellite navigation systems to solve a large-scale, rapid and high-precision global positioning problem. Its scope of application has penetrated to the various departments of the national economic and social development in various fields and industries. To be able to monitor the progressive realization of automated data collection and transmission, the urgent need to adopt advanced positioning technology to build real-time location monitoring system PC Based Development Background navigation receiver , an overview of the inter Beidou BD-126 systems and microcontrollers can be serially the basic principle of mouth communication describes the communication protocol Compass BD-126 positioning module and the next crew between the microcontroller to control development in the use of PC positioning system for a detailed description , including the BDS Beidou satellite navigation module and microcontroller serial data communications, microprocessor controlled real-time data display , and so on


2021 ◽  
Author(s):  
Flavio de Assis Vilela ◽  
Ricardo Rodrigues Ciferri

ETL (Extract, Transform, and Load) is an essential process required to perform data extraction in knowledge discovery in databases and in data warehousing environments. The ETL process aims to gather data that is available from operational sources, process and store them into an integrated data repository. Also, the ETL process can be performed in a real-time data warehousing environment and store data into a data warehouse. This paper presents a new and innovative method named Data Extraction Magnet (DEM) to perform the extraction phase of ETL process in a real-time data warehousing environment based on non-intrusive, tag and parallelism concepts. DEM has been validated on a dairy farming domain using synthetic data. The results showed a great performance gain in comparison to the traditional trigger technique and the attendance of real-time requirements.


Export Citation Format

Share Document