Sequential-Knowledge-Aware Next POI Recommendation: A Meta-Learning Approach
Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models are known to be primary in leveraging these problems. However, as most knowledge graphs are constructed statically, sequential information is yet integrated. In this work, we propose a meta-learned sequential-knowledge-aware recommender (Meta-SKR), which utilizes sequential, spatio-temporal, and social knowledge to recommend the next POI for a location-based social network user. The framework mainly contains four modules. First, in the graph construction module, a novel type of knowledge graph—the sequential knowledge graph, which is sensitive to the check-in order of POIs—is built to model users’ check-in patterns. To deal with the problem of data sparsity, a meta-learning module based on latent embedding optimization is then introduced to generate user-conditioned parameters of the subsequent sequential-knowledge-aware embedding module, where representation vectors of entities (nodes) and relations (edges) are learned. In this embedding module, gated recurrent units are adapted to distill intra- and inter-sequential knowledge graph information. We also design a novel knowledge-aware attention mechanism to capture information surrounding a given node. Finally, POI recommendation is provided by inferring potential links of knowledge graphs in the prediction module. Evaluations on three real-world check-in datasets show that Meta-SKR can achieve high recommendation accuracy even with sparse data.