Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Drug Repurposing for Alzheimer’s Disease Based on Protein-Protein Interaction Network

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Negar Sadat Soleimani Zakeri ◽  
Saeid Pashazadeh ◽  
Habib MotieGhader

Alzheimer’s disease (AD) is known as a critical neurodegenerative disorder. It worsens as symptoms concerning dementia grow severe over the years. Due to the globalization of Alzheimer’s disease, its prevention and treatment are vital. This study proposes a method to extract substantial gene complexes and then introduces potential drugs in Alzheimer’s disease. To this end, a protein-protein interaction (PPI) network was utilized to extract five meaningful gene complexes functionally interconnected. An enrichment analysis to introduce the most important biological processes and pathways was accomplished on the obtained genes. The next step is extracting the drugs related to AD and introducing some new drugs which may be helpful for this disease. Finally, a complete network including all the genes associated with each gene complex group and genes’ target drug was illustrated. For validating the proposed potential drugs, Connectivity Map (CMAP) analysis was accomplished to determine target genes that are up- or downregulated by proposed drugs. Medical studies and publications were analyzed thoroughly to introduce AD-related drugs. This analysis proves the accuracy of the proposed method in this study. Then, new drugs were introduced that can be experimentally examined as future work. Raloxifene and gentian violet are two new drugs, which have not been introduced as AD-related drugs in previous scientific and medical studies, recommended by the method of this study. Besides the primary goal, five bipartite networks representing the genes of each group and their target miRNAs were constructed to introduce target miRNAs.

2021 ◽  
Author(s):  
Negar Sadat Soleimani Zakeri ◽  
Saeid Pashazadeh ◽  
Habib MotieGhader

Abstract Background: Alzheimer's disease (AD) is known as a critical neurodegenerative disorder. It worsens as symptoms concerning dementia grow severe over the years. Due to the globalization of Alzheimer’s disease, its prevention and treatment is vital. This study proposes a method to extract substantial gene complexes and accomplish an enrichment analysis to introduce the most significant biological procedures. The next step is extracting the drugs related to AD and introduce some new drugs which may be useful for this disease. Results: To this end, protein-protein interactions (PPI) network was utilized to extract five meaningful gene complexes functionally interconnected. The next step was to construct a five bipartite network representing the genes of each group and their target miRNAs. Finally, a complete network including all the genes related to each gene complex group and genes’ target drug was illustrated. medical studies and publications were analyzed thoroughly to introduce AD-related drugs. Conclusions: This analysis proves the accuracy of the proposed method in this study. Then, new drugs were introduced that can be experimentally examined as future work. RALOXIFENE, GENTIAN VIOLET are two new drugs, which have not been introduced as AD-related drugs in previous scientific and medical studies, recommended by the method of this study. These two drugs.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1647
Author(s):  
Anna Bocharova ◽  
Kseniya Vagaitseva ◽  
Andrey Marusin ◽  
Natalia Zhukova ◽  
Irina Zhukova ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder, and represents the most common cause of dementia. In this study, we performed several different analyses to detect loci involved in development of the late onset AD in the Russian population. DNA samples from 472 unrelated subjects were genotyped for 63 SNPs using iPLEX Assay and real-time PCR. We identified five genetic loci that were significantly associated with LOAD risk for the Russian population (TOMM40 rs2075650, APOE rs429358 and rs769449, NECTIN rs6857, APOE ε4). The results of the analysis based on comparison of the haplotype frequencies showed two risk haplotypes and one protective haplotype. The GMDR analysis demonstrated three significant models as a result: a one-factor, a two-factor and a three-factor model. A protein–protein interaction network with three subnetworks was formed for the 24 proteins. Eight proteins with a large number of interactions are identified: APOE, SORL1, APOC1, CD33, CLU, TOMM40, CNTNAP2 and CACNA1C. The present study confirms the importance of the APOE-TOMM40 locus as the main risk locus of development and progress of LOAD in the Russian population. Association analysis and bioinformatics approaches detected interactions both at the association level of single SNPs and at the level of genes and proteins.


2021 ◽  
pp. 1-26
Author(s):  
Sze Chung Yuen ◽  
Simon Ming-Yuen Lee ◽  
Siu-wai Leung

Background: Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer’s disease (AD). Objective: This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. Methods: The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. Results: The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. Conclusion: This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.


2020 ◽  
Vol 19 (2) ◽  
pp. 136-151
Author(s):  
Shivani Singh ◽  
Meenakshi Dhanawat ◽  
Sumeet Gupta ◽  
Deepak Kumar ◽  
Saloni Kakkar ◽  
...  

: Alzheimer’s disease (AD) is a multifarious and developing neurodegenerative disorder. The treatment of AD is still a challenge and availability of drug therapy on the basis of symptoms is not up to the mark. In the context of existence, which is getting worse for the human brain, it is necessary to take care of all critical measures. The disease is caused due to multidirectional pathology of the body, which demands the multi-target-directed ligand (MTDL) approach. This gives hope for new drugs for AD, summarized here in with the pyrimidine based natural product inspired molecule as a lead. The review is sufficient in providing a list of chemical ingredients of the plant to cure AD and screen them against various potential targets of AD. The synthesis of a highly functionalized scaffold in one step in a single pot without isolating the intermediate is a challenging task. In few examples, we have highlighted the importance of this kind of reaction, generally known as multi-component reaction. Multi-component is a widely accepted technique by the drug discovery people due to its high atom economy. It reduces multi-step process to a one-step process, therefore the compounds library can be made in minimum time and cost. This review has highlighted the importance of multicomponent reactions by giving the example of active scaffolds of pyrimidine/fused pyrimidines. This would bring importance to the fast as well as smart synthesis of bio-relevant molecules.


2018 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Liqun Wang ◽  
Hongjia Qian ◽  
Liqun Wang

T0901317, a live X receptor agonist, can reduce amyloid β generation in vitro and in a mouse Alzheimer’s disease (AD) model. To investigate the global molecular effects of T0901317 in mouse hippocampus, we downloaded public GSE31624 generated from the hippocampus of wild-type mice, Tg2576 mice and T0901317-treated Tg2576 mice. Differentially-expressed genes (DEGs) were identified on LIMMA of R software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were analyzed through DAVID. Protein- protein interaction and hub genes were obtained based on STRING and Cytoscape. Nine downregulated and 68 upregulated DEGs in T0901317-treated Tg2576 were identified in comparison with untreated Tg2576 mice. Annotation analyses showed these DEGs correlated with transport (BP), membrane (CC) and binding (MF) terms and the dopaminergic synapse pathway. Protein-protein interaction network was built to find out some hub genes by maximal clique centrality. Discs large homolog 4 (Dlg4), the most outstanding gene, was associated with cognition improvement in aged AD mice. T0901317 may impact the development by regulating the Dlg4 expression. In conclusion, we investigated effects of T0901317 therapy on gene expression profiles in the hippocampus of Tg2576 mice and found Dlg4 may serve as putative therapeutics target for AD treatment.


2019 ◽  
Vol 240 (2) ◽  
pp. R47-R72 ◽  
Author(s):  
Lenka Maletínská ◽  
Andrea Popelová ◽  
Blanka Železná ◽  
Michal Bencze ◽  
Jaroslav Kuneš

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5582
Author(s):  
Alfred Ngenge Tamfu ◽  
Selcuk Kucukaydin ◽  
Balakyz Yeskaliyeva ◽  
Mehmet Ozturk ◽  
Rodica Mihaela Dinica

Alzheimer’s disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient’s daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer’s disease.


Export Citation Format

Share Document