Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Design and test of wirelessly powered IPMC artificial muscle for aquatic ecosystem health applications

Author(s):  
Yousef Safari ◽  
Nadia Naghavi ◽  
Mohsen Malayjerdi ◽  
Hadi Kalani

Aquatic environments and water resources face a variety of risks from numerous sources of pollution. In this paper, we propose a preliminary mechanism for realizing robotic technology practically and cost-effectively for monitoring these pollutions. The presented system is a small robotic fish propelled by a beam of ionic polymer-metal composite (IPMC) artificial muscle that imitates the motion of a small Scorpis Georgiana fish. One of the superiorities of the proposed model is the IPMC actuation mechanism powered by a battery that is charged wirelessly from a solar panel source. This approach enables us to produce a robotic fish that works ceaselessly without being forced to carry the solar panel load. Moreover, we present a method to control the flapping motion of a robotic fish by taking advantage of a tiny Wi-Fi module that yields more working range, bulky data sending, low power consumption, simple programing, and convenient communication for creating a network with other similar robots. All these beneficial characteristics make the proposed structure a promising candidate for detecting pollution on the surface of aquatic environments and sending/recording necessary data in collaboration with desirable sensors. Theoretical considerations support experimental results reported in the paper.

2020 ◽  
Vol 31 (17) ◽  
pp. 1973-1985
Author(s):  
Hojat Zamyad ◽  
Nadia Naghavi ◽  
Reza Godaz ◽  
Reza Monsefi

The high application potential of ionic polymer–metal composites has made the behavior identification of this group of smart materials an attractive area. So far, several models have been proposed to predict the bending of an ionic polymer–metal composite actuator, but these models have some weaknesses, the most important of them are the use of output data (in autoregressive models), high complexity to achieve a proper precision (in non-autoregressive models), and lack of compatibility with the behavioral nature of the material. In this article, we present a hybrid model of parallel non-autoregressive recurrent networks with internal memory cells to overcome existing weaknesses. The validation results on experimental data show that the proposed model has acceptable accuracy and flexibility. Moreover, simplicity and compatibility with the behavioral nature of the material promote using the proposed model in practical applications.


Author(s):  
Zheng Chen ◽  
Piqi Hou ◽  
Zhihang Ye

In this paper, a new robotic fish propelled by a hybrid tail, which is actuated by two active joints, is developed. The first joint is driven by a servo motor, which generates flapping motions for main propulsion. The second joint is actuated by a soft actuator, an ionic polymer-metal composite (IPMC) artificial muscle, which directs the propelled fluid for steering. A state-space dynamic model is developed to capture the two-dimensional (2D) motion dynamics of the robotic fish. The model fully captures the actuation dynamics of the IPMC soft actuator, two-link tail motion dynamics, and body motion dynamics. Experimental results have shown that the robotic fish is capable of swimming forward (up to 0.45 body length/s) and turning left and right (up to 40 deg/s) with a small turning radius (less than half a body length). Finally, the dynamic model has been validated with experimental data, in terms of steady-state forward speed and turning speed at steady-state versus flapping frequency.


2011 ◽  
Vol 110-116 ◽  
pp. 1199-1206 ◽  
Author(s):  
Dillip Kumar Biswal ◽  
Dibakar Bandopadhya ◽  
Santosha Kumar Dwivedy

Till to date, fabrication of Ionic Polymer-Metal Composites (IPMC) are carried out successfully using noble metal such as platinum/gold as the surface electrode. In this work we have proposed cost effective fabrication method for IPMC actuator using non-precious metal electrode of silver (Ag). Chemical decomposition method is followed using Nafion as the ion exchange membrane to fabricate pure Ag-electrode IPMC. Microscopic and morphological analyses reveal that, silver particles penetrate well through the surface of Nafion membrane. The bending deformation measurement and analysis of the thermo-mechanical properties of the fabricated IPMC is carried out. The experiment results and performance of the IPMC actuator confirm that the fabrication of pure Ag-IPMC is feasible and can be used as artificial muscle material.


2006 ◽  
Vol 18 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Myoung Joon Lee ◽  
Sung Hee Jung ◽  
Gyoo Suk Kim ◽  
Inhyuk Moon ◽  
Sukmin Lee ◽  
...  

Export Citation Format

Share Document