Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Performance profiling of the unit trust funds in Malaysia with data mining techniques

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1272
Author(s):  
Aida Farah Khairuddin ◽  
Keng-Hoong Ng ◽  
Kok-Chin Khor

Background: Millennials are exposed to many investment opportunities, and they have shown their interest in gaining more income via investments. One popular investment avenue is unit trusts. However, analysing unit trusts’ financial data and gaining valuable insights may not be as simple because not everyone has the required financial knowledge and adequate time to perform in-depth analytics on the numerous financial data. Furthermore, it is not easy to compile the performance of each unit trust available in Malaysia. The primary objective of this research is to identify unit trust funds that provide higher returns than their average peers via performance profiling.  Methods: This research proposed a performance profiling on Malaysia unit trust funds using the two data mining techniques, i.e., Expectation Maximisation (EM) and Apriori, to assist amateur retail investors to choose the right unit trust based on their risk tolerance. EM clustered the unit trust funds in Malaysia into several groups based on their annual financial performances. This was then followed by finding the rules associated with each cluster by applying Apriori. The resulted rules shall serve the purpose of profiling the clustered unit trust funds. Retail investors can then select their preferred unit trust funds based on the performance profile of the clusters.  Results: The yearly average total return of the financial year 2018 and 2019 was used to evaluate unit trust funds’ performance in the clusters. The evaluation results indicated that the profiling could provide valuable and insightful information to retail investors with varying risk appetites.   Conclusions: This research has demonstrated that the financial performance profiling of unit trust funds could be acquired via data mining approaches. This valuable information is crucial to unit trust investors for selecting suitable funds in investment.

2018 ◽  
Vol 9 (2) ◽  
pp. 155-170 ◽  
Author(s):  
Naail Mohammed Kamil ◽  
Muthaloo Subramaniam ◽  
Halane Elmi Ali ◽  
Mohammed Borhandden Musah ◽  
Acheampong Alex

Purpose The efficiency of unit trust (UT) funds from quite number of contexts across the globe has been highlighted in previous literature. Yet, there is dearth of research that empirically investigates the factors that influence the selection of UT funds by retailers, particularly in the Malaysian setting. This paper aims to narrow this research gap, whereby perception of past performance, perception of funds’ commitment to Shari’ah compliance, perception of funds’ size and perception of risk tolerance are hypothesized to exert statistically significant influences on the selection of UT funds by retail investors in Malaysia. Design/methodology/approach The empirical study uses a quantitative research approach whereby survey data have been sampled from 140 retail investors from around Malaysia, using simple random sampling technique. Data analysis has been carried out using multiple regression analysis employing SPSS version 20.0. Findings The empirical research finds that perceptions of fund size and Shari’ah compliance significantly influence the selection of UT among retail investors in Malaysia. However, there were no enough evidences to support the claims that perceptions of past performance and of risk tolerance influence the selection of UT among Malaysian retail investors. Research limitations/implications This research is cross-sectional and uses data from Malaysia only. Practical implications The findings from this research will have enormous implications for policymakers in the accounting and finance sectors of government and private financial institutions and for individual professional Malaysian investors. In particular, investors in Malaysia and potential investors abroad may be enlightened by the findings of this research. Again, Islamic financial institutions may use the findings to boost their performance improvement interventions, thus, having clear evidence of the actual factors that influence retailers in the Malaysian setting. Originality/value To the best of the authors’ knowledge, this research is among the pioneering research works that empirically explores the factors that influence Malaysian retailers to invest in UT funds. This research is expected to stimulate further research in this novel area.


2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2019 ◽  
Vol 1 (1) ◽  
pp. 121-131
Author(s):  
Ali Fauzi

The existence of big data of Indonesian FDI (foreign direct investment)/ CDI (capital direct investment) has not been exploited somehow to give further ideas and decision making basis. Example of data exploitation by data mining techniques are for clustering/labeling using K-Mean and classification/prediction using Naïve Bayesian of such DCI categories. One of DCI form is the ‘Quick-Wins’, a.k.a. ‘Low-Hanging-Fruits’ Direct Capital Investment (DCI), or named shortly as QWDI. Despite its mentioned unfavorable factors, i.e. exploitation of natural resources, low added-value creation, low skill-low wages employment, environmental impacts, etc., QWDI , to have great contribution for quick and high job creation, export market penetration and advancement of technology potential. By using some basic data mining techniques as complements to usual statistical/query analysis, or analysis by similar studies or researches, this study has been intended to enable government planners, starting-up companies or financial institutions for further CDI development. The idea of business intelligence orientation and knowledge generation scenarios is also one of precious basis. At its turn, Information and Communication Technology (ICT)’s enablement will have strategic role for Indonesian enterprises growth and as a fundamental for ‘knowledge based economy’ in Indonesia.


Author(s):  
S. K. Saravanan ◽  
G. N. K. Suresh Babu

In contemporary days the more secured data transfer occurs almost through internet. At same duration the risk also augments in secure data transfer. Having the rise and also light progressiveness in e – commerce, the usage of credit card (CC) online transactions has been also dramatically augmenting. The CC (credit card) usage for a safety balance transfer has been a time requirement. Credit-card fraud finding is the most significant thing like fraudsters that are augmenting every day. The intention of this survey has been assaying regarding the issues associated with credit card deception behavior utilizing data-mining methodologies. Data mining has been a clear procedure which takes data like input and also proffers throughput in the models forms or patterns forms. This investigation is very beneficial for any credit card supplier for choosing a suitable solution for their issue and for the researchers for having a comprehensive assessment of the literature in this field.


Author(s):  
Jean Claude Turiho ◽  
◽  
Wilson Cheruiyot ◽  
Anne Kibe ◽  
Irénée Mungwarakarama ◽  
...  

Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


Author(s):  
Tushar Deshmukh ◽  
H. S. Fadewar

This Diabetes is such a common dieses found all over the globe, in which blood glucose or in normal terminology the sugar level in blood is increased. It is the condition of the body in which the insulin which is required for the metabolism of the food is not created or body cannot use the insulin produced properly. Doctors say that diabetes can be controlled if it is detected in its early stages. Data mining is the process in which the data can be used for the prediction based on historic data. The intention here is to analysis how various researchers have used the data mining for better prediction of diabetes so that it could be controlled and possible even cured.


Author(s):  
Khalid AA Abakar ◽  
Chongwen Yu

This work demonstrated the possibility of using the data mining techniques such as artificial neural networks (ANN) and support vector machine (SVM) based model to predict the quality of the spinning yarn parameters. Three different kernel functions were used as SVM kernel functions which are Polynomial and Radial Basis Function (RBF) and Pearson VII Function-based Universal Kernel (PUK) and ANN model were used as data mining techniques to predict yarn properties. In this paper, it was found that the SVM model based on Person VII kernel function (PUK) have the same performance in prediction of spinning yarn quality in comparison with SVM based RBF kernel. The comparison with the ANN model showed that the two SVM models give a better prediction performance than an ANN model.


Export Citation Format

Share Document