Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Influence of Environmental Parameters, Pinching, and Ethephon Application on Growth and Branching of Potted Stevia

HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 81-84
Author(s):  
Ryan M. Warner

Stevia (Stevia rebaudiana) is an herb grown commercially for the extraction of intensely sweet-tasting, non-caloric, steviol glycosides produced primarily in the leaves and used as a sugar substitute. While most stevia production occurs as an industrial field crop, more recently, consumer demand for stevia for home gardens and patio containers has increased. Research on how environmental inputs impact growth, branching, and flowering of stevia under greenhouse conditions for potted plant production is currently lacking. A series of experiments was conducted to quantify how methods to promote branching, fertilizer concentration, photoperiod and temperature impact branch production, growth and development, and flowering of stevia. Both manual decapitation and ethephon application increased lateral branch production, though hard pinching (cutting plants back to leave four nodes) yielded a more desirable plant architecture. Neither temperature nor fertilizer concentration impacted the number of branches produced by plants given a hard pinch. Shoot dry biomass was similar at fertilizer concentrations (applied at each watering) of 50, 100, and 200 mg⋅L−1 N, but decreased at 300 or 400 mg⋅L−1 N. Stevia responded to photoperiod as a facultative short-day plant, with earliest flowering occurring, both in days to flower and the number of nodes produced before flowering, at photoperiods <13 hours. The number of nodes produced on the longest branch increased as temperature increased from 17 to 26 °C. Plant height and longest branch length were shorter at 17 °C than at higher temperatures. The results of these studies indicate that for potted plant production, stevia should be grown under a photoperiod of 14 hours or longer with moderate nutrient levels, a minimum temperature of 20 °C, and plants should receive one or more manual pinches to promote branching.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


2021 ◽  
Vol 11 (8) ◽  
pp. 3634
Author(s):  
Teresa Leszczyńska ◽  
Barbara Piekło ◽  
Aneta Kopeć ◽  
Benno F. Zimmermann

This study compares the content of basic nutrients (proteins, fats, digestible carbohydrates, dietary fiber and ash), steviol glycosides, selected antioxidants (vitamin C, total polyphenols) and antioxidant activity in dried leaves of Stevia rebaudiana Bertoni cultivated in Poland, Paraguay and Brazil and available in the direct sale. The basic chemical composition was determined by standard AOAC (Association of Official Analytical Chemists) methods. Content of steviol glycosides was determined by the UHPLC-UV chromatographic method. Total polyphenols content was expressed as gallic acid equivalent (GAE) and catechins equivalent (CE). Antioxidant activity was measured as ABTS●+ free radical scavenging activity. Dried leaves of S. rebaudiana grown in Poland had significantly higher contents of dietary fiber, and lower protein and ash content, compared to those derived from Paraguay and Brazil. The former had, however, considerably higher contents of total steviol glycosides, stevioside and rebaudioside D, compared to the remaining two plants. In the Paraguay-derived dried leaves, the content of rebaudioside A, C, E and rubusoside was found to be significantly lower. Dried leaves of S. rebaudiana Bertoni, cultivated in Poland, contained substantially more vitamin C and a similar content of total polyphenols, compared to those from Brazil and Paraguay. The examined material from Brazil and Paraguay plantations showed similar antioxidant activity, while that obtained from Polish cultivation was characterized by a significantly lower value of this parameter.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zala Schmautz ◽  
Carlos A. Espinal ◽  
Andrea M. Bohny ◽  
Fabio Rezzonico ◽  
Ranka Junge ◽  
...  

Abstract Background An aquaponic system couples cultivation of plants and fish in the same aqueous medium. The system consists of interconnected compartments for fish rearing and plant production, as well as for water filtration, with all compartments hosting diverse microbial communities, which interact within the system. Due to the design, function and operation mode of the individual compartments, each of them exhibits unique biotic and abiotic conditions. Elucidating how these conditions shape microbial communities is useful in understanding how these compartments may affect the quality of the water, in which plants and fish are cultured. Results We investigated the possible relationships between microbial communities from biofilms and water quality parameters in different compartments of the aquaponic system. Biofilm samples were analyzed by total community profiling for bacterial and archaeal communities. The results implied that the oxygen levels could largely explain the main differences in abiotic parameters and microbial communities in each compartment of the system. Aerobic system compartments are highly biodiverse and work mostly as a nitrifying biofilter, whereas biofilms in the anaerobic compartments contain a less diverse community. Finally, the part of the system connecting the aerobic and anaerobic processes showed common conditions where both aerobic and anaerobic processes were observed. Conclusion Different predicted microbial activities for each compartment were found to be supported by the abiotic parameters, of which the oxygen saturation, total organic carbon and total nitrogen differentiated clearly between samples from the main aerobic loop and the anaerobic compartments. The latter was also confirmed using microbial community profile analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Juan Pablo Quintal Martínez ◽  
Jorge Carlos Ruiz Ruiz ◽  
Maira Rubí Segura Campos

This study was oriented towards encapsulation of S. rebaudiana extract and the study of its release kinetics. The desired encapsulation was achieved by the ionotropic gelation method using sodium alginate and inulin of polymeric constituents. Characterization of the capsules was performed by micrometric properties, encapsulation efficiency, in vitro extract release analysis, and biological activity of released extract. The in vitro release profiles from different capsules were applied on different kinetic models. The prepared capsules were found spherical in shape with diameters ranging from 2.07 to 2.63 mm, having the encapsulation efficiencies of 43.77% and 56.53% for phenolic compounds and steviol glycosides, respectively. The best-fit model with the highest correlation coefficient was observed in the Ritger–Peppas model, indicating diffusion controlled principle. The release exponent n value obtained from the Korsmeyer–Peppas model varied between 0.2273 and 1.1719, confirming that the mechanism of S. rebaudiana extract bioactive compounds release was diffusion controlled.


Author(s):  
Ma. Cristina Vazquez-Hernandez ◽  
Aurora Alvarado-Mariana ◽  
Humberto Aguirre-Becerra ◽  
Genaro Martin Soto-Zarazua ◽  
Ana Angelica Feregrino-Perez ◽  
...  

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 105 ◽  
Author(s):  
Monica Gallo ◽  
Andrea Formato ◽  
Gaetano Formato ◽  
Daniele Naviglio

Abstract: Stevia rebaudiana Bertoni is a perennial shrub belonging to the Asteraceae family. The leaves contain a mixture of steviol glycosides with extraordinary sweetening properties, among which the most important are stevioside and rebaudioside A. These components have a high sweetening power, which is about 300 times that of sucrose, and a negligible calorie content. However, their extraction and purification are not easy. In this paper, the extraction technique under cyclic pressure, known as rapid solid-liquid dynamic extraction (RSLDE), was compared using a Naviglio extractor (NE) with conventional maceration. The aim was to identify an efficient and economically viable method for obtaining high amounts of steviol glycosides in a short time. Furthermore, a numerical model was set up for the solid-liquid extraction process of value-added compounds from natural sources. Several parameters must be evaluated in relation to the characteristics of the parts of the plant subjected to extraction. Therefore, since diffusion and osmosis are highly dependent on temperature, it is necessary to control the temperature of the extraction system. On the other hand, the final aim of this work was to provide a scientific and quantitative basis for RSLDE. Therefore, the results obtained from stevia extracts using the corresponding mathematical model allowed hypothesizing the application of this model to the extraction processes of other vegetable matrices.


Export Citation Format

Share Document