Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Tomato Yield and Quality Response to Water Application Technique and Management

2021 ◽  
Vol 6 (7) ◽  
pp. 153-159
Author(s):  
Tom Gashari ◽  
Semwogerere Twaibu ◽  
Samuel Baker Kucel ◽  
David Magumba

Tomato (Lycopersicon esculentum Mill) is one of the most important and has the highest acreage of any vegetable crop in the world. Such quantitative analysis is based on the assessment of data from sequential collections of plant traits linked to environmental conditions, as well as yield potential under optimal growth conditions. The objective in this study was to evaluate the performance of tomato crop under furrow, basin and hosepipe irrigation techniques in Kabos, Serere District of Eastern Uganda. The materials and methods used in this study included tools like water pump (model DCX2-50D), Tomato variety Rionex, weighting scale, CROPWAT 8.0 software, CANOPEO software among others. Generally, quantitative techniques through several experiment designs were used. Daily and monthly weather variables, in-situ primary datasets of plant height, canopy cover percentages and fruit characteristics, and weight of harvested tomatoes were measured at three growth stages and analyzed using RCBD experiment with six treatments and four replications. Findings showed that overhead treatments had lowest rate of rotten yield compared to basin and furrow but had highest rate of discolored fruits attributed to sunshine and impact of water pressure during irrigation. Rotting of yield was highest in basin treatments. The rotting was attributed to water logging, poor drainage that accelerated fungal infection in the tomatoes. Furrow treatments had better drainage which reduced quantity of nonmarketable yield. There was no significant difference on the weight of tomatoes below 65g. This meant that fruit weight was independent of irrigation method. Treatments under hosepipe irrigation-overhead. Conclusively, water management practices have big impact on the crop yield giving a relationship that yield is directly proportional to water management practices, which however, should be followed by detailed soil and water analysis through such studies. The Safe-Water-for Food (SWFF) target can be reached and eventually reduce on the global hunger syndrome.

2018 ◽  
Vol 71 (1) ◽  
Author(s):  
Agnieszka Klimek-Kopyra ◽  
Tadeusz Zając ◽  
Andrzej Oleksy ◽  
Bogdan Kulig ◽  
Anna Ślizowska

This research evaluated the NDVI (normalized difference vegetation index) and GAI (green area index) in order to indicate the productivity and developmental effects of <em>Rhizobium inoculants</em> and microelement foliar fertilizer on pea crops. Two inoculants, Nitragina (a commercial inoculant) and IUNG (a noncommercial inoculant gel) and a foliar fertilizer (Photrel) were studied over a 4-year period, 2009–2012. The cultivars chosen for the studies were characterized by different foliage types, namely a semileafless pea ‘Tarchalska’ and one with regular foliage, ‘Klif’. Foliar fertilizer significantly increased the length of the generative shoots and the number of fruiting nodes in comparison to the control, which in turn had a negative impact on the harvest index. Pea seed yield was highly dependent on the interaction between the years of growth and the microbial inoculant, and was greater for ‘Tarchalska’ (4.33 t ha<sup>−1</sup>). Presowing inoculation of seeds and foliar fertilization resulted in a significantly higher value of GAI at the flowering (3.91 and 3.81, respectively) and maturity stages (4.82 and 4.77, respectively), whereas the value of NDVI was higher for these treatments only at the maturity stage (0.67 and 0.79, respectively). A significantly greater yield (5.0–5.4 t ha<sup>−1</sup>) was obtained after inoculation with IUNG during the dry years.


2011 ◽  
Vol 21 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Bee Ling Poh ◽  
Aparna Gazula ◽  
Eric H. Simonne ◽  
Francesco Di Gioia ◽  
Robert C. Hochmuth ◽  
...  

Increasing the length of irrigation time by reducing the operating pressure (OP) of drip irrigation systems may result in decreased deep percolation and may allow for reduced nitrogen (N) fertilizer application rates, thereby minimizing the environmental impact of tomato (Solanum lycopersicum) production. The objectives of this study were to determine the effects of irrigation OP (6 and 12 psi), N fertilizer rate (100%, 80%, and 60% of the recommended 200 lb/acre N), and irrigation rates [IRRs (100% and 75% of the target 1000–4000 gal/acre per day)] on fresh-market tomato plant nutritional status and yields. Nitrate (NO3−)–N concentration in petiole sap of ‘Florida 47’ tomatoes grown in Spring 2008 and 2009 in a raised-bed plasticulture system was not significantly affected by treatments in both years and were within the sufficiency ranges at first-flower, 2-inch-diameter fruit, and first-harvest growth stages (420–1150, 450–770, and 260–450 mg·L−1, respectively). In 2008, marketable yields were greater at 6 psi than at 12 psi OP [753 vs. 598 25-lb cartons/acre (P < 0.01)] with no significant difference among N rate treatments. But in 2009, marketable yields were greater at 12 psi [1703 vs. 1563 25-lb cartons/acre at 6 psi (P = 0.05)] and 100% N rate [1761 vs. 1586 25-lb cartons/acre at 60% N rate (P = 0.04)]. Irrigation rate did not have any significant effect (P = 0.59) on tomato marketable yields in either year with no interaction between IRR and N rate or OP treatments. Hence, growing tomatoes at 12 psi OP, 100% of recommended N rate, and 75% of recommended IRR provided the highest marketable yields with least inputs in a drip-irrigated plasticulture system. In addition, these results suggest that smaller amounts of irrigation water and fertilizers (75% and 60% of the recommended IRR and N rate, respectively) could be applied when using a reduced irrigation OP of 6 psi for the early part of the tomato crop season. In the later part of the season, as water demand increased, the standard OP of 12 psi could be used. Changing the irrigation OP offers the grower some flexibility to alter the flow rates to suit the water demands of various growth stages of the crop. Furthermore, it allows irrigation to be applied over an extended period of time, which could better meet the crop's needs for water throughout the day. Such an irrigation strategy could improve water and nutrient use efficiencies and reduce the risks of nutrient leaching. The results also suggest that OP (and flow rate) should be included in production recommendations for drip-irrigated tomato.


2012 ◽  
Vol 2 (5) ◽  
pp. 377-379
Author(s):  
Dr. Babaraju K Bhatt ◽  
◽  
Ronak A Mehta

2019 ◽  
Vol 56 (Special) ◽  
pp. 82-91 ◽  
Author(s):  
LV Subba Rao ◽  
RA Fiyaz ◽  
AK Jukanti ◽  
G Padmavathi ◽  
J Badri ◽  
...  

India is the second largest producer of rice in the world and it is the most important staple food grain. All India Coordinated Rice Improvement Project (AICRIP) was initiated with objective of conducting multi-location trials to identify suitable genotypes of high yield potential along with appropriate crop management practices. Since its inception AICRIP contributed significantly in meeting the growing demand both within and outside India. Significant progress has been achieved through AICRIP in terms of varietal release thereby increasing the crop productivity and also meeting the food and nutritional security. This paper makes a sincere effort in bringing out the significant achievements/milestones achieved under the AICRIP program and also gives a few directions for widening the areas under AICRIP.


1992 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
George J. Hochmuth

Efficient N management practices usually involve many potential strategies, but always involve choosing the correct amount of N and the coupling of N management to efficient water management. Nitrogen management strategies are integral parts of improved production practices recommended by land-grant universities such as the Institute of Food and Agricultural Sciences, Univ. of Florida. This paper, which draws heavily on research and experience in Florida, outlines the concepts and technologies for managing vegetable N fertilization to minimize negative impacts on the environment.


Water Policy ◽  
2006 ◽  
Vol 8 (3) ◽  
pp. 269-285 ◽  
Author(s):  
Dennis Wichelns

Economic incentives are used in many situations to motivate improvements in the use of scarce resources. In some areas, implementing appropriate incentives is made challenging by the nature of existing institutions or the inability to assign property rights and measure individual use of key resources. Higher prices for irrigation water can motivate wiser use of water in regions where the opportunity cost of water is rising, due to increasing municipal, industrial and environmental demands. This paper describes how an increasing block-rate pricing structure was designed and implemented in an irrigation district in central California. The goals of the program were to improve water management practices and reduce the volume of subsurface drain water discharged into the San Joaquin River. Results describing reductions in average irrigation depths and drain water volumes, collected throughout the 1990s, demonstrate the potential for achieving resource management goals with economic incentives that motivate changes in farm-level management practices. Complementary incentive programs and issues regarding program implementation and the sustainability of drain water reduction efforts in an arid region also are discussed.


1995 ◽  
Vol 31 (8) ◽  
pp. 109-121 ◽  
Author(s):  
D. L. Anderson ◽  
E. G. Flaig

Restoration and enhancement of Lake Okeechobee and the Florida Everglades requires a comprehensive approach to manage agricultural runoff. The Florida Surface Water Improvement and Management (SWIM) Act of 1987 was promulgated to develop and implement plans for protecting Florida waters. The South Florida Water Management District was directed by Florida legislature to develop management plans for Lake Okeechobee (SWIM) and the Everglades ecosystem (Marjory Stoneman Douglas Everglades Protection Act of 1991). These plans require agriculture to implement best management practices (BMPs) to reduce runoff phosphorus (P) loads. The Lake Okeechobee SWIM plan established a P load reduction target for Lake Okeechobee and set P concentration limitations for runoff from non-point source agricultural sources. Agricultural water users in the Everglades Agricultural Area (EAA) are required to develop farm management plans to reduce P loads from the basin by 25%. The Everglades Forever Act of 1994 additionally emphasized linkage of these landscapes and consequent protection and restoration of the Everglades. Agricultural BMPs are being developed and implemented to comply with water management, environmental, and regulatory standards. Although BMPs are improving runoff water quality, additional research is necessary to obtain the best combination of BMPs for individual farms. This paper summarizes the development of comprehensive water management in south Florida and the agricultural BMPs carried out to meet regulatory requirements for Lake Okeechobee and the Everglades.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
SAMBORLANG K. WANNIANG ◽  
A. K. SINGH

A field experiment was conducted during kharif 2011 on experimental farm of the College of Post Graduate Studies (CAU–Imphal), Umiam (Meghalaya) to evaluate the effect of integration of green manuring, FYM and fertilizers as integrated nutrient management (INM) practices on growth and developmental behaviour of quality protein maize cultivar QPM 1. The data revealed that comparatively higher amount of primary nutrients were added in green manured maize plots in comparison to non green manured treatments. Green manuring also left a positive response on plant height, CGR, RGR leaf area, and dry matter accumulation in plants though the difference between green manured and non-green manured treatments was at par. Treatments 75 % RDF + 5 t FYM ha-1, 50 % RDF + 7.5 t FYM ha-1, 100 % RDF ha-1 and 75 % RDF + 2.5 t FYM ha-1 recorded significantly higher values of all the above said growth parameters over 50 % RDF + 5 t FYM ha-1 and control treatments. At all stages of observations, the maximum dry matter was associated with RDF (recommended doses of fertilizers) which was at par with 75 % RDF + 5 t FYM ha-1, but significantly higher over the plant dry weight recorded from all remaining treatments. A Significant difference in CGR at 30 – 60 and 60 – 90 DAS stage and in RGR at 90 DAS - harvest stage was observed due to various combinations of recommended dose of fertilizer with different doses of FYM. Number of days taken to attain the stages of 50% tasselling, silking and maturity did not differ significantly due to green manuring. However, treatment 75 % RDF + 5 t FYM ha-1 took significantly lesser number of days for these stages than other treatment combinations. The superiority of the treatment 75 % RDF + 5 t FYM ha-1 indicated a possibility of substituting 25% of RDF with 5 t FYM ha-1 without any loss in dry matter accumulation in plants of the quality protein hybrid maize in mid-hill ecosystems of Meghalaya.


A multi-disciplinary analysis of the evolution of water politics and policy by an international team of distinguished experts. Water management in the Middle Ages in Europe, its evolution in the USA, the elaboration of the European Water Framework Directive, the British experience of water management, the over-exploitation of African aquifers, and the evolution of the water situation in Southern Africa are all examined. This volume underlines the fact that only an integrative and interdisciplinary understanding can lead to genuinely improved water management practices that will not benefit some social groups at the expense of others.


Export Citation Format

Share Document