Salinity-Induced Physiological Responses of Three Putative Salt Tolerant Citrus Rootstocks
Our study aimed to evaluate the physiological responses following salinity treatment of three putatively salt-tolerant Citrus rootstocks recently developed by the University of Florida’s Citrus breeding program. Four-month-old seedlings from each of the three rootstocks (HS1, HS17, and HC15) were irrigated with 0, 60, 80, and 100 mm NaCl solution. The seedlings were evaluated together with the salt-tolerant Cleopatra mandarin as a positive control, Volkamer lemon as a moderately salt-tolerant rootstock, and the salt-sensitive Carrizo rootstock as a negative control. Our results demonstrated that chlorophyll content, net CO2 assimilation rate (A), transpiration rate (E), and stomatal conductance (gsw) significantly decreased in response to salinity. Na+ and Cl− levels were higher in leaf tissues than in the roots. Relatively little damage to the cellular membrane was recorded in HC15 and Cleopatra rootstocks under the 100 mm NaCl treatment, along with high accumulation of total phenolic content (TPC), while HS17 had the highest proline levels. Our results indicate that HC15 and HS17 rootstocks exhibited salt tolerance capacity via different strategies under salt stress and could be suitable replacements to the commercially available, salt-tolerant Cleopatra rootstock.