Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation

2021 ◽  
Vol 23 (1) ◽  
pp. 358
Author(s):  
Stefano Navarro ◽  
David Stegner ◽  
Bernhard Nieswandt ◽  
Johan W. M. Heemskerk ◽  
Marijke J. E. Kuijpers

In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.

2004 ◽  
Vol 91 (05) ◽  
pp. 977-985 ◽  
Author(s):  
Tahar Chakroun ◽  
François Depasse ◽  
Pantelis Arzoglou ◽  
Meyer Samama ◽  
Ismail Elalamy ◽  
...  

SummaryIn the present study we assessed the effect of platelet counts and rFVIIa on thrombin generation, platelet activation and clot formation after tissue factor pathway activation in human plasma aiming to investigate the mechanism by which rFVIIa induces haemostasis in patients with severe thrombocytopenia. Plasma samples with platelet counts from 5 ×109/l to 150 ×109/l were spiked with rFVIIa (1 µg/ml) or buffer. Clotting was initiated in the presence of diluted thromboplastin. Thrombin generation was assessed using the Thrombogram-Thrombinoscope™ assay. The kinetics of platelet activation was assessed using flow cytometry to measure the expression the Pselectin on platelet membrane of washed platelets suspended in defibrinated homologous PPP. Thromboelastography was used to evaluate the effect of platelets and rFVIIa on the kinetics of clot formation and clot’s firmness. In the presence of low platelet counts the endogenous thrombin potential (ETP) and the maximum concentration of generated thrombin (Cmax) were reduced by 60%-70%.The lag-time of thrombin generation and the time required to reach the Cmax (Tmax) were prolonged, the velocity of platelet activation was decreased and thrombus formation was delayed. Recombinant FVIIa accelerated thrombin generation and platelet activation but it did not significantly modify ETP or Cmax. Recombinant FVIIa enhanced platelet activation in a TF and thrombin dependent manner since its effect on the studied parameters was abolished when TF was omitted or when hirudin was added into the experimental system respectively. Recombinant FVIIa normalized the velocity of clot formation but it did not modify clot firmness, which depended mainly on platelets’ count. In conclusion, in experimental conditions simulating severe thrombocytopenia rFVIIa in the presence of low amounts of TF, accelerates thrombin generation, without increasing the maximum amount of generated thrombin, thus leading in enhanced platelet activation and rapid clot formation.


2011 ◽  
Vol 31 (8) ◽  
pp. 1772-1780 ◽  
Author(s):  
Erik W. Holy ◽  
Marc Forestier ◽  
Eva K. Richter ◽  
Alexander Akhmedov ◽  
Florian Leiber ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2787-2792 ◽  
Author(s):  
Viji Balasubramanian ◽  
Eric Grabowski ◽  
Alessandra Bini ◽  
Yale Nemerson

Although it is generally accepted that the initial event in coagulation and intravascular thrombus formation is the exposure of tissue factor (TF) to blood, there is still little agreement about the mechanisms of thrombus propagation and the identities of the molecular species participating in this process. In this study, we characterized the thrombotic process in real-time and under defined flow conditions to determine the relative contribution and spatial distribution of 3 components of the thrombi: circulating or blood-borne TF (cTF), fibrin, and platelets. For this purpose, we used high-sensitivity, multicolor immunofluorescence microscopy coupled with a laminar flow chamber. Freshly drawn blood, labeled with mepacrine (marker for platelets and white cells), anti-hTF1Alexa.568 (marker for tissue factor), and anti-T2G1Cy­5 (marker for fibrin) was perfused over collagen-coated glass slides at wall shear rates of 100 and 650 s−1. A motorized filter cube selector facilitated imaging every 5 seconds at 1 of 3 different wavelengths, corresponding to optimal wavelengths for the 3 markers above. Real-time video recordings obtained during each of 10 discrete experiments show rapid deposition of platelets and fibrin onto collagen-coated glass. Overlay images of fluorescent markers corresponding to platelets, fibrin, and cTF clearly demonstrate colocalization of these 3 components in growing thrombi. These data further support our earlier observations that, in addition to TF present in the vessel wall, there is a pool of TF in circulating blood that contributes to the propagation of thrombosis at a site of vascular injury.


2018 ◽  
Vol 38 (04) ◽  
pp. 203-210 ◽  
Author(s):  
Rüdiger Scharf

AbstractPlatelets react immediately in response to traumatic vascular injury by adhesion, activation, aggregation and subsequent haemostatic plug formation. While this reaction pattern is essential for haemostasis, platelet responses can also cause occlusive thrombi in diseased arteries, leading to myocardial infarction or stroke. Initially, flowing platelets are captured from the circulation to vascular lesions. This step is mediated by glycoprotein (GP) Ib-IX-V interacting with immobilized von Willebrand factor (VWF) on exposed subendothelial components. Tethered platelets can now bind to collagen through GPVI and integrin α2β1. Outside-in signals from the adhesion receptors act synergistically with inside-out signals from soluble stimuli and induce platelet activation. These mediators operate through G protein–coupled receptors and reinforce adhesion and activation. Typical manifestations of activated platelets include calcium mobilization, procoagulant activity, cytoskeletal reorganization, granule secretion and aggregation. This requires activation of integrin αIIbβ3 with shifting into a high-affinity state and is indispensable to bind soluble fibrinogen, VWF and fibronectin. The multiple interactions and the impact of thrombin result in firm adhesion and recruitment of circulating platelets into growing aggregates. A fibrin meshwork supports stabilization of haemostatic thrombi and prevents detachment by the flowing blood. This two-part review provides an overview of platelet activation and signal transduction mechanisms with a focus on αIIbβ3-mediated outside-in signaling in integrin variants. In the first part, a three-stage model of platelet recruitment and activation in vivo is presented. Along with that, platelet responses upon exposure to thrombogenic surfaces followed by platelet-to-platelet interactions and formation of haemostatic thrombi are discussed. Moreover, several determinants involved in pathological thrombosis will be reviewed.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 292-292 ◽  
Author(s):  
Jaehyung Cho ◽  
Barbara C. Furie ◽  
Shaun R. Coughlin ◽  
Bruce Furie

Abstract Thiol isomerases catalyze disulfide oxidation, reduction and isomerization, playing an important role during protein synthesis. Recent studies suggest a role for protein disulfide isomerase (PDI), a prototype of the thiol isomerase family, in platelet function and regulation of tissue factor activity (Essex and Li. Curr Drug Targets. 2006; Chen and Hogg. J Thromb Haemost. 2006). To determine the role of intravascular PDI during thrombus formation, PDI expression, platelet accumulation, and fibrin generation were monitored following laser-induced arteriolar injury in the mouse cremaster muscle by intravital fluorescence microscopy. PDI antigen exhibited a time-dependent increase in the developing thrombus after vessel wall injury and remained associated with the thrombus. Infusion of bacitracin, a non-specific inhibitor of thiol isomerases, into the circulation inhibited platelet thrombus formation and fibrin generation in a dose-dependent manner. Infusion of a function-blocking monoclonal antibody to PDI (RL90) into the circulation of a wild type mouse also resulted in dose-dependent inhibition of platelet accumulation and fibrin generation. To determine whether PDI inhibits fibrin formation by blocking tissue factor activation, or by preventing platelet activation and the development of the membrane surface that is required for assembly of the tenase and the prothrombinase complex in vivo, we explored fibrin formation in mice lacking protease-activated receptor-4 (Par4). Although there is no stable accumulation of platelets and no platelet activation, fibrin formation is normal in the Par4 null mouse (Vandendries et al, Proc Natl Acad Sci USA. 2007), suggesting that fibrin generation in the laser-induced vessel injury model is independent of platelet activation. Infusion of the function-blocking anti-PDI antibody (RL90) into the circulation of a Par4 null mouse prior to vessel wall injury inhibited fibrin generation. These results indicate that PDI is required to generate tissue factor in a form that leads to thrombin generation and fibrin formation during thrombus development and is required for thrombus formation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 485-485
Author(s):  
Firdos Ahmad ◽  
Lucia Stefanini ◽  
Timothy Daniel Ouellette ◽  
Teshell K Greene ◽  
Stefan Feske ◽  
...  

Abstract Abstract 485 Platelet activation is a central event in thrombosis and hemostasis. We recently demonstrated that most aspects of platelet activation depend on synergistic signaling by two signaling modules: 1) Ca2+/CalDAG-GEFI/Rap1 and 2) PKC/P2Y12/Rap1. The intracellular Ca2+ concentration of platelets is regulated by Ca2+ release from the endoplasmic reticulum (ER) and store-operated calcium entry (SOCE) through the plasma membrane. Stromal interaction molecule 1 (STIM1) was recently identified as the ER Ca2+ sensor that couples Ca2+ store release to SOCE. In this study, we compared the activation response of platelets lacking STIM1−/− or CalDAG-GEFI−/−, both in vitro and in vivo. To specifically investigate Ca2+-dependent platelet activation, some of the experiments were performed in the presence of inhibitors to P2Y12. The murine Stim1 gene was deleted in the megakaryocyte/platelet lineage by breeding Stim flox/flox mice with PF4-Cre mice (STIM1fl/fl). STIM1fl/fl platelets showed markedly reduced SOCE in response to agonist stimulation. aIIbβ3 activation in STIM1fl/fl platelets was significantly reduced in the presence but not in the absence of the P2Y12 inhibitor, 2-MesAMP. In contrast, aIIbb3 activation was completely inhibited in 2-MesAMP-treated CalDAG-GEFI−/− platelets. Deficiency in STIM1, and to a lesser extent in CalDAG-GEFI, reduced phosphatidyl serine (PS) exposure in platelets stimulated under static conditions. PS exposure was completely abolished in both STIM1fl/fl and CalDAG-GEFI−/− platelets stimulated in the presence of 2-MesAMP. To test the ability of platelets to form thrombi under conditions of arterial shear stress, we performed flow chamber experiments with anticoagulated blood perfused over a collagen surface. Thrombus formation was abolished in CalDAG-GEFI−/− blood and WT blood treated with 2-MesAMP. In contrast, STIM1fl/fl platelets were indistinguishable from WT platelets in their ability to form thrombi. STIM1fl/fl platelets, however, were impaired in their ability to express PS when adhering to collagen under flow. Consistently, when subjected to a laser injury thrombosis model, STIM1fl/fl mice showed delayed and reduced fibrin generation, resulting in the formation of unstable thrombi. In conclusion, our studies indicate a critical role of STIM1 in SOCE and platelet procoagulant activity, but not in CalDAG-GEFI mediated activation of aIIbb3 integrin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 121 (4) ◽  
pp. 692-699 ◽  
Author(s):  
Richard S. Robins ◽  
Catherine A. Lemarié ◽  
Sandrine Laurance ◽  
Meghedi N. Aghourian ◽  
Jianqiu Wu ◽  
...  

Abstract Gas6 (growth-arrest specific gene 6) plays a role in thrombus stabilization. Gas6 null (−/−) mice are protected from lethal venous and arterial thromboembolism through platelet signaling defects induced only by 5μM ADP and 10μM of the thromboxane analog, U46619. This subtle platelet defect, despite a dramatic clinical phenotype, raises the possibility that Gas6 from a source other than platelets contributes to thrombus formation. Thus, we hypothesize that Gas6 derived from the vascular wall plays a role in venous thrombus formation. Bone marrow transplantation and platelet depletion/reconstitution experiments generating mice with selective ablations of Gas6 from either the hematopoietic or nonhematopoietic compartments demonstrate an approximately equal contribution by Gas6 from both compartments to thrombus formation. Tissue factor expression was significantly reduced in the vascular wall of Gas6−/− mice compared with WT. In vitro, thrombin-induced tissue factor expression was reduced in Gas6−/− endothelial cells compared with wild-type endothelium. Taken together, these results demonstrate that vascular Gas6 contributes to thrombus formation in vivo and can be explained by the ability of Gas6 to promote tissue factor expression and activity. These findings support the notion that vascular wall-derived Gas6 may play a pathophysiologic role in venous thromboembolism.


Blood ◽  
2009 ◽  
Vol 114 (4) ◽  
pp. 881-890 ◽  
Author(s):  
Paola E. J. van der Meijden ◽  
Imke C. A. Munnix ◽  
Jocelyn M. Auger ◽  
José W. P. Govers-Riemslag ◽  
Judith M. E. M. Cosemans ◽  
...  

Abstract In vivo mouse models have indicated that the intrinsic coagulation pathway, initiated by factor XII, contributes to thrombus formation in response to major vascular damage. Here, we show that fibrillar type I collagen provoked a dose-dependent shortening of the clotting time of human plasma via activation of factor XII. This activation was mediated by factor XII binding to collagen. Factor XII activation also contributed to the stimulating effect of collagen on thrombin generation in plasma, and increased the effect of platelets via glycoprotein VI activation. Furthermore, in flow-dependent thrombus formation under coagulant conditions, collagen promoted the appearance of phosphatidylserine-exposing platelets and the formation of fibrin. Defective glycoprotein VI signaling (with platelets deficient in LAT or phospholipase Cγ2) delayed and suppressed phosphatidylserine exposure and thrombus formation. Markedly, these processes were also suppressed by absence of factor XII or XI, whereas blocking of tissue factor/factor VIIa was of little effect. Together, these results point to a dual role of collagen in thrombus formation: stimulation of glycoprotein VI signaling via LAT and PLCγ2 to form procoagulant platelets; and activation of factor XII to stimulate thrombin generation and potentiate the formation of platelet-fibrin thrombi.


2015 ◽  
Vol 1 (1) ◽  
pp. dvv007 ◽  
Author(s):  
Karin Engström ◽  
Filip Rydbeck ◽  
Maria Kippler ◽  
Tomasz K. Wojdacz ◽  
Shams Arifeen ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4102-4110 ◽  
Author(s):  
Christian Schulz ◽  
Nina V. Leuschen ◽  
Thomas Fröhlich ◽  
Michael Lorenz ◽  
Susanne Pfeiler ◽  
...  

Abstract Platelets play a key role in hemostasis and various diseases including arterial thrombosis. Glycoprotein VI (GPVI) mediates adhesion to collagen structures exposed at sites of vascular injury and subsequent platelet activation. We determined the effects of specific activation of GPVI on the human platelet proteome. Isolated human platelets were stimulated with an activating monoclonal antibody specific for GPVI. Platelet proteins were analyzed by 2-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry. We identified 8 differentially abundant proteins associated with cell signaling, metabolism, organization and rearrangement of the cytoskeleton, and membrane trafficking. Differentially abundant proteins included aldose reductase (AR), beta-centractin, charged multivesicular body protein 3, Src substrate cortactin, ERp57, and pleckstrin. Importantly, GPVI-modulated protein abundance was functionally relevant. Correspondingly, AR enzyme activity significantly increased upon GPVI activation and inhibition of AR resulted in reduced platelet aggregation. Furthermore, ERp57 was released upon ligation of platelet GPVI and increased the activity of tissue factor, a major initiator of blood coagulation. In summary, GPVI activation results in differential changes in abundance of platelet proteins, including AR and ERp57, which support platelet aggregation and platelet-dependent coagulation. These results provide further insight into the mechanisms that underlie platelet activation through the GPVI receptor and may help to identify novel pharmacologic targets.


Export Citation Format

Share Document