Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Chalcopyrite and Molybdenite Flotation in Seawater: The Use of Inorganic Dispersants to Reduce the Depressing Effects of Micas

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 539
Author(s):  
Rodrigo Yepsen ◽  
Joaquín Roa ◽  
Pedro G. Toledo ◽  
Leopoldo Gutiérrez

The objective of this work was to study the effect of muscovite and biotite on the flotation of chalcopyrite and molybdenite in seawater, and the use of sodium hexametaphosphate and sodium silicate to improve copper and molybdenum recoveries. The impact of the inorganic dispersants on the settling properties of the resulting flotation tailings was also studied. It was found that muscovite and biotite depress the flotation of chalcopyrite and molybdenite in seawater, with this depressing effect being stronger at pH 11 than at pH 9. Sodium hexametaphosphate and sodium silicate increased the recoveries of copper and molybdenum in seawater. These dispersants render the mineral particles more negatively charged and remove the hydroxy-complexes of magnesium and calcium from the mineral particles causing dispersion of the slimes. The settling rates of the flotation tailings slightly decrease when sodium hexametaphosphate and sodium silicate were added in the flotation stage. The presence of ultrafine particles dispersed by the action of the inorganic dispersants negatively impacted the flocculation and sedimentation processes leading to high flocculant consumption, low settling rates and high turbidity of the supernatant.

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 499
Author(s):  
Duong Huu Hoang ◽  
Doreen Ebert ◽  
Robert Möckel ◽  
Martin Rudolph

The depletion of ore deposits, the increasing demand for raw materials, the need to process low-grade, complex and finely disseminated ores, and the reprocessing of tailings are challenges especially for froth flotation separation technologies. Even though they are capable of handling relatively fine grain sizes, the flotation separation of very fine and ultrafine particles faces many problems still. Further, the flotation of low-contrast semi-soluble salt-type minerals with very similar surface properties, many complex interactions between minerals, reagents and dissolved species often result in poor selectivity. This study investigates the flotation beneficiation of ultrafine magnesite rich in dolomite from desliming, currently reported to the tailings. The paper especially focuses on the impact of the depressant sodium hexametaphosphate (SHMP) on the following: (i) the froth properties using dynamic froth analysis (DFA), (ii) the separation between magnesite and dolomite/calcite, and (iii) its effect on the entrainment. As a depressant/dispersant, SHMP has a beneficial impact on the flotation separation between magnesite and dolomite. However, there is a trade-off between grade and recovery, and as well as the dewatering process which needs to be considered. When the SHMP increases from 200 g/t to 700 g/t, the magnesite grade increases from 67% to 77%, while recovery decreases massively, from 80% to 40%. The open circuit with four cleaning stages obtained a concentrate assaying 77.5% magnesite at a recovery of 45.5%. The dolomite content in the concentrate is about 20%, where 80% of dolomite was removed and importantly 98% of the quartz was removed, with only 0.3% of the quartz in the final concentrate. Furthermore, the application of 1-hydroxyethylene-1,1-diphosphonic acid (HEDP) as a more environmentally friendly and low-cost alternative to SHMP is presented and discussed. Using only 350 g/t of HEDP can achieve a similar grade (76.3%), like 700 g/t of SHMP (76.9%), while obtaining a 17% higher magnesite recovery as compared to 700 g/t of SHMP. Interestingly, the proportion of hydrophilic quartz minerals ending up in the concentrate is lower for HEDP, with only 1.9% quartz at a recovery of 21.5% compared to the 2.7% of quartz at a recovery of 24.9% when using SHMP. The paper contributes in general to understanding the complexity of the depressant responses in froth flotation.


Author(s):  
Duong Huu Hoang ◽  
Doreen Ebert ◽  
Robert Möckel ◽  
Martin Rudolph

Depletion of ore deposits, increasing demand for raw materials, the need to process low-grade, complex and finely disseminated ores and the reprocessing of tailings are challenges, especially for froth flotation separation technologies. Even though capable of handling relatively fine grain sizes the flotation separation of very fine and ultrafine particles faces many problems still. Further, the flotation of low-contrast semi-soluble salt-type minerals with very similar surface properties, many complex interactions between minerals, reagents and dissolved species often result in poor selectivity. This study investigates the flotation beneficiation of ultrafine magnesite rich in dolomite from de-sliming, currently reported to the tailings. The paper especially focuses on the impact of the depressant sodium hexametaphosphate (SHMP) on: (i) the froth properties using dynamic froth analysis (DFA), (ii) the separation between magnesite and dolomite/calcite and (iii) its effect on the entrainment. Furthermore, the application of 1-hydroxyethylene-1,1-diphosphonic acid (HEDP) is a more environmentally friendly and low-cost alternative to SHMP is presented and discussed. The paper contributes to understanding on the complexity of depressant responses in froth flotation.


2011 ◽  
Vol 11 (24) ◽  
pp. 13243-13257 ◽  
Author(s):  
R. Weller ◽  
A. Minikin ◽  
D. Wagenbach ◽  
V. Dreiling

Abstract. Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 cm−3) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 103 cm−3 in March. Minimum values below 102 cm–3 were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between inter-annual CP concentration variations and atmospheric circulation indices like Southern Annular Mode (SAM) or Southern Ocean Index (SOI). The impact of the Pinatubo volcanic eruption and strong El Niño events did not affect CP concentrations. From thermodenuder experiments we deduced that the portion of volatile (at 125 °C) and semi-volatile (at 250 °C) particles which could be both associated with biogenic sulfur aerosol, was maximum during austral summer, while during winter non-volatile sea salt particles dominated. During September through April we could frequently observe enhanced concentrations of ultrafine particles within the nucleation mode (between 3 nm and 7 nm particle diameter), preferentially in the afternoon.


Author(s):  
Aghiles Hammas ◽  
Gisèle Laure Lecomte-Nana ◽  
Nadjet Azril ◽  
Imane Daou ◽  
Claire Peyratout ◽  
...  

The present study aimed at investigating the influence of the concentration of sodium silicate and sodium hexametaphosphate on the dispersion of an aqueous kaolinitic clay slurry regarding further use for the tape casting process. The zeta potential of the kaolinitic clay slurry matched the requirements for tape casting. The addition of magnesite in the kaolinitic slurries tended to increase the zeta potential towards the required limit values. Despite, the further addition of surfactants allowed improving the zeta potential in agreement with the tape casting conditions. Accordingly, the rheological behavior, under continuous and oscillatory flow conditions, of various mixtures of magnesite and a kaolinitic clay was studied. Regarding the pH and the zeta potential measurements, the E–F attraction prevailed at low pH value, and F–F or E–E attraction was predominant at high pH value. All slurries exhibited a shear thinning behavior, which was well-correlated by Herschel–Bulkley model. It appeared that the best stability for the kaolinitic clay slurries was obtained while using 0.4 mass% and 1.2 mass% of sodium hexametaphosphate and sodium silicate respectively. An increase in the magnesite concentration above 6 mass% led to a complex behavior with low cohesion energy due to the occurrence of soluble complexes.


2014 ◽  
Vol 59 (3) ◽  
pp. 1033-1036 ◽  
Author(s):  
I. Izdebska-Szanda ◽  
A. Baliński ◽  
M. Angrecki ◽  
A. Palma

Abstract A method for the chemical modification of silicate binder (hydrated sodium silicate) affecting the distribution of its nanostructure elements was disclosed. The effect of silicate binder modification on the resulting technological properties of moulding sands, determined under standard conditions and at elevated temperatures in the range from 1000C to 9000C, was discussed. Modification of this type is done on inorganic binders in order to reduce their unfavourable functional properties. It is particularly important when moulding sands with the silicate binder are used for casting of low-melting alloys. Therefore special attention was paid to the impact that modification of inorganic binders may have on the knocking out properties of sands prepared with these binders, when they are used in the process of casting non-ferrous alloys.


Author(s):  
Ana Luiza Coelho Braga de Carvalho ◽  
Feliciana Ludovici ◽  
Daniel Goldmann ◽  
André Carlos Silva ◽  
Henrikki Liimatainen

AbstractA considerable amount of very fine particles can be found, e.g., stored in tailing ponds, and they can include valuable or hazardous minerals that have the potential to be recovered. Selective flocculation, i.e., the formation of larger aggregates from specific minerals, offers a promising approach to improve the recovery of ultrafine particles. This study focuses on the use of a new bio-based flocculation agent made of silylated cellulose nanofibers containing a thiol-functional moiety (SiCNF). Flocculation was performed in separated systems of ultrafine mineral dispersions of pyrite, chalcopyrite, and quartz in aqueous alkaline medium. The flocculation performance of SiCNF was addressed in terms of the turbidity reduction of mineral dispersions and the floc size, and the results were compared with the performance of a commercial anionic polyacrylamide. SiCNF exhibited a turbidity removal efficiency of approximately 90%–99% at a concentration of 4000–8000 ppm with chalcopyrite and pyrite, whereas the turbidity removal of quartz suspension was significantly lower (a maximum of approximately 30%). The sulfide particles formed flocs with a size of several hundreds of micrometers. The quartz in turn did not form any visible flocs, and the dispersion still had a milky appearance after dosing 12,000 ppm of the flocculant. These results open a promising path for the investigation of SiCNF as a selective flocculation agent for sulfide minerals. Graphical Abstract


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Niloofar Ale-Agha ◽  
Nicole Buechner ◽  
Ulrich Sydlik ◽  
Klaus Unfried ◽  
Joachim Altschmied ◽  
...  

Diet and pollution are environmental factors known to compromise ″healthy cardiovascular aging″. The molecular consequences of the permanent burden for aging of the cardiovascular system are unknown, since they have never been examined in primary, adult human cells. Therefore, this study investigates the impact of unhealthy diet on aging-related signaling pathways of human, primary cardiovascular cells and of airborne particles on human endothelial cells, as several studies demonstrated that ultrafine particles can enter the circulation and thus may interact with endothelial cells directly. Nutrition health reports have shown that the diet in industrialized countries contains more than 100 mg/dl low density lipoprotein (LDL) and a too high fraction of monosaccharides, especially fructose, which is metabolized insulin-independently. Both components have been shown to increase the risk for cardiovascular diseases. To simulate unhealthy diet we supplemented cell culture media of human, primary endothelial cells (EC), smooth muscle cells (SMC) and cardiomyocytes (CM) with 100 mg/dl LDL and replaced 1/3 of the glucose with fructose for one week. This treatment did not induce cell death in any of the cell types. However, we observed increased senescence, loss of endothelial nitric oxide synthase and increased nuclear localization of Foxo3 in EC, increased proliferation in SMC and hypertrophy in CM. With respect to pollution we have used ultrafine carbon black particles (ufCB), one of the major constituents of industrial and exhaust emissions, in concentrations our vessels are constantly exposed to. These concentrations of ufCB are non-toxic and non-inflammatory for EC. Despite these missing immediate effects, ufCB dramatically reduced the S-NO content, a marker for NO-bioavailability in EC and increased reactive oxgen species formation. As a consequence, ufCB dramatically increased senescence of EC after two weeks. Thus, unhealthy diet and a high burden of ultrafine carbon black nanoparticles, to which we are exposed every day, seem to induce a ″cardiovascular aging″ phenotype and can lead to severe cardiovascular diseases.


2011 ◽  
Vol 291-294 ◽  
pp. 3372-3376
Author(s):  
Lin Li ◽  
Xian Jun Lu ◽  
Jun Qiu

The research has conducted a experimental research on the issues in modifier of flotation process in a molybdenum ore concentrating mill in Inner Mongolia. The results show that: when the raw ore is grinded into 61% -200 meshes, which is the same to the site production ore, the sorting index is optimum in neutral magma condition; and for dispersing agent, the sorting effect of sodium silicate is better than sodium hexametaphosphate, and the confirmed sufficient quality of sodium silicate is 300g/t.


Export Citation Format

Share Document