Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Defense and Detection of DDOS Attack using Secured Geographic Routing

2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Due to the absence of routing initiation, the routing protocol requires a secure message transition. The key downside is that there are many current routing protocols. The big downside is the inability of the node to give a message when the attackers are routing. The key attack in the proposed routing model is Distributed Denial of Service (DDOS). The Protected Geographic Routing Protocol (SGRP) is the assured routing carried out in the proposed work. The Protected Geographic Routing Protocol (SGRP) will improve the efficiency of the transmission method by choosing a specific source node. The paper suggested that the Protected Spatial Routing Protocol (PSRP) would recognize and isolate such threats. Several modeling time estimation studies have been carried out to analyze the simulation time and the efficiency of the proposed routing technique. The proposed routing technique demonstrates the performance by calculating the Packets Delivery Ratio(PDR) and Energy consumption. The Routing protocol is used in many applications such as the Industrial Internet of Things (IoT)

2020 ◽  
Vol 13 (3) ◽  
pp. 319-325
Author(s):  
Saravanan Palani ◽  
Logesh Ravi ◽  
Vijayakumar Varadarajan ◽  
Subramaniyaswamy Vairavasundaram ◽  
Xiao-Zhi Gao

Background: Vehicular Ad-hoc Network is the subset of Mobile Ad-hoc Network, Intelligent Transport System and Internet of Things. The acting nodes in VANET are the vehicles on the road at any moment. Objective: The anonymity character of these vehicles is opening the opportunity for malicious attacks. Malicious routes increase the data retransmission and hence, the performance of routing will be degraded. The main objective this work is to identify the malicious routes, avoid the data transmission using these routes and increase the packet delivery ratio. Methods: In the proposed system called Geographic Routing Protocol with Masked data, two binary- codes called mask and share have been generated to identify the malicious route. The original data is encoded using these binary-codes and routed to the destination using the geographic routing protocol. It is reconstructed at the destination node and based on the encoding technique the malicious routes and malicious nodes are identified. Simulations were conducted with varying speed and varying network size in 20 km2 geographical area. Results: The average packet delivery ratio with varying speed is 0.817 and with varying networksize is 0.733. Conclusion: The proposed geographical routing protocol with masked data technique outperforms than traditional geographic protocol and Detection of Malicious Node protocol, by 0.102 and 0.264 respectively with different speeds and by 0.065 and 0.1616 respectively with different network size.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 196 ◽  
Author(s):  
Xing Hu ◽  
Linhua Ma ◽  
Yongqiang Ding ◽  
Jin Xu ◽  
Yan Li ◽  
...  

The geographic routing protocol only requires the location information of local nodes for routing decisions, and is considered very efficient in multi-hop wireless sensor networks. However, in dynamic wireless sensor networks, it increases the routing overhead while obtaining the location information of destination nodes by using a location server algorithm. In addition, the routing void problem and location inaccuracy problem also occur in geographic routing. To solve these problems, a novel fuzzy logic-based geographic routing protocol (FLGR) is proposed. The selection criteria and parameters for the assessment of the next forwarding node are also proposed. In FLGR protocol, the next forward node can be selected based on the fuzzy location region of the destination node. Finally, the feasibility of the FLGR forwarding mode is verified and the performance of FLGR protocol is analyzed via simulation. Simulation results show that the proposed FLGR forwarding mode can effectively avoid the routing void problem. Compared with existing protocols, the FLGR protocol has lower routing overhead, and a higher packet delivery rate in a sparse network.


2015 ◽  
Vol 4 (2) ◽  
pp. 390 ◽  
Author(s):  
Alaa Zain ◽  
Heba El-khobby ◽  
Hatem M. Abd Elkader ◽  
Mostafa Abdelnaby

A Mobile Ad-Hoc Networks (MANET) is widely used in many industrial and people's life applications, such as earth monitoring, natural disaster prevention, agriculture biomedical related applications, and many other areas. Security threat is one of the major aspects of MANET, as it is one of the basic requirements of wireless sensor network, yet this problem has not been sufficiently explored. The main purpose of this paper is to study different MANETs routing protocols with three scenarios of Denial of Service (DoS) attacks on network layer using proactive routing protocol i.e. Optimized Link State Routing (OLSR) and Reactive routing protocols like Ad hoc On-Demand Distance Vector (AODV), Hybrid routing protocols like Geographic Routing Protocol (GRP). Moreover, a comparative analysis of DoS attacks for throughput, Data loss, delay and network load is taken into account. The performance of MANET under the attack is studied to find out which protocol is more vulnerable to the attack and how much is the impact of the attack on both protocols. The simulation is done using OPNET 17.


2017 ◽  
Vol 27 (01n02) ◽  
pp. 121-158 ◽  
Author(s):  
Martin Nöllenburg ◽  
Roman Prutkin ◽  
Ignaz Rutter

A greedily routable region (GRR) is a closed subset of [Formula: see text], in which any destination point can be reached from any starting point by always moving in the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygonal regions with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles and even for trees, but can be solved optimally for trees in polynomial time, if we allow only certain types of GRR contacts. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.


Export Citation Format

Share Document