Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Evolution of Plant RNA Viruses and Mechanisms in Overcoming Plant Resistance

2021 ◽  
Vol 27 (4) ◽  
pp. 137-148
Author(s):  
Myung-Hwi Kim ◽  
Sun-Jung Kwon ◽  
Jang-Kyun Seo

Plant RNA viruses are one of the most destructive pathogens that cause a significant loss in crop production worldwide. They have evolved with high genetic diversity and adaptability due to the short replication cycle and high mutation rate during genome replication, which are characteristics of RNA viruses. Plant RNA viruses exist as quasispecies with high genetic diversity; thereby, a rapid population transition with new fitness can occur due to selective pressure resulting from environmental changes. Plant resistance can act as selective pressure and affect the fitness of the virus, which may lead to the emergence of resistance-breaking variants. In this paper, we introduced the evolutionary perspectives of plant RNA viruses and the driving forces in their evolution. Based on this, we discussed the mechanism of the emergence of variant viruses that overcome plant resistance. In addition, strategies for deploying plant resistance to viral diseases and improving resistance durability were discussed.

MycoKeys ◽  
2020 ◽  
Vol 65 ◽  
pp. 1-24
Author(s):  
Jaime Gasca-Pineda ◽  
Patricia Velez ◽  
Tsuyoshi Hosoya

During the Last Glacial Maximum (LGM), drastic environmental changes modified the topology of the Japanese Archipelago, impacting species distributions. An example is Fagus crenata, which has a present continuous distribution throughout Japan. However, by the end of the LGM it was restricted to southern refugia. Similarly, Dasyscyphella longistipitata (Leotiomycetes, Helotiales, Lachnaceae) occurs strictly on cupules of F. crenata, sharing currently an identical distribution. As the effects of the LGM remain poorly understood for saprobiotic microfungal species, herein we identified past structuring forces that shaped the current genetic diversity within D. longistipitata in relation to its host using a phylogeographic approach. We inferred present and past potential distributions through species distribution modeling, identifying environmental suitability areas in mid-southern Japan from which subsequent colonizations occurred. Our findings suggest that current high genetic diversity and lack of genetic structure within D. longistipitata are the result of recent multiple re-colonization events after the LGM.


Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 80 ◽  
Author(s):  
Pilar Somovilla ◽  
Susanna Manrubia ◽  
Ester Lázaro

The rate of change in selective pressures is one of the main factors that determines the likelihood that populations can adapt to stress conditions. Generally, the reduction in the population size that accompanies abrupt environmental changes makes it difficult to generate and select adaptive mutations. However, in systems with high genetic diversity, as happens in RNA viruses, mutations with beneficial effects under new conditions can already be present in the population, facilitating adaptation. In this work, we have propagated an RNA bacteriophage (Qβ) at temperatures higher than the optimum, following different patterns of change. We have determined the fitness values and the consensus sequences of all lineages throughout the evolutionary process in order to establish correspondences between fitness variations and adaptive pathways. Our results show that populations subjected to a sudden temperature change gain fitness and fix mutations faster than those subjected to gradual changes, differing also in the particular selected mutations. The life-history of populations prior to the environmental change has great importance in the dynamics of adaptation. The conclusion is that in the bacteriophage Qβ, the standing genetic diversity together with the rate of temperature change determine both the rapidity of adaptation and the followed evolutionary pathways.


2020 ◽  
Author(s):  
Mayara Delagnelo Medeiros ◽  
Daniel Galiano ◽  
Bruno Busnello Kubiak ◽  
Paula Angélica Roratto ◽  
Thales Renato Ochotorena de Freitas

Abstract Endemic, small range species are susceptible to environmental changes and landscape modification. Understanding genetic diversity and distributional patterns is important for implementation of effective conservation measures. In this context, genetic diversity was evaluated to update the conservation status of an endemic tuco-tuco, Ctenomys ibicuiensis. Phylogeographic and population genetic analyses of mitochondrial DNA and microsatellite loci were carried out using 46 individuals sampled across the species’ distribution. Ctenomys ibicuiensis presented moderate to high genetic diversity and highly structured populations with low levels of gene flow and isolation by distance. Anthropogenic landscape changes threaten this restricted-range tuco-tuco. Considering its limited geographic distribution and highly structured populations with low gene flow, we consider C. ibicuiensis to be at significant risk of extinction.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1524
Author(s):  
Léa Joffrin ◽  
Axel O. G. Hoarau ◽  
Erwan Lagadec ◽  
Marie Köster ◽  
Riana V. Ramanantsalama ◽  
...  

Astroviruses (AstVs) are RNA viruses infecting a large diversity of avian and mammalian species, including bats, livestock, and humans. We investigated AstV infection in a free-tailed bat species, Mormopterus francoismoutoui, endemic to Reunion Island. A total of 380 guano samples were collected in a maternity colony during 38 different sampling sessions, from 21 June 2016 to 4 September 2018. Each sample was tested for the presence of the AstV RNA-dependent RNA-polymerase (RdRp) gene using a pan-AstV semi-nested polymerase chain reaction assay. In total, 27 guano samples (7.1%) tested positive, with high genetic diversity of the partial RdRp gene sequences among positive samples. Phylogenetic analysis further revealed that the detected viruses were genetically related to AstVs reported in rats, reptiles, dogs, and pigs, but did not cluster with AstVs commonly found in bats. Although more investigations need to be conducted to assess the prevalence of infected bats in the studied population, our findings show that Reunion free-tailed bats are exposed to AstVs, and suggest that cross-species transmission may occur with other hosts sharing the same habitat.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2917 ◽  
Author(s):  
Dan Li ◽  
Keping Sun ◽  
Yunjiao Zhao ◽  
Aiqing Lin ◽  
Shi Li ◽  
...  

Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity ofE. jankowskiihas not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB ofE. jankowskiiwas investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected inE. jankowskiiand 1.73 alleles/individual were identified inE.cioides. The maximum number of alleles per individual from the threeE. jankowskiipopulations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the threeE. cioidespopulations suggest the presence of at least four functional loci. Two of the alleles were shared between theE. jankowskiiandE. cioides. Among the 12 unique alleles identified inE. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified inE. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0.1667. Overall, compared to other passerine birds, a relatively low level of MHC polymorphism was revealed inE. jankowskii, which was similar to that inE. cioides. Positive selection was detected by PAML/SLAC/FEL analyses in the region encoding the peptide-binding region in both species, and no recombination was detected. Phylogenetic analysis showed that the alleles fromE. jankowskiiandE. cioidesbelong to the same clade and the two species shared similar alleles, suggesting the occurrence of a trans-species polymorphism between the twoEmberizaspecies.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1293
Author(s):  
Joe Merheb ◽  
Magdalena Pawełkowicz ◽  
Ferdinando Branca ◽  
Hanna Bolibok-Brągoszewska ◽  
Agnieszka Skarzyńska ◽  
...  

Snake melon (Cucumis melo subsp. melo L. var. flexuosus (L.) Naudin) is an ancient and traditional crop in the Mediterranean region. Nevertheless, there has been poor interest in assessing snake melon germplasm where its genetic resources have not been surveyed before despite their potential in adaptation to environmental changes. In this study, we assess the genetic diversity of snake melon landraces collected from different Lebanese regions at both morphological and molecular levels. Morphological characterization using a set of 18 descriptors revealed an important phenotypic variability among the landraces studied. Principle component analysis indicated that fruit hair and its consistency, fruit size, and skin color pattern were good criteria for discriminating among landraces. Based on the scatter plot diagram, landraces of snake melon formed five different groups with one being defined as typical var. flexuosus. Ten simple sequence repeat (SSR) markers were used for the molecular characterization. Fifty-six different alleles were detected, with an average of 5.6 alleles per locus. Polymorphism information content of SSR markers ranged from 0.06 to 0.84 (average 0.38). Cluster analysis based on molecular markers showed high genetic diversity and divided the landraces into five distinct genetic groups, confirming thereby the morphological variability. Findings of this study indicate a significant diversity for the Lebanese snake melon germplasm that must be further conserved and considered in improvement programs of this ancient crop.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Amr T. M. Saeb ◽  
Dhekra Al-Naqeb

Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.


2019 ◽  
Vol 20 (10) ◽  
Author(s):  
RINA SRI KASIAMDARI ◽  
Ganies Riza Aristya ◽  
HERI PRABOWO ◽  
MUHAMMAD FAUZI ARIF ◽  
Christy Ariesta

Abstract. Kasiamdari RS, Aristya GR, Prabowo H, Ariesta C, Arif MF. 2019. Genetic diversity of Indonesian’s sugarcane varieties (Saccharum officinarum) based on RAPD molecular markers. Biodiversitas 20: 3005-3010. Sugarcane (Saccharum officinarum L.) belongs to the Poaceae family which are widely used for sweeteners production. In Indonesia, the need for sugarcane continues to increase along with its increased use in the production of bioethanol from molasses, a by-product of sugar production. However, the supply for sugar is still far from enough. Improvement of sugarcane productivity can be done by selecting superior varieties to form a new superior hybrid. Maintaining high genetic diversity in a population is essential. Selection of varieties is important because it can increase productivity without increasing the cost of crop production. Even the selected pest-resistant varieties can reduce the cost of crop production. Indonesia had produced many superior sugarcane plant varieties, but studies on their characters and genetic relationship are still lacking. Several molecular markers have been used to elucidate the genetic diversity among sugarcane varieties. Random Amplified Polymorphism DNA (RAPD) is one of the molecular markers that have been proven to describe genetic diversity among sugarcane plants. This study aimed to determine the genetic diversity among 22 superior sugarcane varieties in Indonesia based on eight RAPD molecular markers. The superior sugarcane varieties in Indonesia in this study were obtained from Indonesian Sweetener and Fiber Crops Research Institute (ISFRI), Malang and Madukismo Sugar Factory, Yogyakarta. DNA products were visualized by using gel electrophoresis and resolved bands were scored as binary data as presence (1) and absence (0). Linkage distance was done based on Jaccard’s similarity coefficient, and clustering analysis was performed based on the unweighted pair- group average (UPGMA) method. Polymorphism Information Content (PIC) analysis showed a high degree of polymorphism ranging from 0.76 to 0.92. Cluster analysis showed that 22 sugarcane varieties were divided into two main clusters and four sub-clusters based on their origin.     


2019 ◽  
Author(s):  
Léa Joffrin ◽  
Axel O. G. Hoarau ◽  
Erwan Lagadec ◽  
Patrick Mavingui ◽  
Camille Lebarbenchon

AbstractAstroviruses (AstVs) are RNA viruses responsible for infection of a large diversity of avian and mammalian species, including bats, livestock, and humans. We investigated AstV infection in a free-tailed bat species, Mormopterus francoismoutoui, endemic to Reunion Island. A total of 190 guano samples were collected in a maternity colony during 19 different sampling sessions, between June 2016 and June 2017. Biological material was tested for the presence of the AstV RNA-dependent RNA-polymerase (RdRp) gene with a pan-AstV semi-nested polymerase chain reaction assay. In total, 15 guano samples (7.9%) tested positive, with high genetic diversity of the partial RdRp gene sequences among positive samples. A phylogenetic analysis further revealed that the detected viruses were genetically related to AstVs reported in reptiles, dogs, and pigs, but did not cluster with AstVs commonly found in bats. Although more investigation need to be conducted to assess the level of infected bats in the studied population, our findings suggest that Reunion free-tailed bats are exposed to AstV, and that cross-species transmission may occur with other hosts sharing the same habitat.


2021 ◽  
Author(s):  
Jipeng Xie ◽  
Tong Jiang ◽  
Zhifang Li ◽  
Xiangdong Li ◽  
Zaifeng Fan ◽  
...  

Abstract Positive-stranded RNA viruses usually remodel host endomembrane system to form virus-induced intracellular vesicles for replication during infections. The genus Potyvirus of Potyviridae represents the largest number of positive single-stranded RNA viruses and causes great damage on crop production worldwide. Though potyviruses have wide host ranges, each potyvirus infects relatively limited host species. Phylogenesis and host range analysis can divide potyviruses into monocot-infecting and dicot-infecting groups, suggesting that some infection mechanism, probably on replication may be distinct for each group. Comprehensive studies on the model dicot-infecting turnip mosaic virus indicated that the 6K2-induced replication vesicles are derived from endoplasmic reticulum (ER) and subsequently target chloroplasts for viral genome replication. However, we have no knowledge on the replication site of monocot-infecting potyviruses. In this study, we firstly show that the precursor 6K2-VPg-Pro polyproteins of dicot-infecting potyviruses and monocot-infecting potyviruses phylogenetically cluster in two separate groups. With a typical gramineae-infecting potyvirus sugarcane mosaic virus (SCMV), we found that SCMV replicative double-stranded RNA (dsRNA) forms aggregates in cytoplasm but does not associate with chloroplasts. SCMV 6K2-VPg-Pro-induced vesicles colocalize with replicative dsRNA. Moreover, SCMV 6K2-VPg-Pro-induced structures target multiple intracellular organelles including ER, Golgi apparatus, mitochondria and peroxisomes, and have no evident association with chloroplasts. In conclusion, SCMV remodels multiple intracellular organelles for its genomic RNA replication.


Export Citation Format

Share Document