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1. Introduction 

Convex function is an important kind of function in 
mathematics, which is widely used in mathematical 
programming, approximation theory, control theory and 
other fields. But it is found that the mathematical models 
of many optimization problems in practical application are 
non-convex, which prompts us to consider the generalized 
convex function with weak convexity. Generalized convex 
function can not only retain some good characteristics of 
convex function but also relax the requirement for 
convexity appropriately. So its application scope is wider 
than convex function. In 1949, De Finetti [1] proposed the 
first generalized convex function, and in 1953, Fenchel [2] 
named it quasi-convex function. Yang [3,4,5] further 
studied the properties of quasi-convex functions. In 2003, 
Wang et al.[6] proposed the concept of E -quasi-convex 
function and studied its related properties. In 2011, Lin et 
al. [7] established several new Hadamard type inequalities 
for quasi-convex function. In 2013, Zhang [8] defined 
harmonic quasi-convex function. In 2021, Bai [9] 
established Simpson type fractional integral inequality for 
quasi-convex function. In the same year, Sevda et al. [10] 
defined p-convex functions by using the concept of 
epigraph on the basis of p-convex sets. In 2022, Gültekin 
et al. [11] defined quasi-p-convex functions. 

In this paper, we further study the quasi-p-convex 
function. The concepts of strictly quasi-p-convex function 
and quasi-p-convex cone are given and some new 
fundamental characterizations and operational properties 
of quasi-p-convex function are obtained.  

2. Preliminaries 

Definition 2.1 [13] Let nU R⊆  and 0 1p< ≤ . If 

for each ,x y U∈ , x y Uλ µ+ ∈ , 

where , 0λ µ ≥ , 1p pλ µ+ = , then U  is called a p-

convex set in nR . 
The definition of p-convexity of U can also be given as 

( )
1

1 p px y Uλ λ+ − ∈
 

for all ,x y U∈  and [ ]0,1λ ∈ . 
 

Definition 2.2 [14] Given : [ , ]nf U R⊆ → −∞ ∞ , the set  
( ) ( ){ }, , ,x x U R f xµ µ µ∈ ∈ ≥

 
is called epigraph of f , it is denoted by epif . 
 

Definition 2.3 [10] Let 
nU R⊆  and :f U R→  be a 

function. If the set 

( ) ( ){ }1, : , ,nepif x R x U R f xµ µ µ+= ∈ ∈ ∈ ≤
 

is p-convex set, then f  is called a p-convex function. 
 

Theorem 2.1 [10] Let 
nU R⊆ , :f U R→  be a 

function and 0 1p< ≤ , then f  is a p-convex function if 
and only if U is a p-convex set and for any ,x y U∈ , 
( ) ( ) ( )f x y f x f yλ µ λ µ+ ≤ +  holds, where , 0λ µ ≥ , 

1p pλ µ+ = . 
 

Definition 2.4 [11] Let ( ]0,1p∈ . 
(i) A function :f U R→  is called quasi-p-convex 

function if 

( ) ( ) ( ){ }max ,f x y f x f yλ µ+ ≤  

for each ,x y U∈ ; , 0λ µ ≥  such that 1p pλ µ+ =  or, 
equivalently 
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( ) ( ) ( )
1

(1 )p pf y f x f x y f xλ λ
 
 ≤ ⇒ + − ≤  
   

for every ,x y U∈  and for every [ ]0,1λ ∈ . 
(ii) A function :f U R→  is called quasi-p-concave 

function if f−  is quasi-p-convex, i.e., for each ,x y U∈ ;
, 0λ µ ≥  such that 1p pλ µ+ = ,

( ) ( ){ } ( )min ,f x f y f x yλ µ≤ +  or, equivalently 

( ) ( ) ( )
1

(1 )p pf y f x f y f x yλ λ
 
 ≤ ⇒ ≤ + −  
   

for every ,x y U∈  and for every [ ]0,1λ ∈ . 
 
Example 2.1 Let nU R⊆ be a p-convex set, 

0 1p< ≤ . Define the function : [0, )f U R+→ = +∞ , 

( ) ( )1 2 1 2, , , ,n nf x x x k x x x= + + +   

where 1 2( , , , )nx x x x U= ∈ , k R∈ , then f  is a quasi-
p-convex function. 

Proof. Suppose that , 0λ µ ≥  such that 1p pλ µ+ = , 
0 1p< ≤ , then for each ( )1 2, , , nx x x x=  ,

( )1 2, , ny y y y U= ∈ , 

( ) ( )
( )

( ) ( )( )
( ) ( )

1 1 2 2

1 1 2 2

1 2 1 2

, ,

max{ ( ), ( )} max{ ( ), ( )}

max{ ( ), ( )} max{ (

n n

n n

n n

p p

f x y f x y x y x y

k x y x y x y

k x x x y y y

f x f y
f x f y f x f y

f x f y f

λ µ λ µ λ µ λ µ

λ µ λ µ λ µ

λ µ

λ µ
λ µ

λ µ

+ = + + +

= + + + + + +

= + + + + + + +

= +

≤ +

≤ +





 

          

          

          

          

          ), ( )}
max{ ( ), ( )}

x f y
f x f y=          

that is, f  is a quasi-p-convex function. 

Theorem 2.2 [11] Let 
nU R⊆  be a p-convex set, 

0 1p< ≤ . If :f U R+→ is a p-convex function, then f is 
a quasi-p-convex function. 

 

Definition 2.5 [14] Suppose that K  is a subset of nR , 
if for each x K∈ , 0λ >  such that x Kλ ∈ , then K  is 
called a cone. 

 
Definition 2.6 [14] A cone is said to be convex cone if 

it is also a convex set. 
 

Definition 2.7 [12] Let nK R⊂  be a convex cone and 
:f K R→  be a function. If for each x K∈ , 0t > , 

Rα ∈  such that ( ) ( )f tx t f xα= , then the function f  is 
called a positive homogeneous function with respect to 
degree α . 

Remark 2.1 [12] (1) Let 0α ≠ , f  be a positive 

homogeneous function with respect to degree α . If (0)f  

exists, then (0) 0f = . 

If 1α = , f  is called a linear positive homogeneous 
function. 

 

Theorem 2.3 [14] The function : nf U R R⊆ →  is a 
linear positive homogeneous function if and only if its 

epigraph epi f  is a cone in 1nR + . 
 

Definition 2.8 [12] Let : nf U R R⊆ → , then 
*x U∈  

is called a strict local minimum (maximum) of f , if it 
exists 0δ > such that 

( )* * * *( ) : , ( ) ( ) ( ) ( )x U B x x x f x f x f x f xδ∀ ∈ ≠ < >

. 
Theorem 2.4 [11] Let nU R⊆  be a p-convex set, 

0 1p< ≤ , then :f U R→ be a quasi-p-convex function if 

and only if for any Rα ∈ , the lower level set 

{ : ( ) }L x U f xα α≤ = ∈ ≤  is a p-convex set. 

3. Main Results 

Definition 3.1 Let 0 1p< ≤ , 
nU R⊆  be a p-convex 

set and :f U R→  be a function. For each 
1 2 1 2, ,x x U x x∈ ≠ , if the inequality 

 { }1 2 1 2( ) max ( ), ( )f x x f x f xλ µ+ <  (3.1) 

holds for all , 0λ µ >  such that 1p pλ µ+ = , then f  is 
said to be a strictly quasi-p-convex function. 

 
Definition 3.1 can also be expressed as follows: 

Let 0 1p< ≤ , 
nU R⊆  be a p-convex set and 

:f U R→  be a function. If for any 1 2 1 2, ,x x U x x∈ ≠ ,
( ) ( )1 2 ,f x f x≥  

 

( )
1

1 2 1(1 )p pf x x f xλ λ
 
 + − <  
   (3.2) 

where (0,1)λ ∈ , then f  is said to be a strictly  
quasi-p-convex function. 

Definition 3.2 Let 0 1p< ≤ , 
nU R⊆  be a p-concave 

set and :f U R→  be a function. For each 
1 2 1 2, ,x x U x x∈ ≠ , if the inequality 
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 { }1 2 1 2min ( ), ( ) ( )f x f x f x xλ µ< +   (3.3) 

holds for all , 0λ µ >  such that 1p pλ µ+ = , then f  is 
said to be a strictly quasi-p-concave function. 
 

Definition 3.2 can also be expressed as follows: 

Let 0 1p< ≤ , 
nU R⊆  be a p-convex set and 

:f U R→  be a function. If for any 1 2 1 2, ,x x U x x∈ ≠ ,
( ) ( )1 2 ,f x f x≥  

 

( )
1

2 1 2(1 )p pf x f x xλ λ
 
 < + −  
    (3.4) 

where (0,1)λ ∈ , then f  is said to be a strictly quasi-p-
concave function. 
 

Theorem 3.1 Let 
nU R⊆  be a p-convex set, 0 1p< ≤ . 

(1) If :f U R+→ is a strictly p-convex function, the f
is a strictly quasi-p-convex function; 

(2) If :f U R→  is a strictly quasi-p-convex function, 

then f is a quasi-p-convex function. 

Proof. (1) From the strictly p-convexity of f , for each 

1 2,x x U∈ , , 0λ µ ≥  such that such that 1p pλ µ+ = , 

1 2 1 2( ) ( ) ( )f x x f x f xλ µ λ µ+ < +  
1 2 1 2max{ ( ), ( )} max{ ( ), ( )}f x f x f x f xλ µ≤ +  

1 2 1 2max{ ( ), ( )} max{ ( ), ( )}p pf x f x f x f xλ µ≤ +  
1 2max{ ( ), ( )}f x f x= , 

that is, f  is a strictly quasi-p-convex function. 
(2) It comes straight from the definition. 
 
Definition 3.3 A cone is said to be p-convex cone if it 

is also a p-convex set. 
 
Remark 3.1 If 1p = , p-convex cone is a convex cone. 
 

Lemma 3.1 The set 
nU R⊆  is a p-convex cone if and 

only if U  is closed for operations of addition and positive 
multiplication. 

Proof. Suppose that
nU R⊆ is a p-convex cone, 

0 1p< ≤ , then for each ,x y U∈ , , 0λ µ ≥  such that 
1p pλ µ+ = , 

x y Uλ µ+ ∈ . 

Take 
1/
1

2 pλ µ= =
, then 

1/ 1/
1 1

2 2p px y U+ ∈
. 

Also U  is a cone, so U  is obviously closed for operation 
of positive multiplication. Therefor 

1/
1/ 1/
1 12

2 2
p

p px y x y U 
+ = + ∈ 

  . 

That is, U  is closed for operation of addition.  
Conversely, if U is closed for operations of positive 

multiplication, then U  is obviously a cone. For each 
, ,x y U∈ , 0λ µ ≥ such that 1p pλ µ+ = , then 

,x y Uλ µ ∈ . Also U is closed for operations of addition, 
so 

x y Uλ µ+ ∈ , 

that is, U  is a p-convex set. Thus U  is a p-convex cone. 
 

Lemma 3.2 For 0 1p< ≤ , let 
nU R⊆ be a p-convex 

cone, :f U R→  be a positive homogeneous function of 

degree p. Then f is a p-convex function if and only if for 
any ,x y U∈ , 

( ) ( ) ( ).f x y f x f y+ ≤ +  

Proof. Suppose f is a p-convex function, then epif  is a 

p-convex set. Also f  is a positive homogeneous function 

of degree p, for each ( ),x epifκ ∈ , 0λ > , then 

( ) ( )p pf x f xλ λ λ κ= ≤ . 

Specially, take 1p = , then ( )f xλ λκ≤ , namely 
( ),x epifλ κ ∈ , so the epif  is a cone. 

From lemma 3.1, for each ( ) ( ), ( ) , , ( )x f x y f y epif∈ ,  

( ), ( ) ( )x y f x f y epif+ + ∈ , 
namely 

( ) ( ) ( )f x y f x f y+ ≤ + . 

Conversely, for each ( ) ( ), , ,x y epifκ ν ∈ , then 

( ) ( ) ( )f x y f x f y κ ν+ ≤ + ≤ + , 
namely 

( ),x y epifκ ν+ + ∈ , 

so epif is closed for operation of addition. Also because f
is a positive homogeneous function of degree p, taking

1p = , by Theorem 2.3, we known that epif  is closed for 
operation of positive multiplication. From Lemma 3.1, 
epif  is a p-convex set, so f  is a p-convex function. 
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Theorem 3.2 For 0 1p< ≤ , let 
nU R⊆  be a p-convex 

cone and :f U R→ be a positive homogeneous function 

of degree p. If for all 0 x U≠ ∈ , ( ) 0f x > , then f  is a 

quasi-p-convex function if and only if f is a p-convex 
function. 

Proof. For all 0 x U≠ ∈ , by Theorem 2.2, a p-convex 
function is obviously is a quasi-p-convex function. 

Conversely, if f  is a quasi-p-convex function, by the 
positive homogeneity of degree p of f  and Lemma 2, it 
just need to prove that f satisfies the inequality in Lemma 2. 

Let any { }1 2, 0x x U∈ − , 
1 1 2 2( ) 0, ( ) 0y f x y f x= > = > . Since f  is a positive 

homogeneous function of degree p, namely  

( ) ( ), 0pf tx t f x t= ∀ > , 
it follows that 

( )
1 1 1 2 2

1/ 1/ 1/
1 21 21

( ) ( )
1, 1

( ) ( )( )p p p
x x f x x f xf f f

f x f xy yf x

    
 = = = = =            . 

Given the quasi-p-convexity of f , we obtain 

1 2 1 2
1/ 1/ 1/ 1/

1 2 1 2
max , , 1p p

p p p p
x x x xf f f

y y y y
λ µ λ µ

       + ≤ + =                    

1 2
1/ 1/

1 2
1, 1p p

p p
x xf

y y
λ µ λ µ
 

+ ≤ + =  
  . 

Let 

1/ 1/
1 2

1 2 1 2
,

p p
y y

y y y y
λ µ

   
= =   + +    , then 

1 1

1 1 2 2
1/ 1/

1 2 1 21 2
1

p p
p p

y x y xf
y y y yy y

 
    

+ ≤    + +    
   
( )1 2

1 2
1

f x x
y y

+
≤

+  

( )1 2
1 2

1 1
( ) ( )

f x x
f x f x

+ ≤
+  

( )1 2 1 2( ) ( )f x x f x f x+ ≤ + . 

If either 1x or 2x is zero, for example 1 0x = , remark 1 

show that 1( ) 0f x = , then 

1 2 2 1 2( ) ( ) ( ) ( )f x x f x f x f x+ = = + . 
This completes the proof. 

Theorem 3.3 Let 
nU R⊆  be a p-convex set, 0 1p< ≤

and :f U R→  be a quasi-p-convex function. If 
*x U∈  

is a strict local minimum of f , it is also a strict global 

minimum of f , and the set 
*U  of all minimal points of 

f  is p-convex set. 

Proof. Let 
*x U∈  be a strict local minimum of f , if 

*x  is not a strictly global minimum of f , then it exists 
*:x U x x∈ ≠  such that 

*( ) ( )f x f x≤ .  

By using the quasi-p-convexity of f , for [0,1]λ ∈ , we 
have 

 

1
* *(1 ) ( ).p pf x x f xλ λ

 
 + − ≤  
   (3.5) 

It exists small enough λ  such that 

1
* *(1 ) ( )p px x x U B xδλ λ= + − ∈  , 

namely 
*( ) ( )f x f x≤ , it contradicts that 

*x  is a strict 

local minimum of f .  So 
*x  is the strict global minimum 

of f . 

Now assume that 
*U ≠ ∅ , let m  be the minimum 

value of f  on U , it is noticed that 
* { : ( ) } { : ( ) } mU x U f x m x U f x m L≤= ∈ = = ∈ ≤ =  

By the quasi-p-convexity of f  and Theorem 2.4, the 

lower level set mL≤  is a p-convex set. Thus 
*U  is also a 

p-convex set. 
 

Theorem 3.4 Let 
nU R⊆  be a p-convex set, 0 1p< ≤ , 

and :f U R→  be a quasi-p-convex function. Then for 

each 0k > , then kf  a quasi-p-convex function on U . 

Proof. For all , 0λ µ ≥ such that 1p pλ µ+ = , it can be 
given by conditions 

( ) ( )( )kf x y kf x yλ µ λ µ+ = +

max{ ( ), ( )}= max{ ( ), ( )}k f x f y kf x kf y≤ . 

Thus kf  is a quasi-p-convex function. 
 

Corollary 3.1 If the function :f U R→  is a strictly 

quasi-p-convex function, then kf  a strictly quasi-p-
convex function on U . 

Proof. It is clear from Theorem 3.4. 
 

Theorem 3.5 Let 
nU R⊆  be a p-convex set, 0 1p< ≤ . 

If :if U R→  is quasi-p-convex functions for 

1, 2, ,i m=  , then 1
m

i iif a f== ∑  is a quasi-p-convex 

function where 0ia ≥ . 
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Proof. Let , ,x y U∈ ( ) ( )i if x f y≥ , so ( ) ( )f x f y> . 

For , 0λ µ ≥  such that 1p pλ µ+ = , we have 

( ) ( )
1

m

i i
i

f x y a f x yλ µ λ µ
=

+ = +∑

( ) ( ){ }
1

max ,
m

i i i
i

a f x f y
=

≤ ∑ ( )
1

m

i i
i

a f x
=

= ∑ ( )f x= . 

This is, f  is a quasi-p-convex functions. 
 

Theorem 3.6 If function :f U R→  is a  

quasi-p-concave function. For each 0k > , then kf  a 
quasi-p-concave function on U . 

Proof. For all , 0λ µ ≥ such that 1p pλ µ+ = , it can be 
given by conditions 

( ) ( )( )kf x y kf x yλ µ λ µ+ = +

min{ ( ), ( )}= min{ ( ), ( )}k f x f y kf x kf y≥ . 

Thus kf  is a quasi-p-concave function. 
 

Corollary 3.2 If the function :f U R→  is a strictly 

quasi-p-concave function, then kf  a strictly quasi-p-
concave function on U . 
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