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Abstract. For an arbitrary fixed surface S, a linear time algorithm is presented that for a given
graph G either finds an embedding of G in S or identifies a subgraph of G that is homeomorphic to
a minimal forbidden subgraph for embeddability in S. A side result of the proof of the algorithm
is that minimal forbidden subgraphs for embeddability in S cannot be arbitrarily large. This yields
a constructive proof of the result of Robertson and Seymour that for each closed surface there are
only finitely many minimal forbidden subgraphs. The results and methods of this paper can be used
to solve more general embedding extension problems.
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1. Introduction. The problem of constructing embeddings of graphs in surfaces
is of practical and of theoretical interest. The practical issues arise, for example,
in problems concerning VLSI, and also in several other applications since graphs
embedded in low genus surfaces can be handled more easily. Theoretical interest
comes from the importance of the genus parameter of graphs and from the fact that
graphs of bounded genus naturally generalize the family of planar graphs and share
many important properties with them.

There are linear time algorithms that for a given graph determine whether the
graph can be embedded in the 2-sphere (or in the plane). The first such algorithm was
obtained by Hopcroft and Tarjan [16] in 1974. There are several other linear time pla-
narity algorithms (Booth and Lueker [6], Fraysseix and Rosenstiehl [11], Williamson
[36, 37]). Extensions of these algorithms return an embedding (rotation system)
whenever a graph is found to be planar [7], or exhibit a forbidden Kuratowski sub-
graph homeomorphic to K5 or K3,3 if the graph is non-planar [36, 37] (see also [21]).
Recently, linear time algorithms have been devised for embedding graphs in the pro-
jective plane (Mohar [22]) and in the torus (Juvan, Marinček, and Mohar [19]).

It is known that the general problem of determining the genus [34], or the non-
orientable genus [35] of graphs is NP-hard. However, for every fixed surface there is
a polynomial time algorithm which checks if a given graph can be embedded in the
surface. Such algorithms were found first by Filotti et al. [10]. For a fixed orientable
surface S of genus g they discovered an algorithm with time complexity O(nαg+β)
(α, β are constants) which tests if a given graph of order n can be embedded in S.
Unfortunately, their algorithms are practically not useful, even in the simplest case
when S is the torus. A theoretical estimate on the running time in case of the torus is
only O(n188). Recently, Djidjev and Reif [9] anounced improvement of the algorithm
of [10] by presenting a polynomial time algorithm, for each fixed orientable surface,
where the degree of the polynomial is fixed. The basic technique used in [10] and
in [9] of embedding a subgraph, attempting to extend this partial embedding, and

∗ This article appeared in: SIAM J. Discrete Math. 12 (1999) 6–26.
† Supported in part by the Ministry of Science and Technology of Slovenia, Research Project

P1–0210–101–94.
‡ Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

1



2 B. MOHAR

recursively work with discovered forbidden subgraphs for smaller genus surfaces is
also used in our algorithm.

For every fixed surface S, an O(n3) algorithm for testing embeddability in S can
be devised using graph minors [27, 31]. Robertson and Seymour recently improved
their O(n3) algorithms to O(n2 logn) [28, 29, 30]. An extension which also constructs
an embedding is described by Archdeacon in [2]. The running time is estimated
to be O(n10) but with a little additional care it could be decreased to O(n6). A
disadvantage of these algorithms is that they use the lists of forbidden minors which
are not known for surfaces different from the 2-sphere and the projective plane. Even
for the projective plane whose forbidden minors are known [1, 13], the algorithms
based on checking for the presence of forbidden minors are rather time consuming
since their running time estimates involve enormous constants.

In the present paper we describe a linear time algorithm which finds an embedding
of a given graph G into a surface S if such an embedding exists. Here S is an
arbitrary fixed surface. In case when G cannot be embedded in S, the algorithm
returns a subgraph H of G that cannot be embedded in S but every proper subgraph
of H admits an embedding in S. A side result of the algorithm is that the returned
“minimal forbidden subgraph” H is homeomorphic to a graph with a bounded number
of edges (where the bound depends only on S). This yields a constructive proof of
the result of Robertson and Seymour [27] that for each closed surface there are only
finitely many minimal forbidden subgraphs. A constructive proof for nonorientable
surfaces has been published by Archdeacon and Huneke [3], while orientable surfaces
resisted all previous attempts. (Recently also Seymour [32] found a constructive proof
of that result.)

The results and methods of this paper can be used towards solving a generalization
of problems of embedding graphs in surfaces — the so called embedding extension
problems where one has a fixed embedding of a subgraph K of G in some surface and
asks for embedding extensions to G or (minimal) obstructions for existence of such
extensions.

The paper is more or less self contained with the exception of using results from
[17, 18, 20, 24].

Concerning the time complexity of our algorithms, we assume a random-access
machine (RAM) model with unit cost for some basic operations. This model of
computation was introduced by Cook and Reckhow [8]. It is known as the unit-cost
RAM where operations on integers, whose value is O(n), need only constant time (n
is the order of the given graph). The same model of computation is used in many
other instances, for example in well-known linear time planarity testing algorithms
[16].

2. Basic definitions. We follow standard graph theory terminology as used, for
example, in [5]. Let G and H be graphs. We denote by G − H the graph obtained
from G by deleting all vertices of G ∩ H and all their incident edges. If F ⊆ E(G),
then G− F denotes the graph obtained from G by deleting all edges in F .

We will consider 2-cell embeddings of graphs in closed surfaces. They can be
described in a purely combinatorial way by specifying:

(1) A rotation system π = (πv ; v ∈ V (G)); for each vertex v of the given graph G
we have a cyclic permutation πv of edges incident with v, representing their
circular order around v on the surface.

(2) A signature λ : E(G) → {−1, 1}. Suppose that e = uv. Following the edge e
on the surface, we see if the local rotations πv and πu are chosen consistently
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or not. If yes, then we have λ(e) = 1, otherwise we have λ(e) = −1.
The reader is referred to [14] or [25] for more details. We will use this description as
a definition: An embedding of a connected graph G is a pair Π = (π, λ) where π is
a rotation system and λ is a signature. Having an embedding Π of G, we say that
G is Π-embedded . If H is a subgraph of G, then the induced embedding of H (or the
restriction of Π to H) is obtained from that of G by ignoring all edges in E(G)\E(H)
and by restricting the signature to E(H).

Each embedding Π of G determines a set of closed walks in G, called Π-facial
walks or simply Π-faces , that correspond to traversals of face boundaries of the cor-
responding topological embedding. Each edge e of G is either contained in exactly
two Π-facial walks, or it appears twice in the same Π-facial walk W . In the latter
case, e and W are said to be singular . Edges e and f incident with the same vertex
v of G are Π-consecutive if e = πv(f) or f = πv(e). In that case, there is a Π-face F
containing e and f as consecutive edges, and we say that the pair {e, f} is an angle
of F .

Suppose that a subgraph K of G is Π-embedded. An embedding Π̃ of G is
an extension of Π if it is an embedding in the same surface as Π and the induced
embedding of K is equal to Π. Given a graph G and a Π-embedded subgraph K, we
may ask if there is an embedding extension to G. This problem will be referred to as
an embedding extension problem. An obstruction for extensions for such a problem is
a subgraph Ω of G− E(K) such that no embedding extension of K to K ∪ Ω exists.

3. Bridges. Let K be a subgraph of G. A K–bridge in G (or a bridge of K in
G) is a subgraph of G which is either an edge e ∈ E(G)\E(K) with both endpoints
in K, or it is a connected component of G− V (K) together with all edges (and their
endpoints) between this component and K. Each edge of a K–bridge B having an
endpoint in K is a foot of B. The vertices of B ∩ K are the vertices of attachment
of B, and B is attached to each of these vertices. A vertex of K of degree different
from 2 is a main vertex (or a branch vertex ) of K. For convenience, if a connected
component C of K is a cycle, then we choose an arbitrary vertex of C and declare it
to be a main vertex of K as well. A branch of K is any path in K (possibly closed)
whose endpoints are main vertices but no internal vertex on this path is a main vertex.
Every subpath of a branch e is a segment of e. If a K-bridge is attached to a single
branch e of K, it is said to be local (on e). The number of branches of K, denoted by
bsize(K), is the branch size of K. If B is a K-bridge in G, then the size bsizeK(B) of
B is defined as the number of branches of K ∪B that are contained in B. Note that
bsize(K ∪ B) ≤ bsize(K) + 2 bsizeK(B). A basic piece of K is either a main vertex
or an open branch of K (i.e., a branch with its endpoints removed). If a K-bridge
B in G is attached to at least three basic pieces of K, then B is strongly attached .
Otherwise, it is weakly attached .

Suppose that K is Π-embedded. Let B be a K-bridge in G and Π̃ an extension
of Π to K ∪ B. Then there is a unique Π-face F that is not a Π̃-face, and we say
that B is embedded in F or that F contains B. Clearly, if B is embedded in F , then
all basic pieces that B is attached to appear on F . Each basic piece on F has one or
more appearances (or occurrences) on F . The total number of appearances of main
vertices on F is the branch size of F . We say that the K-bridge B embedded in F
is attached to an appearance of the basic piece x on F if x contains a vertex x0 such
that the angle in F at this appearance of x0 on x is not an angle within a Π̃-face.

Lemma 3.1. Suppose that there are no local K-bridges in G. Let Π̃ be an embed-
ding of G that is an extension of an embedding Π of K. If B is a K-bridge embedded
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in a Π-face F , we denote by q(B) the number of appearances of basic pieces on F
that B is attached to. If F is a Π-face of branch size s, and B1, . . . , Bk are K-bridges
embedded in F , then

k∑

i=1

(q(Bi) − 2) ≤ 2s− 2 .(1)

Consequently, if B is the set of all K-bridges in G, then
∑

B∈B
(q(B) − 2) ≤ 4 bsize(K).(2)

Proof. The proof of (1) is by induction on the number p ≤ 2s of those occurrences
of basic pieces on F that some bridge is attached to. We can assume that q(Bi) ≥ 3
for 1 ≤ i ≤ k and that p ≥ 2. The case p = 2 is trivial. If p > 2, let B be a strongly
attached bridge in F . Let f1, . . . , fq be feet of B attached to distinct basic pieces of K.
They divide F into q segments, containing p1, . . . , pq appearances of basic pieces of K
(or their parts), respectively. Clearly, p1 + · · · + pq = p + q and pi < p, i = 1, . . . , q.
By the induction hypothesis

k∑

i=1

(q(Bi) − 2) ≤ (p1 − 2) + · · · + (pq − 2) + (q − 2) = p− 2.

This proves (1). The sum of the branch sizes of Π-faces equals 2 bsize(K). Hence, (2)
follows from (1).

Lemma 3.1 shows, in particular, that too many strongly attached bridges obstruct
embedding extensions. Similarly, every weakly attached bridge that is embedded such
that it is attached to two or more occurrences of the same basic piece contributes to the
left side of (2). Thus, under an embedding extension all except a bounded number
of bridges are attached to at most one appearance of the same basic piece. Such
embeddings of bridges are simple. More generally, and embedding extension is simple
if all bridges have simple embeddings. In case of simple embeddings, we will use some
special subgraphs of K-bridges in G. If B is a K-bridge in G, an E-graph in B is a
minimal subgraph H of B such that:

(E1) Any two vertices of H −K are connected by a path in H −K.
(E2) For each branch vertex ζ that B is attached to, H contains a foot incident

with ζ. If ζ is an open branch with ends x1 and x2 and B is attached to ζ,
let ζi be the vertex of attachment of B on ζ which is closest to xi (i = 1, 2).
Then H contains feet attached to ζ1 and ζ2, respectively (possibly just one if
ζ1 = ζ2).

(E3) Every simple extension of any embedding of K to K ∪H determines a simple
extension to K ∪B.

The difficult part of this paper is to discover obstructions for simple embedding
extensions. The next result somehow simplifies this problem by showing that one can
work only with E-graphs of K-bridges in G and that E-graphs are not too large.

Theorem 3.2 (Mohar [24]). Let B be the set of K-bridges in G. There is a
number c depending only on bsize(K) such that each B ∈ B contains an E-graph B̃
with bsizeK(B̃) ≤ c. If {B1, . . . , Bk} ⊆ B (k ≥ 1) are arbitrary nonlocal K-bridges,
B̃1, . . . , B̃k their corresponding E-graphs, and if Π is an embedding of K, then any
simple extension of Π to K∪B̃1∪· · ·∪B̃k can be further extended to a simple extension
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of Π to K ∪ B1 ∪ · · · ∪ Bk. Moreover, there is a linear time algorithm that replaces
all K-bridges B in G with their E-graphs B̃.

In [24] it is further proved that the size of E-graphs of weakly attached bridges
is at most 12. Moreover, if a weakly attached bridge B has some simple embedding
extension, then bsizeK(B̃) ≤ 5.

Theorem 3.2 shows that we can replace every K-bridge B in G by its small E-
graph B̃, and simple embedding extension problems do not change. This enables us
to consider only obstructions that can be expressed as the union of E-graphs.

4. Restricted embedding extensions. Let K be a subgraph of G and let P
be the set of all basic pieces of K. If B is a K-bridge, let T ⊆ P be the set of basic
pieces of K that B is attached to. We say that B is of type T . Suppose that K
is Π-embedded in some surface. In general, a bridge of type T can be embedded in
two or more faces of K, and in some faces in several different ways. To formalize
the essentially different ways of embedding bridges in particular faces, we introduce
the notion of embedding schemes. Let F be a Π-face. For T ⊆ P , let π1, . . . , πk be
the appearances of basic pieces from T on F . An embedding scheme for the type T
in the face F is a subset of π1, . . . , πk in which at least one appearance of every
basic piece from T occurs. An embedding scheme δ is simple if each basic piece from
T has exactly one appearance in δ. There is a natural partial ordering among the
embedding schemes for the type T ⊆ P in F , induced by the set inclusion: If δ and δ′

are embedding schemes for T in the same face F , then δ � δ′ if every appearance of
a basic piece in δ also participates in δ′.

Let B be a K-bridge of type T and δ an embedding scheme for T in a face F . An
embedding of B in F is δ-compatible (shortly a δ-embedding) if B is attached only
to appearances of basic pieces from δ. If δ � δ′, then every δ-embedding is also a
δ′-embedding.

An embedding distribution ∆(T ) for a type T ⊆ P is a selection of embedding
schemes for the type T , possibly in different faces. Suppose that T1, T2, . . . , Ts are all
types of K-bridges in G. An embedding distribution is a family ∆ = {∆(T1), . . . ,∆(Ts)}
where ∆(Ti) is an embedding distribution for the type Ti, i = 1, . . . , s. ∆ is simple if
all embedding schemes in ∆(T1), . . . ,∆(Ts) are simple. Let B be a set of K-bridges
with an embedding extending the given embedding of K. We say that the embedding
of B is ∆-compatible (or a ∆-embedding) if the embedding of each bridge B ∈ B is
δ-compatible for some δ ∈ ∆(T ), where T is the type of B. The relation � naturally
extends from embedding schemes to embedding distributions. The order ord(∆) of
∆ is equal to the total number of embedding schemes in the embedding distributions
∆(Ti), i = 1, . . . , s. If ∆ is an embedding distribution for the set B of K-bridges in G
and if B′ ⊆ B, then the restriction of ∆ to B′ is the embedding distribution obtained
from ∆ by removing the embedding distributions ∆(T ) for those types T that are not
present among the bridges in B′. If there is no confusion, the restriction of ∆ to B′ is
also denoted by ∆.

Now we introduce a formal definition of an embedding extension problem, abbrevi-
ated EEP. This is a quadruple Ξ = (G,K,Π,∆) where G is a graph, K is a subgraph
of G, Π is an embedding of K, and ∆ is an embedding distribution for the K-bridges
in G. The EEP is simple if ∆ is simple. An embedding extension (abbreviated EE) for
Ξ is an embedding extension of Π to G such that every K-bridge is ∆-embedded. An
obstruction for Ξ is a set B of K-bridges or their subgraphs such that (K∪B,K,Π,∆)



6 B. MOHAR

admits no EE. The size bsizeK(B) of an obstruction B is

bsizeK(B) =
∑

B∈B
bsizeK(B).

Embedding distributions will be used in the sequel in the following way. For
every possible embedding distribution ∆ we will try to extend the given embedding
of K to a ∆-embedding of G. Embedding distributions will be selected one after
another respecting the order �. We start with the embedding distribution of order 0,
and any bridge is an obstruction for this subproblem. In a general step, we already
have obstructions for all embedding distributions ∆′ ≺ ∆. Let B denote their union.
Then we try to extend each ∆-embedding of B to a ∆-embedding of G. Obtaining an
embedding, we stop and return the embedding (and our task is complete). Otherwise,
an obstruction is obtained. Finally, the obstructions for different embeddings of B
are combined together with B into a single obstruction for ∆-compatible embedding
extensions. We will refer to this process as the procedure of embedding distribution of
types .

Suppose that we fix an embedding distribution ∆0. Using the procedure of embed-
ding distribution of types we determine all (minimal) embedding distributions ∆ � ∆0

for which a ∆-compatible EE exists, and at the same time construct obstructions for
all other ∆-embeddings (∆ � ∆0). Algorithmically, a problem in the procedure of
embedding distribution of types is in bounding the number of ∆-compatible embed-
dings of the union B of obstructions for all simpler embedding distributions. By using
an operation called compression (cf. Section 5), we will be able to achieve that all
obstructions have bounded size and hence also bounded number of embeddings. We
shall use this approach in the proof of Corollary 5.5.

The procedure of embedding distribution of types can be generalized by intro-
ducing the union of EEPs. Suppose that we want to consider embedding extensions
where we fix embeddings of some of the bridges. To formalize, we call an EEP
Ξ′ = (G,K ′,Π′,∆′) a subproblem of Ξ = (G,K,Π,∆) if

(i) K ′ is the union of K and a set B of K-bridges in G.
(ii) Π′ is an EE of Π.
(iii) The Π′-embedding of every B ∈ B, viewed as an extension of Π, is ∆-

compatible.
(iv) Every ∆′-compatible embedding of a K ′-bridge in G, viewed as an EE of the

embedding Π, is ∆-compatible.
For i = 1, . . . , N , let Ξi = (G,Ki,Πi,∆i) be subproblems of Ξ = (G,K,Π,∆).

Denote by Bi the set of K-bridges in Ki. We say that Ξ is the union of subproblems
Ξi (1 ≤ i ≤ N) if for every set B ⊇ ∪N

i=1Bi of K-bridges in G, the restriction of Ξ to
K ∪B admits an EE exactly when the restriction to K ∪B of at least one of Ξi does.
In this case, an EE for some Ξi is also an EE for Ξ, while having obstructions Ωi for
Ξi (1 ≤ i ≤ N), their combination

Ω = ∪N
i=1(Ωi ∪ Bi)(3)

is an obstruction for Ξ.
A subproblem Ξ′ = (G,K,Π,∆′) of Ξ = (G,K,Π,∆) is equivalent to Ξ if for

every set B of K-bridges in G and every ∆-compatible EE of K to K ∪ B, there is
also a ∆′-compatible EE of K to K ∪ B. In such a case, an EE for Ξ′ is also an EE
for Ξ, and every obstruction for Ξ′ is an obstruction for Ξ. Therefore, a solution for
Ξ′ provides also a solution for Ξ.
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We shall use the introduced notions mainly in the following particular case.
Lemma 4.1. Let Ξ = (G,K,Π,∆) be an EEP. Let B be a set of K-bridges in

G, and let Π1, . . . ,ΠN be all ∆-embeddings of B extending Π. For i = 1, . . . , N , let
∆i be the largest embedding distribution for (K ∪ B)-bridges in G such that every
∆i-embedding of a (K ∪ B)-bridge is also a ∆-embedding, and let ∆′

i � ∆i be such
an embedding distribution that the EEP Ξi = (G,K ∪ B,Πi,∆′

i) is equivalent to
(G,K ∪ B,Πi,∆i). Then Ξ is the union of subproblems Ξ1, . . . , ΞN . In particular,
by solving EEPs Ξ1, . . . , ΞN we either get an EE for Ξ, or (3) gives an obstruction.

In our algorithms we shall use Lemma 4.1 only in cases when the number of
bridges in B (and hence also the number N of their ∆-embeddings) is bounded by
some constant.

We shall also need the following strengthening of a particular case of Lemma 4.1.
Let Ξ = (G,K,Π,∆) be an EEP and x, y be basic pieces (or segments of basic pieces)
of K. Denote by Bx,y the set of K-bridges in G of type T = {x, y}, and suppose that
Bx,y �= ∅. If x is a main vertex, put x1 = x2 = x. If x is an open branch, let x1 and
x2 be vertices of attachment of bridges in Bx,y that are as close as possible to one
and the other end of x, respectively. Define similarly y1 and y2. For i, j ∈ {1, 2}, we
select a bridge Bi,j

x,y ∈ Bx,y with the following properties:
(a) Bi,j

x,y is attached to xi.
(b) Among all bridges from Bx,y attached to xi, Bi,j

x,y has an attachment on y as
close to yj as possible.

(c) Subject to (a) and (b), we select Bi,j
x,y to be an edge if possible.

Let B◦
x,y be the set of bridges that contains all bridges Bi,j

x,y (i, j ∈ {1, 2}) and
for each δ ∈ ∆(T ) such that Bx,y has no δ-embedding, B◦

x,y contains a pair of bridges
from Bx,y whose δ-embeddings overlap. If ∆(T ) is simple, then one can construct
B◦

x,y in linear time by using [23].
Lemma 4.2. Assuming the above notation, suppose that ∆(T ) = {δ1, δ2}. Then

Ξ is equivalent to the union of subproblems Ξ′ = (G,K ∪ B◦
x,y,Π′,∆′), taken over

all ∆-compatible EEs Π′ of Π to K ∪ B◦
x,y, where ∆′ is the restriction of ∆ to the

remaining bridges with the only exception that ∆′(T ) contains only those embedding
scheme(s) δi (i ∈ {1, 2}) which are used by the bridges from B◦

x,y under the EE Π′.
Proof. It is only to be observed that whenever the embedding of B◦

x,y uses just
one embedding scheme, say δ1, then all bridges from Bx,y may be assumed to be δ1-
embedded since their embedding obstructs possible embeddings of other bridges no
more than the embedding of B◦

x,y.
Let Ξ = (G,K,Π,∆) be an EEP. Let B be the set of all K-bridges in G. Suppose

that B = B1 ∪ · · · ∪ BN . Denote by ∆i the restriction of ∆ to Bi, i = 1, . . . , N .
The EEP Ξi = (K ∪ Bi,K,Π,∆i) is a partial problem of Ξ. We say that Ξ is the
intersection of partial problems Ξi, i = 1, . . . , N , if arbitrary EEs for Ξ1, . . . , ΞN

determine an EE Π0 for Ξ. More precisely, if there are EEs Πi for Ξi (i = 1, . . . , N),
then there is an EE Π0 for Ξ such that its restriction to K ∪ Bi coincides with Πi,
i = 1, . . . , N .

Having Π1, . . . ,ΠN , one can determine Π0 in linear time as described below. We
shall assume that bsize(K) and N are bounded by a constant since this will hold
in our applications (although this assumption is not essential). The number of Π-
faces is bounded by 2 bsize(K). Therefore, it suffices to describe the algorithm for
an arbitrary Π-face F of K. Let B′

i ⊆ Bi (1 ≤ i ≤ N) be the bridges that are
Πi-embedded in F . Select an orientation of F . For B ∈ B′

i, let v0, . . . , vq−1 be
its consecutive attachments on F . If e is a foot of B attached to vj , then we put
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next(e) = vj+1 where the index is taken modulo q. The function next can easily
be computed in linear time (for all bridges at the same time). Now, consider an
appearance of a vertex v on F , and let {e1, e2} be the angle on F at this appearance
of v. We may also assume that F is oriented so that e1 precedes e2. The local rotation
Π0 at v between e1 and e2 is now easily determined by a merging: we proceed through
the lists Li = (Πi(e1),Π2

i (e1),Π3
i (e1), . . . , e2), i = 1, . . . , N , and insert in the rotation

of Π0 at v the initial edge e from that list Li which has the largest next(e), i.e.,
the distance along F from v to next(e) (in the given direction) is maximal. If there
is more than one candidate for e, there are exactly two of them, and one of them
belongs to a K-bridge with more than two attachments, the other to a bridge with
two attachments. In such a case we select the former one. It can be shown that this
procedure gives the desired embedding Π0. The details are left to the reader.

5. Simple embedding extensions. In this section we will consider only simple
embeddings of bridges and simple EEPs. We may assume the following:

(a) Each bridge has been replaced by its small E-graph (cf. Theorem 3.2).
(b) Every K-bridge in G has at least one simple embedding extending some em-

bedding of K. (Otherwise, its E-graph is a small obstruction and we may
stop.) In particular, if some bridge is attached only to two vertices of K, its
E-graph is just a branch.

(c) There are no local bridges.
(d) Multiple branches between the same pair of vertices of K have been replaced

by a single one.
(e) There are at most 4 bsize(K) strongly attached bridges. (Otherwise we get

an obstruction of bounded size by Lemma 3.1.)
We shall refer to above assumptions (a)–(e) as Property (E) of K.

Let Ξ = (G,K,Π,∆) be a simple EEP where K has Property (E). We shall
now consider some special subproblems of Ξ. Suppose that B is a set of K-bridges
and Ξ′ = (G,K ∪ B,Π′,∆′) is a subproblem of Ξ. Then Ξ′ is 2-restricted if every
K-bridge B in G, B /∈ B, has at most two ∆′-compatible embeddings extending the
embedding Π′.

Suppose that we have a set of vertices W0 ⊆ V (K). Let W1 be the union of
W0 and all main vertices of K. Denote by S the set of connected components of
K − W1. Suppose that we replace the paths in S by new pairwise disjoint paths in
G−W1 joining the same ends as the original paths. Then the new subgraph K ′ of G
is homeomorphic to K and the homeomorphism K → K ′ is the identity on the stars
of vertices in W1. The types of bridges with respect to K and K ′ are in the obvious
correspondence and so are the embeddings of K and K ′ and the embedding schemes
for their bridges. Suppose that G contains exactly the same types of K-bridges and
K ′-bridges. Then the replacement of K by K ′ is called a compression with respect
to W0.

Theorem 5.1 (Juvan and Mohar [20]). There is a function c1 : N ×N → N
such that the following holds. Let Ξ = (G,K,Π,∆) be a 2-restricted subproblem of
an EEP, and let W0 be a set of vertices of K. If there is no ∆-compatible EE, then
there is a compression K �→ K ′ with respect to W0 such that the modified EEP Ξ′ =
(G,K ′,Π,∆) admits an obstruction B such that bsizeK′(B) ≤ c1(|W0|, bsize(K)).
Moreover, there is an algorithm with time complexity O(c1(|W0|, bsize(K)) |V (G)|)
that either finds an EE for Ξ, or performs the compression K �→ K ′ and returns an
obstruction B for Ξ′ as described above.
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The compression combined with the procedure of embedding distribution of types
will be our main tool that will be used in order to guarantee that the obstructions
constructed by our algorithms are not too large.

There is another important special instance of EEPs. Suppose that K has Prop-
erty (E) and that there is a Π-face F that contains two singular branches e and f .
Suppose that F = AeBfCe−Df− where e− and f− denote the traversal of e and
f , respectively, in the opposite direction and where A,B,C,D are open segments of
F between the appearances of e and f . Let B be a set of K-bridges in G, each of
which has an attachment in the interior of e or f . Suppose also that ∆ is a simple
embedding distribution for bridges in B such that for each of the types, the embed-
ding schemes allow all together at most one appearance of each basic piece distinct
from e, f . Then the EEP Ξ = (K ∪ B,K,Π,∆) and every EE subproblem of Ξ,
Ξ0 = (K ∪ B,K ∪ B0,Π0,∆0) (B0 ⊆ B), is a corner EEP . Every bridge in B is at-
tached to the interior of e or f . Therefore, under any EE for Ξ (or Ξ0), all bridges
from B are embedded in the face F . The following nontrivial result has been proved
by Marinček, Juvan, and Mohar [18].

Theorem 5.2 (Juvan, Marinček, and Mohar [18]). There is a constant c0

such that every corner EEP is the union of at most c0 2-restricted EE subproblems.
The difficult part of the proof of Theorem 5.2 consists of showing that B contains

a subset B0 of at most 30 bridges such that for every ∆-embedding of B0 in F that
gives rise to a subface F ′ of F , which contains a singular segment of e and a singular
segment of f , the following holds. For one of the singular branches of F ′, say ε,
the bridges Bε ⊆ B\B0 that are attached to ε admit a ∆-embedding (extending the
embedding of B0) such that no ∆-embedding of any of the remaining bridges from B is
obstructed by this embedding. Consequently, the subproblem with such an embedding
of B0 is equivalent to a subproblem where the bridges from Bε have the corresponding
fixed embedding. Under this subproblem, F ′ can be considered as not having two
singular branches. Therefore we say that B0 removes the double {e, f}-singularity.
Having B0 with the above property, one can see that each subproblem with a fixed
∆-embedding of B0 is the union of 2-restricted subproblems. It is shown in [18]
that B0 and additional representatives for further reductions to 2-restricted EEPs
can be obtained in linear time. By applying the generalized procedure of embedding
distribution of types with compression, this yields:

Theorem 5.3. There is a function c2 : N → N such that the following holds.
Let Ξ = (G,K,Π,∆) be a corner EEP with corresponding singular branches e and
f , and let W0 be a set of vertices of K. If there is no ∆-compatible EE, then there
is a compression K �→ K ′ with respect to W0 such that the modified corner EEP
Ξ′ = (G,K ′,Π,∆) admits an obstruction B of bounded size, bsizeK′(B) ≤ c2(|W0|).
Moreover, there is an algorithm with time complexity O(c2(|W0|) |V (G)|), that either
finds an EE for Ξ, or performs a compression K �→ K ′ (by changing only segments
of e and f) and returns an obstruction B for Ξ′ as described above.

Proof. By Theorem 5.2, Ξ is the union of a bounded number of 2-restricted
subproblems Ξi = (G,K ∪ B0,Πi,∆i), 1 ≤ i ≤ s. Moreover, as shown in [18], B0

and the corresponding subproblems Ξi can be generated in linear time, and by using
compression with respect to W0, also the size of B0 is bounded by certain constant.
Let W1 be the union of W0 and the set of vertices of attachment of all bridges in
B0. For i = 1, . . . , s, we solve the 2-restricted subproblem Ξi by using Theorem 5.1
and perform compression with respect to Wi. Obtaining an EE we stop. Otherwise,
let Bi be the resulting obstruction (of bounded size). It may happen that after the
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compression K �→ K ′, some K ′-bridges in G become large. Therefore we apply the
procedure from [24] in order that K ′ and its bridges satisfy Property (E). We then
define Wi+1 as the union of Wi and vertices of attachment of all bridges in Bi. This
choice guarantees that the compression at the ith step does not change any of the
previous obstructions Bj (j < i) and that Bj remains an obstruction for Ξj although
the subgraph K has been changed. One can think of a corner EEP as being an
embedding into the torus of a graph homeomorphic to K4. Since bsize(K4) = 6,
Theorem 5.1 implies that the size of Bi is bounded by c1(|Wi|, 6). Since s is bounded
by the constant c0 from Theorem 5.2, it follows that |Wi| and bsizeK′(Bi) are bounded
for each i.

After s steps we either find an EE or we stop with a compressed graph K ′ and
the corresponding obstruction B′ = B0 ∪ B1 ∪ · · · ∪ Bs for Ξ′ composed of E-graphs
of K ′-bridges in G.

Suppose that we have an EEP Ξ = (G,K,Π,∆), and that B is an obstruction for
all EEPs Ξ′ = (G,K,Π,∆′) for which ∆′ ≺ ∆. Consider all possible ∆-compatible
embedding extensions of Π to K ∪ B. Then Ξ is the union of subproblems, in each
of which B has a fixed embedding. In each of these subproblems, for every type T
of K-bridges and each embedding scheme δ ∈ ∆(T ), there is a bridge of type T in
B that is δ-embedded since otherwise, the embedding of B would be ∆′-compatible
for some ∆′ ≺ ∆. Such a bridge is called a representative for δ (with respect to the
chosen subproblem), and we say that B is a complete set of representatives for Ξ.

The next result will enable us to apply Theorems 5.1 and 5.3 in solving general
simple EEPs.

Theorem 5.4. Let K be a subgraph of G with Property (E). Let Ξ = (G,K,Π,∆)
be a simple EEP and suppose that no edge of K appears on a Π-facial walk twice in
the same direction. Suppose that B0 is a complete set of representatives for Ξ and
that K ∪ B0 also has Property (E). Then there is a number c3 depending only on
bsize(K ∪B0) such that each subproblem Ξ0 = (G,K ∪B0,Π0,∆0) of Ξ is equivalent
to the union of at most c3 EE subproblems, each of which is the intersection of a
2-restricted EEP and at most bsize(K)/2 corner EEPs. The decompositions of Ξ0

to subproblems and of these to corresponding partial problems can be performed in
O(c3|V (G)|) time.

Proof. Let B′
0 be the set of K-bridges consisting of B0, all strongly attached

(K ∪B0)-bridges, and all bridges B◦
x,y, where x, y are arbitrary basic pieces of K ∪B0,

and bridges B◦
x,y are defined before Lemma 4.2. Since K ∪ B0 has Property (E), the

size of B′
0 is bounded by a function of bsize(K ∪ B0). Lemma 4.2 implies that Ξ0 is

the union of subproblems Ξ′ = (G,K ∪ B′
0,Π

′,∆′) taken over all ∆0-embeddings of
B′

0\B0 extending the embedding Π0 where every 2-restricted type of (K ∪B0)-bridges
in Ξ0 has its representatives for embedding schemes in ∆′. It suffices to see that every
such subproblem Ξ′ is the union of a bounded number of subproblems, each of which
is equivalent to the intersection of a 2-restricted EEP and at most bsize(K)/2 corner
problems.

First, we shall prove that Ξ′ is equivalent to the union of a bounded number of
subproblems of the form Ξ′′ = (G,K ∪B′′

0 ,Π′′,∆′′) where B′′
0 consists of B′

0 and some
additional bridges. The number of these additional bridges is bounded (depending on
bsize(K)).

Recall that B′
0 contains all strongly attached (K ∪ B0)-bridges in G. Because of

Property (E), B′
0 contains all (K ∪B0)-bridges that are attached to two main vertices

of K. Let B /∈ B′
0 be a K-bridge of type T = {e, v} where e is an open branch and
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v is a main vertex of K. Let eB be the smallest closed segment of e containing all
vertices of attachment of B to e. Suppose that F is a Π′-face in which B can be
∆′-embedded. Since B is not a strongly attached (K ∪B0)-bridge, eB is contained in
an open branch e′ ⊆ e of K ∪B0. Denote by ε an appearance of e′ in F . Let v1, . . . , vl

be the appearances of v on F . Since B0 is a complete set of representatives, ∆′(T )
contains at most two embedding schemes using ε and one of v1, . . . , vl. Moreover, any
embedding extension of Π′ to a subset of K-bridges in G can be changed so that all
bridges of type T in F that are attached to ε are attached just to one appearance of
v in F . This implies that Ξ′ is equivalent to a subproblem Ξ′′ = (G,K ∪ B′

0,Π
′,∆′′)

where K-bridges that are not attached to two open branches of K have at most two
admissible embeddings.

(a) (b) (c)

e
A AA B BB

C CC D DD

ee

e ef

f fe f ff

Fig. 1. The possibilities for more than two embedding schemes

It remains to see how we control embeddings of K-bridges that are attached to
two open branches of K. For most pairs e, f of open branches, K-bridges of type
{e, f} will have at most two ∆′-embeddings. This may not be the case only when
segments of both e and f appear twice on the same Π′-facial walk. Possible cases are
shown in Figure 1 with dotted curves indicating the embedding schemes in ∆′ that
contain appearances of e or f . By assumption, each of the branches e and f appears
on the facial walk once in each direction. Therefore we can speak about the left and
the right side of e and the top or bottom of f (with respect to the presentation in
Figure 1). We shall assume that the face F shown in Figure 1 is a Π-face, and we shall
have in mind that there is a collection of K-bridges from B′

0 that are Π′-embedded in
F but not explicitly shown.

Let us first consider pairs T = {e, f} which correspond to case (a) of Figure 1.
In each of such cases we shall either conclude that bridges of type T admit at most
two ∆′′-embeddings (possibly after restricting to an equivalent subproblem), or we
will find a bridge B whose presence in B′′

0 would guarantee the same as in the former
possibility. Since there are only a bounded number of pairs T , we can afterwards add
all such bridges B to B′′

0 and then start again from the beginning. The presence of
the added bridges in B′′

0 will now guarantee that the former possibility always occurs.
Let B1 = Bi,j

e,f (i, j ∈ {1, 2}) be the K-bridge corresponding to the rightmost
attachment ei on e and the topmost attachment fj on f . Note that B1 ∈ B0 ∪B◦

x,y ⊆
B′

0 for some x ⊆ e, y ⊆ f . Assume first that B1 is Π′-embedded in F so that it is
attached to the right occurrence of e. Then B1 is attached to f at its upper occurrence
since the other possibility is not ∆′′-compatible. Let y be an attachment of B1 to
f . By the choice of B1, if y is not the only attachment of B1 on f , then each of the
bridges of type T admits at most two ∆′′-embeddings extending Π′, and we are done.
If y is the only attachment, then we can have bridges of type T with three distinct
∆′′-embeddings. However, the set B′ of such bridges has only one attachment on f ;
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it is equal to y. (Another possibility for bridges with three embeddings in F includes
bridges of type T whose only attachment on e is ei. Though, this case is excluded
since the left-right embeddings in F are not ∆′′-compatible.) The two occurrences of
y on F separate F into two segments. If no bridge from B′

0 is embedded in F such
that it is attached to the interior of each of these segments, then every EE of Π′ to
a subset of K-bridges can be changed so that no bridge from B′ is attached to the
left occurrence of y (say). In other words, Ξ′′ is equivalent to a subproblem where
each bridge of type T has only two allowed embeddings (and we shall assume that
this subproblem is already Ξ′′). On the other hand, if there is a Π′-embedded bridge
B2 ∈ B′

0 in F that separates the two occurrences of y, there is only one possibility for
a bridge of type T to have three possible ∆′′-embeddings. Such a bridge B must be
attached only to two vertices, and so it is just a branch by Property (E). In this case
we shall add B in B′′

0 . Then we will be able to forget about B having three distinct
embeddings on the expense of a few additional subproblems to be solved.

The second possibility is when B1 is attached to the lower occurrence of e and
the left occurrence of f . Now, the only bridges of type T with more than two possible
∆′′-embeddings have their only vertex on e equal to ei. We conclude in the same way
as we did in the first case, using ei instead of y.

The third possibility is when B1 is embedded so that it is attached to the lower
and the upper occurrence of e and f , respectively. In this case, there are two ways
that bridges could have more than two ∆′′-embeddings extending Π′. If Bi,3−j

e,f �= B1,
then one of the two possibilities is excluded. The remaining one is essentially the
same as the second possibility treated above. On the other hand, if Bi,3−j

e,f = B1, then
we have a situation that is essentially the same as the first case above. In each case
we know how to act.

Let us now consider cases (b) and (c) of Figure 1. In case (c), it may happen that
there is an embedding scheme in ∆′′ containing an appearance of a basic piece in the
segment C and the left occurrence of f (or the bottom occurrence of e). In such a
case, bridges of type {e, f} may be assumed to have only two possible embeddings.
This is established in the same way as above (by possibly adding a new bridge to B′′

0

or restricting to an equivalent subproblem). We assume from now on that this is not
the case.

We say that B′′
0 removes the double {e, f}-singularity if no subface F ′ of F contains

singular branches e′ ⊆ e and f ′ ⊆ f such that there exist (K ∪ B′′
0 )-bridges attached

to each of e′ and f ′. If the Π′′-embedded bridges B′′
0 do not remove the double

{e, f}-singularity, then {e, f} is a corner pair for Ξ′′. Since B0 is a complete set
of representatives, distinct corner pairs are disjoint. Therefore there are at most
bsize(K)/2 corner pairs. If case (b) or (c) applies for T = {e, f} and T is not a corner
pair, then reductions from [18] (by possibly extending B′′

0 or restricting ∆′′ to an
equivalent subproblem) can be used to get subproblems where all K-bridges of type
T have at most two ∆′′-embeddings. This will be assumed in the sequel as already
done.

If {e, f} is a corner pair, let Be,f
1 be the set of K-bridges in G of type {e, f} that

are not in B′′
0 . Let B2 be the set of K-bridges that are not in B′′

0 and that are not in
Be,f

1 for any corner pair {e, f}. Furthermore, let Be,f
2 contain all K-bridges from B2

that have an attachment on e or f and have at most one ∆′′-embedding extending
the embedding Π′′ of K ∪B′′

0 . Similarly, let B1 contain those bridges from Be,f
1 , taken

over all corner pairs {e, f}, which have at most one ∆′′-embedding extending Π′′.
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Consider the EEPs

Ξe,f
1 = (K ∪ B′′

0 ∪ Be,f
1 ∪ Be,f

2 ,K ∪ B′′
0 ,Π

′′,∆e,f
1 )(4)

where {e, f} is a corner pair and ∆e,f
1 is the restriction of ∆′′ to Be,f

1 ∪ Be,f
2 . Let

Ξ2 = (K ∪ B′′
0 ∪ B1 ∪ B2,K ∪ B′′

0 ,Π
′′,∆2)(5)

be the partial problem of Ξ′′ restricted to B1∪B2. We claim that Ξ′′ is the intersection
of partial problems Ξe,f

1 (taken over all corner pairs {e, f}) and Ξ2. Suppose not.
Since different corner pairs do not obstruct each other, there is an EE Π1 for some
Ξe,f

1 and an EE Π2 for Ξ2 that cannot be combined into an EE for Ξ′′. This means
that a Π1-embedded bridge B1 ∈ Be,f

1 \B1 and a Π2-embedded bridge B2 ∈ B2\Be,f
2

overlap. Since B0 is a complete set of representatives, B1 overlaps only with bridges
that are attached to e or to f . Since B2 /∈ B′′

0 , we may assume that B2 is of type {f, x}
where x ⊆ A. See Figure 2 where the cases (a) and (b) from below are distinguished.

B1

B1

B1

B2

B2

e e
x x

e e

f ff f

(a) (b)

o

Fig. 2. B1 and B2 overlap

An embedding of B ∈ Be,f
1 is an embedding in the corner α if B is attached to the

lower occurrence of e and the left occurrence of f . Similarly we define embeddings
in corners β, γ, δ as those that are using the lower/right, upper/right, or upper/left
occurrences of e/f , respectively. In the obvious way we also classify embeddings of
bridges of type {f, x} to be in corners α, β, γ, or δ. We may assume that B2 is
Π2-embedded in the corner α.

Since B1 /∈ B′′
0 , there is a (K ∪ B0)-bridge B̃1 ∈ B′′

0 that is of the same type
{e1, f1}, e1 ⊆ e, f1 ⊆ f , as B1 and of the form Bi,j

f1,e1
where (f1)i refers to the

lowest attachment on f1. Similarly, there is B̃2 ∈ B′′
0 of the same type {e2, f2} as B2

and of the form Bk,l
f2,e2

where (f2)k refers to the topmost attachment on f2. Now we
distinguish two cases.

Case (a). Embeddings of bridges of type {e, f} in corner α are ∆e,f
1 -compatible:

There is a representative B◦
1 ∈ B0 that is Π′′-embedded (and hence also Π1-embedded

and Π2-embedded) in the corner α. Therefore B1 is Π1-embedded in α as well. Since
B̃1 ∈ B′′

0 , it does not overlap with B2 under the embedding Π2. Since {e, f} is a corner
pair, B̃1 and B◦

1 do not remove the double {e, f}-singularity. Hence B̃1 is embedded
in the corner β. Consequently, B̃2 is not Π′′-embedded in β. If B̃2 is embedded in
the corner γ or δ, B◦

1 and B̃2 remove the double {e, f}-singularity. Hence, B̃2 is
Π′′-embedded in α. This implies that B1 cannot be embedded in the corner α, a
contradiction.
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Case (b). Embeddings in corner α are not ∆e,f
1 -compatible: Let Bβ , Bγ , Bδ be

representatives from B0 that are Π′′-embedded in corners β, γ, δ, respectively. We
shall distinguish four cases according to where B̃2 is Π′′-embedded.

Subcase α. B̃2 is in the corner α. This contradicts the fact that B1 is Π1-
embedded in α.

Subcase β. B̃2 being in β, B̃1 is in α or in δ. Since embeddings in α are not
∆e,f

1 -compatible, B̃1 is in δ. This eliminates the possibility for B2 being Π2-embedded
in the corner α, and we are done.

Subcase γ. B̃2 is in γ. Denote by y the lowest attachment of Bγ to f . When
adding the sets B◦

x′,y′ (x′ ⊆ x, y′ ⊆ f) into B′
0 ⊆ B′′

0 and restricting ∆′′ according to
Lemma 4.2 we have assured that there are representatives for all embedding schemes
of (K ∪ B0)-bridges of such types {x′, y′}. Since {e, f} is a corner pair for Ξ′′, such
bridges with embeddings in corner α have all their attachments to f strictly below y.
Therefore, they all belong to Be,f

2 . In particular, this holds for the bridge B2, and we
have a contradiction.

Subcase δ. B̃2 is in δ. Let y be the lowest attachment of Bδ to f . We conclude
as above.

This proves that Ξ′′ is the intersection of corner problems Ξe,f
1 and Ξ2. Let us

observe that the ≤ 2 embeddings of bridges from B2 are determined by their types
as (K ∪B′′

0 )-bridges. Therefore, Ξ2 can be formulated as a 2-restricted EEP, and the
proof is complete.

The assumption in Theorem 5.4 that no edge appears on a Π-facial walk twice in
the same direction is not essential. We have decided to use it since it eliminates a few
cases in the proof and since this condition will be automatically satisfied at the time
when applying the theorem. Let us also mention that with a slightly modified proof
of Theorem 5.4, one can achieve c3 being bounded only by a function of bsize(K).

Corollary 5.5. Let Ξ = (G,K,Π,∆) be a simple EEP and let W0 be a subset
of vertices of K. Suppose that K has Property (E) and that no edge of K appears on
a Π-facial walk twice in the same direction. There is a function c : N ×N → N and
an algorithm with time complexity O(c(|W0|, ord(∆))|V (G)|) that either finds a ∆-
compatible EE or returns a subgraph K ′ of G obtained by a compression with respect
to W0 and a set of at most c(|W0|, ord(∆)) E-graphs of K ′-bridges in G that form an
obstruction for the corresponding EEP Ξ′ = (G,K ′,Π,∆).

Proof. The proof is by induction on ord(∆). If ord(∆) = 0, then any K-bridge
in G is an obstruction for Ξ. Hence, a ∆-embedding exists if and only if K = G.
Suppose now that ord(∆) > 0. There are ord(∆) embedding distributions ∆1,∆2, . . .
that are strictly simpler than ∆ and are maximal with this property. Inductively,
we first solve the subproblem Ξ1 = (G,K,Π,∆1) taking care of the set W0. An EE
makes us happy and we stop. Otherwise, we compress K with respect to W0. Let
K1 be the new subgraph of G and B1 an obstruction of bounded size as guaranteed
by the induction hypothesis. Let W1 be the union of W0 and the set of vertices of
attachment of bridges from B1. Now we replace W0 by W1 and solve the subproblem
Ξ2 = (G,K1,Π,∆2), taking care of the set W1. We either stop, or we get a new graph
K2 (after a compression with respect to W1) and an obstruction B2 of bounded size.
In the latter case we extend W1 into W2 by adding all attachments of bridges from
B2. Continuing, we either find an EE, which is a ∆-embedding as well, or we stop
after ord(∆) steps with a subgraph K ′ of K that is a compression of K with respect
to W0. At the same time we get an obstruction B0 = B1 ∪ B2 ∪ . . .. Now, since B0

is an obstruction for all simpler EEPs, it is a complete set of representatives for Ξ.
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Since Ξ is the union of subproblems, taken over all ∆-embeddings of B0, and since B0

has bounded size, we can consecutively apply Theorem 5.4 combined with Theorems
5.1 and 5.3, and for each of these subproblems perform a compression with respect to
attachments of E-graphs in all previously obtained obstructions. An upper bound on
c(|W0|, ord(∆)) is easy to obtain by our inductive approach, and we leave the details
to the reader.

6. Embedding graphs in an arbitrary surface. In this section we prove the
final result of this paper that embeddability in any fixed surface S can be decided in
linear time. Our algorithm not only verifies if such an embedding exists. If it does,
such an embedding is constructed. If not, the algorithm identifies a subgraph of G
that cannot be embedded in S but every proper subgraph can. Such a subgraph is
called a minimal forbidden subgraph for embeddability in S. We define the Euler
genus of S as 2 − χ(S) where χ(S) is the Euler characteristic of S.

Theorem 6.1. Let S be a fixed closed surface. There is a constant c and a linear
time algorithm that for an arbitrary given graph G either:

(a) finds an embedding of G in S, or
(b) identifies a minimal forbidden subgraph K ⊆ G for embeddability in S. The

branch size of K is bounded by c.
Remark. In case (a), our algorithm constructs an embedding in the surface of
the smallest Euler genus (and the same orientability characteristic as S). Such an
embedding determines a (possibly not 2-cell) embedding in S. If one insists on 2-
cell embeddings in S, there is a polynomial time solution using an algorithm for the
maximum genus [12] (which turns out to be trivial for nonorientable surfaces, cf., e.g.,
[26]).

A corollary of Theorem 6.1 is the result of Robertson and Seymour [27] that the
set of minimal forbidden minors (or subgraphs) is finite for each surface. It is worth
mentioning that our proof is constructive while the proof in [27] is only existential.

Corollary 6.2 (Robertson and Seymour [27]). For every surface S there
is a finite list of graphs such that an arbitrary graph G can be embedded in S if and
only if G does not contain a subgraph homeomorphic to one of the graphs in the list.

The rest of the paper is devoted to the proof of Theorem 6.1. Let us just point
out that in case (b) it suffices to find a subgraph K of bounded branch size (in terms
of the Euler genus of S) since such a subgraph is easily changed to a minimal one in
constant time (for example, by considering all subgraphs of K, up to homeomorphism,
and all their embeddings).

Denote by g the Euler genus of S. If S is orientable, our algorithm determines
the smallest h ≤ g such that G can be embedded in the orientable surface of Euler
genus h (or proves that such an h does not exist). If S is nonorientable, then we will
determine the surface (or two surfaces) with the smallest Euler genus h ≤ g in which
G can be embedded (or show that G cannot be embedded in S). If such minimal
Euler genus h is even, there is a nonorientable surface S̃h as well as an orientable
surface S′

h with Euler genus h. If G can be embedded in S̃h and h ≤ g, then it can
also be embedded in S. If G has an embedding in S′

h, then changing the sign of an
arbitrary edge which is not a cutedge of G gives an embedding in S̃h+1. Hence, any
outcome determines the nonorientable genus of G.

The orientable genus of G is equal to the sum of the genera of its blocks [4] and
a minimum genus embedding is a simple combination of minimal embeddings of the
blocks. A similar reduction works in the nonorientable case [33]. Since the blocks
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can be determined in linear time, we may assume from now on that the graph G is
2-connected.

If G is 2-connected and G = G1∪G2 where G1∩G2 = {x, y} ⊆ V (G) and each of
G1 and G2 contains at least two edges, then we say that {x, y} is a separating pair .
In such a case, let the graph G′

i be obtained from Gi by adding the edge xy if it is not
already present in Gi (i = 1, 2). The added edge xy is called the virtual edge of G′

i. If
G′

1 is 3-connected, then G′
1 is a pendant 3-connected block of G. If G′

2 is planar, then
every embedding of G′

1 can be changed into an embedding of G in the same surface
after replacing the edge xy ∈ E(G′

1) by G2 using a planar embedding of G′
2. In such

a case we call the operation of replacing G by G′
1 a 2-reduction. We can consider

the graph G′
1 as being a subgraph of G by using a path in G2 from x to y instead

of the new edge xy. Therefore, any obstructions in G′
1 give rise to obstructions of

the same branch size in G. By using linear time algorithms of Hopcroft and Tarjan
to determine the 3-connected components of G [15] and for testing planarity [16], we
can perform all possible 2-reductions in linear time. At the same time we locate all
pendant 3-connected blocks in G, and for each such block B we find a Kuratowski
subgraph HB ⊆ B. If possible, we choose HB so that it does not contain the virtual
edge of B.

We shall assume from now on that G is a 2-connected graph in which no 2-
reductions are possible. In particular, G is simple and has no vertices of degree 2.
The following lemmas will be used to bound the number of pendant 3-connected
blocks.

Lemma 6.3. Suppose that K = L∪H where H is a subgraph of K homeomorphic
to a Kuratowski graph and that L∩H is either empty, one or two vertices, a segment
of a branch of H, or a segment of a branch of L. If g′ is the Euler genus of K and g
is the Euler genus of L, then g′ ≥ g + 1.

Proof. By the additivity of the Euler genus, the result is clear when L ∩ H is
empty or a single vertex. Otherwise, let x and y be the two vertices of of L∩H or the
ends of the segment of a branch (of L or of H) in L ∩ H , respectively. Since L ⊆ K,
we have g ≤ g′.

If g′ = g, consider an embedding Π′ of K with Euler genus g. It is an extension
of an embedding Π of L. Since Π is an embedding of L of minimal Euler genus, no Π-
facial walk W contains two vertices that appear on W in the interlaced order. (If not,
one could change Π to an embedding with smaller Euler genus.) This immediately
excludes the case when L ∩ H = {x, y}. Similarly, if L ∩ H is contained in a branch
of H : Since K5 and K3,3 are 3-connected, there is a single L-bridge in K. It is
attached to x and y only, and it does not have a simple EE. Therefore, x and y
appear interchangeably on a Π-facial walk, a contradiction. The remaining case is
when L ∩ H is a segment σ of a branch e of L. Let L′ = L − intσ. Since K5 and
K3,3 are 3-connected, there are one or two L′-bridges in K. In the latter case, one
of the L′-bridges is just a segment of a branch of H , and by replacing σ with that
branch we can appeal to the previous case treated above. So, we may assume that
there is a single L′-bridge in K; it is equal to H . If the branch e is contained in two
Π-facial walks, the embedding extension of Π|L′ to L′ ∪H = K gives a contradiction
as above. On the other hand, if e is singular, it appears on the facial walk twice in
opposite direction and hence the embedding of K yields an embedding of H in the
cylinder, a contradiction.

Lemma 6.4. Let G be a 2-connected graph. Suppose that G = K ∪B−
1 ∪ · · · ∪B−

s

(s ≥ 5) where K has a branch e containing vertices x1, y1, x2, y2, . . . , xs, ys (in that
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order; xi �= yi but possibly yi = xi+1) such that K ∩ B−
i is equal to the segment

of e from xi to yi (1 ≤ i ≤ s). and if B−
i ∩ B−

i+1 �= ∅ for some 1 ≤ i < s, then
B−

i ∩B−
i+1 = {yi} = {xi+1}. Suppose, moreover, that each of the graphs B−

i is planar
but B−

i + xiyi is nonplanar (1 ≤ i ≤ s). Let G′ = K ∪ B−
1 ∪ B−

3 ∪ B−
5 . If Π′ is a

minimum genus or a minimum Euler genus embedding of G′ in the surface S, then
Π′ can be changed into an embedding of G in S.

Proof. Since B−
i + xiyi is not planar and since G (and hence also K) contains a

path from xi to yi that is edge-disjoint from B−
i , B−

i contains a Π′-noncontractible
cycle Ci (i = 1, 3, 5). The graphs B−

1 , . . . , B−
s are planar and distinct B−

i , B−
j intersect

in at most one vertex which belongs to e. This implies that there is an embedding
Π0 of e ∪B−

1 ∪ · · · ∪B−
s of genus 0. If C1 is 2-sided, then Π′ restricted to K and Π0

are easily combined into an embedding of G in S. Similarly, if C3 or C5 is 2-sided.
On the other hand, if C1, C3, C5 are all 1-sided, then the Euler genus of Π′ restricted
to K − e is smaller than the Euler genus of Π′ by at least three since C1, C3, C5 are
disjoint. Now, the same surgery as used in the 2-sided case yields an embedding of G
whose Euler genus increases by at most two. This is a contradiction to minimality of
Π′.

Our next goal is to find a 2-connected subgraph K of G such that no K-bridges in
G are local. First we construct an intermediate graph K0. If G is 3-connected, then we
let K0 be a Kuratowski subgraph of G. Otherwise, for each pendant 3-connected block
B of G, let KB be its subgraph obtained by the following construction. Let HB be a
Kuratowski subgraph of B and let {x, y} be the separating pair of G corresponding to
B. If HB contains the virtual edge xy, then put KB = HB − xy. Otherwise, let KB

be obtained from HB by adding two disjoint paths (possibly of length 0) from {x, y}
to HB. The graphs KB are easily constructed in linear time by standard techniques
mentioned earlier in this paper. Now, we start by taking K0 = KB0 where B0 is
an arbitrary pendant 3-connected block of G. We shall extend K0 in several steps.
Note that K0 may become 2-connected only after the next step. In each of these
steps we first check if there is a pendant 3-connected block B such that either KB

is edge-disjoint from the current graph, or KB ⊇ HB. If so, we add KB and two
disjoint paths from its separating set to the current graph. If one of such paths passes
through a pendant 3-connected block Q, we make sure that inside Q it uses only edges
of KQ. By Lemma 6.3, the new graph K0 has larger Euler genus than the previous
one, so this case occurs at most g times (or else we get a small forbidden subgraph for
embeddability in S and stop). After O(g) such steps, each of the remaining pendant
3-connected blocks B has the property that B− (B without its virtual edge) is planar
and that K0 ∩KB is a segment of a branch e of K0. We say that B is pendant on e.

Consider the bridges B1, . . . , Bs that are pendant on e, in the order as their
segments K0 ∩B−

i appear on e. By Lemma 6.4 we may assume that s ≤ 4 (possibly
after changing the graph G by replacing B2, B4, and B6, . . . , Bs by corresponding
segments of e). Now we add the graphs KBi , i = 1, . . . , s, into K0. Note that in this
case, there is no need to add corresponding linking paths. We repeat the same for all
branches e of K0, and then our construction stops. Since we make all together O(g)
steps, we can afford to spend O(n) time for each step, hence there is no problem in
achieving linear time complexity in the construction of K0.

The graph K0 constructed above is 2-connected and bsize(K0) is bounded. For
each branch e of K0, let local(e,K0) be the union of e and all local K0-bridges on e.
If {x, y} is a separating pair of G, then each component of G−{x, y} intersects some
pendant 3-connected block and hence contains a main vertex of K0. This property of
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K0 enables us to use a linear time algorithm from [17] to achieve one of the following:
(a) We get a path e′ in local(e,K0) joining the ends of e such that the graph K ′

0 =
K0 − e + e′ has no local bridges on e′. Note that local(f,K ′

0) = local(f,K0)
for all branches f �= e of K ′

0, and that local(e′,K ′
0) = e′.

(b) We get a subgraph Ke ⊆ local(e,K0) that is homeomorphic to a Kuratowski
graph. In this case we delete e from K0, and then add Ke and paths in
local(e,K0) from the ends of e to Ke so that the resulting graph K ′

0 is 2-
connected. Note that this step increases the branch size of the graph at most
by 13.

We repeat the procedure with the new graph K ′
0 and all its branches f for which

local(f,K ′
0) �= f . Lemma 6.3 shows that after a bounded number of steps we either

stop with a 2-connected graph K ⊆ G such that there are no local K-bridges in G
(which we assume henceforth), or we find a subgraph of G of bounded branch size
that cannot be embedded in S.

Having constructed K as explained above, the algorithm continues by induction
on the genus g of S (or the Euler genus g of S if S is nonorientable). Recursively, we
have either found an embedding in a surface of (Euler) genus smaller than g (in which
case we stop), or we got a 2-connected subgraph K of G that cannot be embedded in
any surface with (Euler) genus smaller than g. By the induction hypothesis (or by the
above construction if g = 0), bsize(K) is bounded. Therefore, K has only a bounded
number of embeddings in S (and each of them is 2-cell). Existence of an embedding
of G in S is thus equivalent to the existence of an EE with respect to a bounded
number of EEPs corresponding to particular embeddings of K in S. By solving all
these problems (and successively performing compressions, if necessary, and taking
care that vertices of attachment of bridges in previously obtained obstructions are
not changed during later compressions), we either get an embedding of G in S, or
the union of obstructions for the EEPs gives a subgraph K̃ of bounded branch size
that cannot be embedded in S. If we will use K̃ in further processing, we just make
sure that there are no local K̃-bridges. This can be done in the same way as in the
construction of the initial subgraph K.

It remains to see how we solve an EEP Ξ = (G,K,Π,∆) where ∆ contains all
embedding schemes that are possible under the given embedding Π of K in the surface
S. Let us first verify that no edge of K appears on a Π-facial walk F traversed twice
in the same direction. This is clear if S is orientable. If S is nonorientable, changing
the signature on such an edge would change Π into an embedding with the same facial
walks except that F splits into two facial walks. This contradicts the fact that Π is
an embedding of K with minimal Euler genus.

We will construct a sequence of graphs K0,K1, . . . such that K0 = K and Ki+1 is
obtained (after a compression) from Ki by adding an obstruction for simple embedding
extensions. Let us describe the construction of Ki+1 (i = 0, 1, 2, . . .) in more details.
First of all, we replace each Ki-bridge in G by its E-graph. This can be done in
linear time by Theorem 3.2. By using Corollary 5.5, we get in linear time the set Bi

of Ki-bridges in a compressed obstruction for simple embedding extensions of Ki to
G, taken over all EEs of Π to Ki. Of course, having found an EE, we stop and by
Theorem 3.2 we also get an EE of K0 to G. Assuming that no EE has been found,
and assuming inductively that the branch size of Ki is bounded, also bsizeKi(Bi) is
bounded (Corollary 5.5). We now define Ki+1 = Ki ∪ Bi and observe that there are
no Ki+1-bridges that are local on a branch of Ki+1 contained in Ki. On the other
hand, bridges that are local on branches from Bi can be eliminated by the algorithm
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Bj,1 Bj,0

x1

x1

x2

x2

Fig. 3. Bj,1 does not increase q

from [17] similarly as at the very beginning of our algorithm. After doing that, we
stop if Ki+1 = G or if Ki+1 has no embeddings in S.

Note that for each i, Bi �= ∅ (or we stop with an embedding). Therefore, the
above process terminates after a finite number of steps. We claim that the num-
ber of steps cannot be too large. Let B1, . . . , Bk be the K0-bridges in Ki (i ≥ 1).
(When constructing Ki, we may have used a compression and thus have changed
Ki−1,Ki−2, . . . ,K0. But a compression is a graph homeomorphism which is identity
on the neighborhoods of main vertices of Ki−1, and hence we can also view K0,K1, . . .
as being subgraphs of the changed graph Ki−1.) Since B0, . . . ,Bi−1 always consist
of E-graphs with respect to K0, . . . ,Ki−1, respectively, each Bj (1 ≤ j ≤ k) can be
written as Bj = Bj,0 ∪ Bj,1 ∪ · · · ∪ Bj,i−1 where Bj,l = Bj ∩ Bl, l = 0, . . . , i− 1. Let
us consider an embedding Πi of Ki in S as an EE of the embedding Π of K0. Then
an E-graph in some Bj,0 is nonsimply embedded. This implies that Bj is attached to
at least three appearances of basic pieces of K0. Consider the sum

k∑

r=1

(q(Br) − 2)(6)

where q(Br) is defined in Lemma 3.1. Now, q(Bj) contributes at least 1 to (6). Let us
now consider the induced embedding of Πi to K2 as an extension of the embedding of
K1. Since B1 ⊆ K2 is an obstruction for simple extensions of K1, there is an E-graph
B in some Bj,1 that is not simply embedded. We claim that we can choose B such
that q(Bj,0 ∪Bj,1) ≥ q(Bj,0 ∪B) > q(Bj,0) (in all three cases viewed as K0-bridges).
If this is not the case, then B is attached only to Bj,0 and to the same appearances of
basic pieces of K0 as Bj,0. No basic piece in Bj,0\K0 is singular under the considered
embedding of K1. Hence Bj,1 is attached to two appearances of a basic piece x′ of
K1, and if x ⊇ x′ is the basic piece of K0 containing x′, then Bj,0 is attached to the
corresponding appearances of x. Since Bj,0 is an E-graph of a K0-bridge, it contains
feet at extreme attachments x1, x2 of Bj on x. We have shown above that no edge
of K0 appears on a Π-facial walk twice in the same direction. It follows that the
embedding of B ⊆ Bj,1 is as shown in Figure 3 and that x′ is an extreme attachment
of Bj , say x′ = x1. However, this embedding can easily be changed so that B is not
attached to the upper occurrence of x1 (say), without affecting possible embeddings
of other bridges from B1. After doing the same with other candidates for B, we get
a contradiction with B1 being an obstruction for simple embeddings.

The same proof can be carried further, for embeddings of K3,K4, etc. We con-
clude that the sum (6) is at least i. Now, Lemma 3.1 implies that i ≤ 4 bsize(K0).
The proof is complete.
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[17] M. Juvan, J. Marinček, B. Mohar, Elimination of local bridges, Math. Slovaca 47
(1997) 85–92.

[18] , , , Obstructions for simple embeddings, submitted.

[19] , , , Embedding a graph into the torus in linear time, submitted.

[20] M. Juvan, B. Mohar, Extending 2-restricted partial embeddings of graphs, submitted.

[21] A. Karabeg, Classification and detection of obstructions to planarity, Lin. Multilin.
Algebra 26 (1990) 15–38.

[22] B. Mohar, Projective planarity in linear time, J. Algorithms 15 (1993) 482–502.

[23] , Obstructions for the disk and the cylinder embedding extension problems, Com-
bin. Probab. Comput. 3 (1994) 375–406.

[24] , Universal obstructions for embedding extension problems, submitted.

[25] , C. Thomassen, Graphs on Surfaces, Johns Hopkins Univ. Press, to appear.

[26] G. Ringel, The combinatorial map color theorem, J. Graph Theory 1 (1977) 141–155.

[27] N. Robertson, P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for gen-
eral surfaces, J. Combin. Theory, Ser. B 48 (1990) 255–288.

[28] , , Graph minors. XIII. The disjoint paths problem, J. Combin. Theory,



EMBEDDING GRAPHS IN AN ARBITRARY SURFACE 21

Ser. B 63 (1995) 65–110.

[29] , , Graph minors. XXI. Graphs with unique linkages, preprint, 1992.

[30] , , Graph minors. XXII. Irrelevant vertices in linkage problems, preprint,
1992.

[31] , , An outline of a disjoint paths algorithm, in: “Paths, Flows, and VLSI-
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