REPORT OF THE 2017 MEDITS COORDINATION MEETING

(Nicosia, Cyprus, 5-6 April 2017)

1. Opening, adoption of agenda and meeting arrangements

The Meeting was held at Cleopatra Hotel in Nicosia from 5-6 April, 2017. Ioannis Thasitis from the Department of Fisheries and Marine Research (DFMR) of the Ministry of Agriculture of the Republic of Cyprus opened the meeting welcoming the participants ("the Group") and provided information on practicalities. George Tserpes on behalf of the Group, thanked DFMR for hosting the meeting and highlighted the importance of the work to be developed by the Group during the meeting, aiming to facilitate collaboration among MEDITS scientists for the provision of updated information on the abundance trends of demersal stocks in the Mediterranean, as well as on the state of the marine ecosystem in terms of species composition and distribution patterns. Mr George Tserpes, meeting Chairperson, proceeded to review the Agenda, which was adopted (**Appendix 1**). The List of Participants is included in **Appendix 2**. The submitted Documents and Presentations are attached in **Appendixes 3** and **4** respectively.

2. Feedback from 2016 activities

2.1 Previous coordination meeting

The Group reviewed and adopted the report of the 2016 coordination meeting which will become publicly available at the project web-site.

2.2 Relevant meetings and workshops

Maria-Teresa Spedicato recalled the conclusions and recommendations of the MEDITS Coordination meeting held in Sliema (Malta) in 2016 and summarized information from the RCMMed&BS meeting, as well as, from relevant STECF-EWG, GFCM, and ICES groups.

2.3 Review of the 2016 MEDITS surveys

Participants presented briefly the activities accomplished during the 2016 MEDITS surveys in each country/GSA with special focus on problems encountered, extraordinary findings and future planning. In general, the survey was implemented without particular problems in all areas, following the agreed protocol. The main points by GSA are summarized below, while further details and presentations are included in Appendix 3.

Cristina Garcia presented information about the surveys realized in **GSAs 1, 2, 5 and 6** by Spanish scientists. The Spanish MEDITS survey was carried out from 23 April to 21 June (60 days), on board R/V Miguel Oliver. A total of 666 species or taxa (212 fishes, 115 crustaceans, 1118 molluscs and 221 other invertebrates and algae) were identified, counted and weighted. SCANMAR was used in all hauls. The CTD SeaBird-37 was also used in all the hauls attached to the flotsam. The total number of individuals of species captured was 1677341, weighing 22552 kg. The number of individuals measured in length was 160664 and the number of biological sampling made was 28276 individuals. A total of 2572 samples of hard tissues for age estimations were taken. In 2017, the Spanish MEDITS survey is planned from 23 April to 21 June on board R/V Miguel Oliver.

Angelique Jadaud presented information about the surveys realized in GSAs 7 and 8. The surveys were conducted from the 20th May until the 26th of June. All predefined hauls were performed (23 in GSA 8-Eastern Corsica and 65 in GSA 7-Gulf of Lions, with one of the 65 hauls being invalid because of tears on the net). The openings of the net were measured using the MAREPORT system, at all hauls and the bottom temperature and salinity were recorded using an Oddistar CTD. The temperature oscillated around 13 and 15 °C and the salinity between 35.7 and 39.3. Macro litters were collected, weighted and counted by subcategory and mostly plastics were analyzed. In GSAs 7 and 8 jointly, 392 taxa were identified with 12 new species. In GSAs 7 and 8, 60 taxa (G1 and G2 species) and 51 taxa were respectively measured. Considering sex and maturity 20 taxa (GSA7) and 26 taxa (GSA 8) were sampled (G1 species). Hard tissues for ageing, were collected for 5 species: Mullus barbatus, M. surmuletus, Lophius budegassa, L. piscatorius and M. Merluccius and additional work was carried out for the needs of different projects: Raja clavata samples were collected for population genomics (Pascal Lorance); macroscopic photos of hake and red mullet gonads (gonad in the body and separately) were taken for the needs of the MEDITS maturity stages working group (C. Follesa). Furthermore, sampling was accomplished for the needs of the Marine Strategy Framework Directive (MSFD): characterization of abundance of zooplankton taxa by means of WP2 at10 stations in the Gulf of Lions and 8 stations in the Eastern Corsica (different depths strata); determination of jelly fish. In 2017, the survey will be conducted from the 23rd of May until the 26th June. It will include some sampling activities for the needs of the MSFD (WP2, CTD, contaminants, stomachs contents and isotops).

Mario Sbrana presented information about the survey in **GSA 9** covering the Ligurian and North Central Tyrrhenian Sea. The survey was carried out from May 21st to June 16th using a new vessel (commercial trawler), named S. ANNA. This vessel has been already is used for several years for the MEDITS in GSA 16. An inter-calibration survey with the vessel LIBERA, which was used in the previous surveys in GSA 9, was carried out. Statistically rigorous approach for estimating catchability differences between the two vessels was applied. Biomass indices obtained in the paired hauls performed during the inter-calibration survey were analysed through Negative Binomial GLMM (Generalized Linear Mixed Model). The results obtained showed that there are no significant differences in the biomass indices for the main species and group of species estimated using the two different vessels. Net sensors and CTD probe were used in the majority of

the hauls. The collected marine litters were classified according to the MEDITS Protocol. A total of 281 species (123 bony fishe, 16 elasmobranch, 50 crustacean, 27 cephalopod and 65 other invertebrates and algae) were identified, counted and weighted. Historical abundance and biomass trends for the most important species were presented to the group. No significant trends were observed for *Mullus surmuletus*, *Aristomorpha foliacea*, *Aristeus antennatus*, *Nephrops norvegicus*, *Illex coindetii* and *Loligo vulgaris*. Positive trends were noted for *Galeus melastomus* (in density only), *Scyliorhynus canicula*, *Mullus barbatus* which has high peaks of indices in the years when surveys were conducted later, and *Parapenaeus longirostris*. A significant negative trend was observed for *Melluccius merluccius* biomass only. Concerning the mean size of the specimens, during the MEDITS time series, a negative trend was only detected in the case of *N. norvegicus* and *P. longirostris*. At present it is not possible to define the dates for the 2017 survey, as the call for the implementation of the DCF Italian National Program is still pending.

Pierluigi Carbonara presented the survey in **GSA10**. The vessel utilized was "Pasquale e Cristina" (PEC), as in previous years. The survey started at 29.06.2016 but it was interrupted at 01.07.2016 due to technical problems of the vessel and continued from 28.08.2016 to 10.09.2016. The number of valid hauls performed was 70 as planned. The hauls carried out in the first stage were considered not valid and thus were repeated in the second stage. A total of 266 species belonging in 16 faunistic categories were identified: 16 species of Elasmobranchs, 116 species of Osteichthyes, 43 species of Crustaceans, 29 species of Cephalopods, 2 species of Mollusca Bivalvia, 11 species of Mollusca Gastropoda, 7 species of Tunicata, 1 species of Brachiopoda, 2 species of Bryozoa, 10 species of Cnidaria, 18 species of Echinoderms, 4 species of Opistobranchia, 4 species of Polychaeta, 1 species of Scaphopoda, 1 species of Sipunculida, 1 species of Porifera. The total number of classified individuals of the MEDITS reference list was 142843. Length measurements were taken from 38999 individuals, while the total number of sampled individuals for sex and maturity was 13103. The number of samples of hard tissues (otoliths) collected for ageing, by target species, was: *M. merluccius* 321, *M. barbatus* 535 and *M. surmuletus* 16. Genetic samples of *Raja clavata* were collected for common relevant projects. At present it is not possible to define the dates for the 2017 survey, as the call for the implementation of the DCF Italian National Program is still pending.

Cristina Follesa presented information about the survey in **GSA 11.** The survey was carried out between 07th June and the 01th July 2016, in 18 working days. The vessel used was the GISELLA (GIS), the same vessel used since 2004. Since 2015 a new MEDITS net was used, and before the survey 2016 a check was done, to verify if the measurements of all parts were coincident with those reported in the MEDITS manual. The number of valid hauls performed was 99 (with an average 5.6 hauls by day), in the same location of previous years. Two hauls, at depth 0-50 m, resulted invalid in zone 3 (Gulf of asinara) and 7 (Gulf of Cagliari) for the presence in the area of nets. Horizontal and vertical net opening were measured using the SIMRAD. It worked for 98% of the valid hauls (95 hauls out of 99). Temperature was measured in all valid

hauls. Litter was recorded in 56 hauls out of 99 valid hauls (56,5%). Plastic (L1, N° 348, 65.8 kg) resulted the most common litter found in Sardinian waters (found in 54% of valid hauls) followed by Cloth (textil)/Natural fibres (L5, N° 12, 4.4 kg, found in 14% of valid hauls); Metal (L3, N° 10, 0.36 kg, 10% of valid hauls). Few litter was found in Eastern Sardinia (Zone 1), while the South-Western Sardinia (Zone 6) resulted, as the previous years, the area with higher quantity. A total of 257 species belonging in 15 faunistic categories were identified: 22 species of Elasmobranchs, 108 species of Osteichthyes, 35 species of Crustaceans, 25 species of Cephalopods, 2 species of Mollusca Bivalvia, 2 species of Mollusca Gastropoda, 2 species of Opistobranchia, 8 species of Tunicata, 1 species of Brachiopoda, 1 species of Bryozoa, 7 species of Cnidaria, 23 species of Echinoderms, 1 species of Polychaeta, 14 species of Porifera, 6 species of Vegetalia. The total number of classified individuals of the MEDITS reference list was 141716. Length measurements were taken from 25750 individuals, while 14395 individuals were sampled for sex and maturity stage. The number of samples of hard tissues (otoliths) collected for ageing, by target species, were: M. merluccius 436, M. barbatus 504 and M. surmuletus 99. At present it is not possible to define the dates for the 2017 survey, as the call for the implementation of the DCF Italian National Program is still pending.

Reno Mikallef presented information about the survey in **GSA 15**. This was conducted from 22nd August to 04th September using the Maltese commercial vessel, DEGRE (MFA 0081). All 45 hauls were conducted successfully following the MEDITS protocol (v.7). Marine litter was also recorded during this survey and a large part of this consisted of limestone slabs used in FADs fisheries. A total of 135 species were recorded in GSA 15 and length measurements were taken for 11,294 specimens. Besides samples for age analysis were collected and processed. The data were entered into AtRis database and checked with the RoME routine. Historical abundance and biomass trends for some commercially important species were presented to the group. Those included *Merluccius merluccius*, *Mullus* sp., *Parapenaeus longirostris* and *Aristaemorpha foliacea*. In 2016 there was an increase in the abundances of *M. merluccius*, *P. longirostris*, and A. *foliacea* whilst *Mullus sp* showed decreasing trends. Regarding the 2017 MEDITS, it will be conducted in July-August using the same vessel.

Germana Garofalo presented information about the survey in **GSA 16** covering the northern part of the Strait of Sicily. The survey was carried out from July 6th to August 5th using the commercial trawler S. Anna, the vessel used since 1994. A total of 120 valid hauls were performed as planned. Measures of vertical and horizontal net opening were recorded by SIMRAD instrument. Information on the amount and composition of marine litter was collected according to the MEDITS protocol. Plastic resulted the most abundant category (62%) followed by Metal (15%). Six new species of macrobenthos were recorded for the first time in the GSA16, three of which were not present in the MEDITS reference list. Otoliths were taken from 1280

specimens of *Merluccius merluccius*, 983 of *Mullus barbatus* and 148 of *Mullus surmuletus*. Within the framework of ancillary projects, a total of 116 cartilaginous fish were tagged.

Historical abundance and biomass trends for the most important species were presented. Significant positive trends of both biomass and abundance were observed for *Mullus barbatus*, *Raja clavata* and *Galues melastomus*. A significant positive trend of abundance was also observed for *Merluccius merluccius* while the trend was negative for *Aristomorpha foliacea*. The dates for the 2017 survey are subject to the timing of the call for tenders for the implementation of the Italian national DCF program.

Igor Isailovic presented information about the survey performed in GSA17. The survey was jointly performed by the Laboratory of Marine Biology and Fishery of Fano (Italy), Institute of Oceanography and Fisheries of Split (IOF, Croatia) and the Fishery Research Institute of Slovenia. The survey in GSA 17 took place from 3rd of July to the 12th of September on a board of two research vessels. M/V ANDREA operated in Italian territorial waters, Slovenian territorial waters and in the extraterritorial water from 16th August 2016 to 12th September 2016, while M/V BIOS DVA performed the survey in Croatian territorial waters from the 4rd of July to 22th of July 2016. In total 236 valid hauls were made in Italian (180 hauls), Croatian (56 hauls) and Slovenian waters (2 hauls). Bottom water temperature was measured using Star-Oddi temperature sensors in total of 150 hauls. Marine Litter was collected on a board of BIOS DVA. Biological sampling in GSA 17 was performed according to MEDITS 2013 protocol with minor difficulties in the application of the new protocol. In the western area (Italy and international waters) a total number of 238 taxa were identified, subdivided as follows: Osteichthyes 96 species plus 1 taxon at genus level; Elasmobranchs 11 species plus 2 taxa at genus level, Crustaceans 21 species plus 3 taxa at genus level; Cephalopods 17 species plus 3 taxa at genus level, and 84 taxa belonging to other Faunistic categories. In the eastern area (Croatia), a total number of 335 taxa were identified, subdivided as follows: Osteichthyes 84 species plus 1 taxon at genus level; Elasmobranchs 11 species, Crustaceans 11; Cephalopods 19 species plus 2 taxa at genus level, and 211 taxa belonging to other Faunistic categories. The total number of individuals sampled for individual length and weight was 70960 in the Italian side and 24169 in the Croatian side. The total number of sampled individuals for sex and maturity was 24588 in the Italian side and 8949 in the Croatian side. A total of 820 samples of hard tissues for age estimations were collected for M. merluccius, M. barbatus and M. surmuletus in the Italian side, while a total number of 616 samples of hard tissues were collected for M. merluccius, M. barbatus, T. trachurus and T. mediterraneus in the Croatian side. Historical abundance and biomass trend for some species were presented to the group. Positive trends were observed for Mullus barbatus and Parapenaeus longirostris while Lophius budegassa showed decreasing trend. No significant trends were observed for Merluccius merluccius and Raja clavata. Regarding the MEDITS 2017, the survey is planned for end of June – begging of the July of 2017 in the Croatian side using the same vessel M/V BIOS, while is not possible to define the dates for the survey in the Italian side due to administrative problems.

Giuseppe Lembo presented information about the survey in **GSA 18**. The survey was carried out from 29.07.2016 to 25.08.2016 using the vessel Pasquale & Cristina (PEC), as in previous years. The number of hauls performed was 90, as planned. The survey was carried out with some delay given to technical problems of the survey vessel. A total of 321 species belonging in 15 faunistic categories were identified: 18 species of Elasmobranchs, 123 species of Osteichthyes, 52 species of Crustaceans, 27 species of Cephalopods, 10 species of Mollusca Bivalvia, 11 species of Mollusca Gastropoda, 8 species of Opistobranchia, 15 species of Tunicata, 1 species of Brachiopoda, 5 species of Bryozoa, 17 species of Cnidaria, 28 species of Echinoderms, 1 species of Hirudinea, 1 species of Polychaeta, 4 species of Porifera. The total number of classified individuals of the MEDITS reference list was 159793. Length measurements were taken from 89554 individuals, while 22918 individuals were sampled for sex and maturity stage. was (Table 1.2). The number of samples of hard tissues (otoliths) collected for ageing, by target species, were: *M. merluccius* 441, *M. barbatus* 617 and *M. surmuletus* 64. Genetic samples of *Raja clavata* were collected for common relevant projects. At present it is not possible to define the dates for the 2017 survey, as the call for the implementation of the DCF Italian National Program is still pending.

Porzia Maiorano presented information about the survey in GSA 19. In 2016, the MEDITS survey in the North-western Ionian Sea (GSA 19) took place from 15th to 18th June 2016 (14 days) on board the vessel Pasquale e Cristina (PEC; UE number 19238). The study area is between Cape Otranto (40° 06' N - 18° 31' E) and Cape Passero (36° 41' N – 15° 10' E). A total of 70 hauls was performed by the team of the Department of Biology of University of Bari, following the MEDITS protocol. No particular problems occurred during the survey. The SIMRAD system has been adopted for the trawl geometry monitoring. Excluding the hauls that were expected to be critical, the Simrad system was used throughout the area in 55 hauls (79%) and the relationships between horizontal opening vs depth was as well as between bottom temperature and depth were computed. A total of 215 species of the main faunistic categories were identified, counted and weighed: 26 Cephalopoda, 50 Crustacea Decapoda, 3 Crustacea Stomatopoda, 14 Chondrichthyes, and 122 Osteichthyes. Moreover, 85 species of other invertebrates and vegetables, belonging to 12 taxa were recorded: 3 Vegetalia, 10 Porifera, 11 Cnidaria, 10 Mollusca Bivalvia, 10 Mollusca Gastropoda, 6 Mollusca Opistobranchia, 2 Bryozoa, 3 Annelida Polychaeta, 1 Crustacea Cirripeda, 1 Sipunculida, 5 Tunicata, and 26 Echinodermata. The total number of sampled individuals for length distributions was 70170. The total number of sampled individuals for sex and maturity was 25240. The number of samples of hard tissues collected (and read) for age estimations from the target species was as follows: 405 (229 read) for M. merluccius, 648 (464 read) for M. barbatus and 82 (82 read) for M. surmuletus. The samples were collected by sex and size according to the protocol. No particular difficulties were encountered in the application of the protocol. The marine litter was recorded and weighed in each haul according to the MEDITS protocol. It is difficult to define the dates for the 2017 survey so far, as the call for the implementation of the DCF

Italian National Program is still pending.

Evgenia Lefkaditou presented information about the survey in GSA 20. The survey was carried out from 6 to 26 of July including 43 valid hauls. In most hauls, CTD and Minilog were used for depth, temperature and salinity recording, whereas through a SCANMAR system the trawl net openings were measured. A total of 233 taxa (19 chondrichthyes, 97 osteichthyes, 27 crustaceans, 22 cephalopods, 9 bivalves, 10 gastropods, 22 echinoderms, 8 ascidians, 8 cnidarians and 11 other invertebrates) were identified, counted and weighted. Considering sex and maturity 31 taxa were sampled, including 30 MEDITS G1 species and Todaropsis eblanae, for which a further investigation on its size at maturity has been planned, as a decrease in ML50 has been observed from 2008 to 2014). Otoliths from 719 fish specimens (205 Merluccius merluccius, 493 Mullus barbatus, 21 Mullus surmuletus) were collected. Tissue samples and additional measurements of Raja clavata were collected for a study of IFREMER on connectivity of the species populations in the Mediterranean Sea. Litter items were collected, weighted and counted by sub-category. For the 2017 survey an enlargement of the surveyed area towards the southern Ionian Sea was proposed, since the MEDITS sub-area 223 (as considered in 1994-1996 based on known trawlable fishing grounds in the eastern Ionian), was limited to the Northern part of GSA 20 (N: 37o 28.71'- 39 o 14.12'). The GSA 20, that is considered since 2007 as the MEDITS sub-area, extends in latitude from 350 N - 390 58' N, supporting important stocks of the deep sea red shrimps A. foliacea and A. antennatus particularly in its southern part as revealed by specific trawl surveys conducted on the eastern Ionian slope in 1999-2001. The dates of the 2017 survey cannot be defined, as the DCF Greek Program for this year is not yetrealized.

Panagiota Peristeraki presented information about the surveys in **GSAs 22 and 23**. Two commercial fishing boats were hired for the survey, one for the S. Aegean and Cretan Seas and one for the N. Aegean Sea. The scientific team of HCMR (Crete) was responsible for the sampling in GSA 23 and S. Aegean (part of GSA 22) and the scientific team of FRI (Kavala) was responsible for the survey in N. Aegean (part of GSA 22). FRI realized the MEDITS Survey in N. Aegean from 5/7/2016 to 8/8/2016, with an interruption between 19-26/7/2016 due to technical problems of the boat. Sixty three stations were sampled and 180 species were recorded. Otoliths from 568 specimens were collected (269 *Merluccius merluccius*, 118 *Mullus surmuletus*, 181 *Mullus barbatus*). CTD was used for depth, temperature and salinity recording. HCMR (Crete) realized the MEDITS Survey in S. Aegean and Cretan Seas from 19/7/2016 to 18/8/2016. Sixty hauls were accomplished and 170 species were recorded. Otoliths were taken from 1398 specimens (292 Merluccius merluccius, 278 *Mullus surmuletus*, 828 *Mullus barbatus*). STAR-ODDI sensors were used for depth and temperature recording. The dates of the 2017 survey cannot be defined, as the DCF Greek Program for this year is not still realized

Ioannis Thasitis, from DFRM presented the MEDITS results for the GSA 25 in 2016. During the survey all 26 programmed stations were sampled from 13 to 24 of June on board of vessel MEGALOCHARI. As every year

the gear was measured and checked according to the MEDITS protocol prior to the survey. Corrections and fixes were implemented were needed. Trawl geometry was monitored successfully with Simrad ITI system in all hauls. At the end of each haul CTD probes and bongo nets were used for environmental parameters monitoring and icthyoplankton sampling. All organisms that came on board were sampled and otoliths of G1 species were collected. Marine litter protocol was also implemented for a third subsequent year. For the next year 2017 the survey is planed for mid of June (5 – 18). Additional sampling will include megabenthos.

Finally, information about demersal surveys along the Romanian Black Sea Coast was provided to the Group through a report submitted by Valodia Maximov. The report is included in Appendix 3.

3. Other relevant activities and on going projects

Angelique Jadaud summarized the conclusions of a WG formed in IFREMER to propose the strategy for the Mediterranean IFREMER Surveys (MEDITS and PELMED/MEDIAS) in the coming years (the detailed report is attached in Appendix 4.) The working group considered the requirements related to the Common Fisheries Policy, the EU strategy for the marine environment (Marine Strategy Framework Directive), as well as various national needs. Three different scenarios were examined: Optimization, reduction and adding a demersal survey in autumn/winter (quarter 4). The conclusion of the IFREMER WG was that the feasibility of the different scenarios will depend on DCMAP requirements; currently annual data by GSA are required. The Group recommended to continue the annual surveys in all GSAs without changing the sampling time and sampling scheme in order to secure the consistency of the results. This point should be presented at the RCM-MED.

Angelique Jadaud summarized the conclusions (more details are provided in Appendix 4) of a WG formed in IFREMER to propose common approaches and harmonized activities for the computation of indicators belonging to the four Criteria defined in MSFD for assessing the GES in different GSAs. The Group recommended the collaboration of all MEDITS scientists in the relevant activities.

Angelique Jadaud provided information about the GenoPopTaille project aiming to the analysis of the populations structure, connectivity and genetic diversity of the thornback ray in the Altantic and Mediteranean Sea, using high throughput sequencing techniques (RADseq). The method relies on the principle of capture-mark-recapture (CMR) which is well tested using physical tags. Instead of physical tags, the project intends to use the genetic fingerprint of adults and recapture via their offsprings. Parent-offspring pairs will be identified by genotyping a large sample of adults and juveniles, which is now possible

owing to rapid progress of high-throughput genotyping. The MEDITS surveys will contribute to the project by providing samples from different areas.

Angelique Jadaud informed the Group about a study in the Gulf of Lions, including the analysis of various environmental descriptors of sediments, currents, hydrology and food availability in order to produce a risk map of the benthic sensitivity to trawling. In parallel, a trawl disturbance index was produced on the basis of *in situ* observations of the macro-benthic fauna, to illustrate the distribution of sensitive assemblages. This work had shown that the distribution of vulnerable benthic species in the Gulf of Lions was not always coherent with their environmental preferences but could be also linked to their vulnerability to trawling. Most sensitive bentic species were generally found in areas where fishing effort was low, which could reflect the fact that fishery has impacted and restructured seabeds some time ago. It would be interesting to use MEDITS data on benthic invertebrates to examine this question in other areas too.

Angelique Jadaud informed the Group about a proposal that was submitted to an Intereg call aiming to develop a framework for improving management coherence and efficiency and decrease conflict in natural marine sites. The goal of the project (SoMarNet) is to provide knowledge usable by multiple stakeholders enabling them to support or challenge (currently implemented and future) spatial planning and management decisions in an integrated framework between the Mediterranean and the Atlantic. If the project is accepted, it will bring together researchers and stakeholders with multi-disciplinary and complementary expertise which are essential to accomplish project's objectives. The project will be heavily based on survey data (DATRAS and MEDITS) and will communicate results through website, geoportals and public meetings.

Bastien Merigot presented, on behalf of Manuel Hidalgo, the update of his work developed under the framework of ICES WG COMEDA 'Working group on comparative analyses between European Atlantic and Mediterranean Ecosystems to move towards an Ecosystem-based Approach to Fisheries', which is a consolidated collaborative platform of research with scientists from the Atlantic and Mediterranean working at different levels from population, through community to ecosystem level, and has started its second three-years cycle (2017-2019) with the next meeting from 24-28 April 2017 in Lisbon (Portugal). During the talk, Bastien presented an update on the work on 'Fish community stability: A large scale Atlantic-Mediterranean comparison using a Portfolio Effect (PE) approach' showing the final analyses on the two response variables of the study: synchrony and PE estimates. Results showed a global effect of the spatial heterogeneity of chlorophyll a and anthropogenic impact on synchrony, while average values of chlorophyll a the range of bottom temperature affect PE. The interaction of these effects with life history traits was assessed by portioning these effects under different levels (low, medium and high) of three life history traits (growth rate, length at maturity, trophic level).

George Tserpes informed the Group about a request from IUCN for providing information regarding the presence of *Squatina* sp in the surveyed GSAs. The Group agreed to review the survey data and provide the requested information.

A presentation prepared by GFCM Secretariat was made by Charis Charilaou concerning the implementation of demersal surveys in the context of the GFCM mid-term (2017-2020) strategy. This strategy towards the sustainability of Mediterranean and Black Sea fisheries is the fruit of the commitment of GFCM contracting parties, cooperating non-contracting parties (CPCs) who adopted it to improve, by 2020, the sustainability of Mediterranean and Black Sea fisheries and ensure that the alarming trend in the status of commercially exploited stocks is reversed. The strategy is based on specific actions under five complementary targets, namely: (1) Reverse the declining trend of fish stocks through strengthened scientific advice in support of management; (2) Support livelihoods for coastal communities through sustainable small-scale fisheries; (3) Curb illegal unreported and unregulated (IUU) fishing, through a regional plan of action; (4) Minimize and mitigate unwanted interactions between fisheries and marine ecosystems and environment, and (5) Enhance capacity-building and cooperation with relevant partners. Under the activities related with Target 1, Output 1.1 "Enhanced knowledge and expertise on Mediterranean and Black Sea fisheries" is the implementation of surveys, both acoustic pelagic and demersal trawl ones. The motivation for establishing pan Mediterranean and Black Sea demersal trawl surveys lies in the fact that comprehensive biological studies of the biological status of most of the demersal fish stocks in some Mediterranean areas are still lacking. To target this issue, the GFCM wishes to promote such studies and one way of doing so is establish international surveys (in not covered areas) exploring the main demersal stocks. It is expected that the collection and shared analysis of appropriate surveys data (the current MEDITS and any new demersal surveys which will be implemented during the mid-term strategy) will allow to formulate scientifically based advice for improved conservation of the stocks. New demersal surveys should be carried out during the spring-summer period with homogeneous methodology and operational protocols among participants. A simplified version of the MEDITS-Handbook, 2016 will be used as reference. Data collected under existing and new surveys will be included in the GFCM DCRF and will be used for evaluating the status of the Mediterranean and Black Sea fisheries in 2018.

A coordination meeting for the implementation of scientific surveys in the Mediterranean will take place in Ljubljana on 15 May 2017, during which the protocols and the roadmap will be discussed. The Group welcomed the initiative and agreed to provide expertise in order to facilitate the realization of the new surveys. The presentation is included in Appendix 4.

Pierluigi Carbonara outlined the plan for the development of a standardized ageing protocol for *M*. *barbatus*, illustrating the data needs . The Group agreed to collaborate on this activity.

4. MEDITS Monograph

Maria Teresa Spedicato summarized the updated list of papers that will be included in the special MEDITS volume of Scientia Marina and a series of short presentations were made by the authors describing the objectives and progress of the different papers. The Group discussed about the time frame for the submission of the final manuscripts to the guest editors of the special volume (Maria-Teresa Spedicato, Enric Massuti, Bastien Merigot, George Tserpes) and it was agreed that they should be sent by the end of the year.

5. Other matters

The Group was informed that the TM list was updated and it is going to be available on the web-site of MEDITS hosted by the Italian Society for Marine Biology (www.sibm.it). It was agreed that Prof. Giulio Relini will continue to chair the TM list group.

The next MEDITS coordination meeting will be held in Split, Croatia and will be hosted by the Institute of Oceanography and Fisheries.

6. Meeting closure

The Chairman thanked the hosts for their hospitality and the participants for their work during the meeting. The meeting was then adjourned.

APPENDIX 1 - Meeting Agenda

MEDITS 2017 **MEDITS** Draft agenda Nicosia (Cyprus), 5-6 April 2017

2017 MEDITS Coordination Meeting Agenda

The meeting will start at 09.00 of April 5, 2017 and will end on April 6 (~17.00) Meeting place: Nicosia, CYPRUS, *Hotel Cleopatra*, *Vergina Room*

Wednesday 5th April 2017 (09.00-13.00)

09.00-09.30

- Welcome of the participants
- Approval of the agenda

09.30-11.00

- 1. Conclusions of the previous Coordination meeting
- 2. Feedback from other relevant meetings and workgroups (RCMMed&BS, STECFEWG, GFCM, ICES, etc)
- 3. Concise presentations (max 10 min) of the activities in the 2016 MEDITS surveys, by country/GSA, with special focus on problems, future planning, and extraordinary findings.

11.00-11.20 Coffee break

11.20-13.00

Continue on point 3.

13.00-14.30 Lunch break

14.30-15.15

Continue on point 3. Discussion

15.15-16.00

- 4. Other relevant acitivities and on going projects
 - a. Synthesis of the conclusions of the working group on French fisheries surveys in Mediterranean sea. *Angelique Jadaud*
 - b. Moving towards the Marine Strategy Framework Directive : Case studies from the Mediterranean Sea. *Anik Brin D' Amour*
 - c. Benthic habitat sensitivity: process-driven vs functional approaches. Sandrine Vaz
 - d. SW Europe Marine Network (SoMarNet): Improving management efficiency of SW Europe seas through integrated assessment of marine networks. *Sandrine Vaz*
 - e. Request from IUCN on the presence of Squatina species. Gabriel Morey

16.00-16.20 Coffee break

16.20-17.30

5. MEDITS Monograph: state of play. Short presentations (max 15 min for each subject) focusing on the progress made, potential problems, and timeframe for finalizing the publication. Summarized results (if available) may be also illustrated.

Social Dinner (Mezostrati Tavern) Thursday 6th April 2015 (09.00-17.00)

09.00-11.00

Continue on point 5

11.00-11.20 Coffee Break

Continue on point 5

11.20-13.00

Continue on point 5

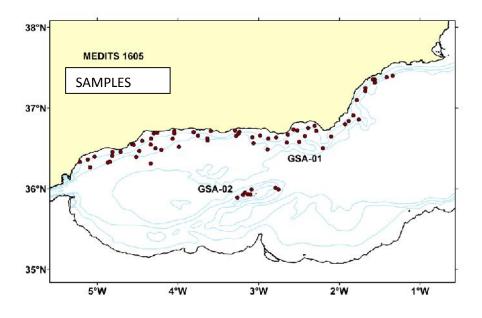
13.00-14.30 Lunch break

14.30-16.00

Continue on point 5 (Discussion on the overall progress and setting of deadlines)

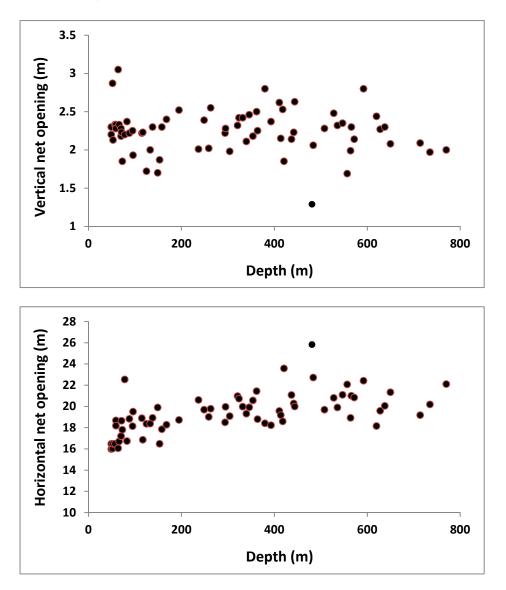
16.00-17.00

- 6. Planning of activities for the next twelve months, including venue and dates of the next meeting
- 7. Any Other Business and meeting closure


N.	Surname	Name	Affiliation	e-mail
1	GARCIA	Cristina	IEO, Malaga, Spain	Cristina.garcia@ma.ieo.es
2	SANTOS	Begona	IEO, Vigo, Spain	Anik.Brindamour@ifremer.fr
3	CARBONARA	Pierluigi	COISPA, Italy	<u>carbonara@coispa.it</u>
4	CHARILAOU	Charis	DFMR, Cyprus	Ccharilaou@dfmr.moa.gov.cy
5	SION	Letizia	UNIBA, Italy	Letizia.sion@uniba.it
6	Follesa	Maria Cristina	Dipartimento di Scienze della Vita e dell'Ambiente, Cagliari University, Italy	follesac@unica.it
7	KIPARISSIS	Sotiris	FRI, Greece	skipariss@inale.gr
8	GAROFALO	Germana	CNR-IAMC, Mazara del Vallo, Italy	germana.garofalo@iamc.cnr.it
9	ISAJLOVIC	lgor	IZOR - Institute of Oceanography and Fisheries, Split; Croatia	igor@izor.hr
10	JADAUD	Angelique	Ifremer, Sete, France	ajadaud@ifremer.fr
11	JOKSIMOVIC	Aleksandar	IMB, Montenegro	acojo@ac.me
12	LEFKADITOU	Evgenia	HCMR, Athens, Greece	teuthis@hcmr.gr
13	THASITIS	Ioannis	DFMR, Cyprus	ithasitis@dfmr.moa.gov.cy
14	LEMBO	Giuseppe	COISPA, Italy	lembo@coispa.it
15	MANFREDI	Chiara	Laboratorio Biologia Marina e Pesca, Università di Bologna, Italy	chiara.manfredi3@unibo.it
16	MAIORANO	Porzia	Department of Biology - University of Bari, Italy	p.maiorano@biologia.uniba.it
17	METRAL	Luisa	IFREMER, Sete, France	luisa.metral@ifremer.fr
18	MERIGOT	Bastien	<u>U</u> niversité Montpellier 2, CRH, Sète, France	Bastien.merigot@univ-montp2.fr
19	MICALLEF	Reno	DFA-MSDEC, Malta	reno.micallef@gov.mt
20	LUKIC	Petra	IZOR - Institute of Oceanography and Fisheries, Split; Croatia	lucic@izor.hr
21	MILISENDA	Giacomo	CNR-IAMC, Mazara del Vallo, Italy	giacomo.milisenda@gmail.com
22	MUSUMECI	Claudia	CIBM, Italy	<u>clamusu@gmail.com</u>
23	PERISTERAKI	Panagiota	HCMR, Crete, Greece	notap@hcmr.gr
24	PESCI	Paola	Dipartimento di Scienze della Vita e dell'Ambiente, Cagliari University, Italy	ppesci@unica.it
25	PETROU	Antonis	Cyprus	apmarine@valicom.com.cy
26	SBRANA	Mario	CIBM, Italy	msbrana@cibm.it
27	SPEDICATO	Maria Teresa	COISPA, Italy	spedicato@coispa.it
28	TSERPES	George	HCMR, Crete, Greece	gtserpes@hcmr.gr

APPENDIX 2 – List of participants

APPENDIX 3 - Documents (separated by a blank page)


GSA 01 and GSA 02

- 1. Review of 2016 survey by GSA
 - **1.1. Period in which the survey was carried out:** April 23 to May 11 2016
 - **1.2.** Vessel (indicate eventual changes with the previous years): V/R Miguel Oliver
 - **1.3.** Number of hauls performed, possible difficulties encountered: GSA 01: 63 GSA 02: 8
 - **1.4.** The geographic area covered with a map showing haul locations:

1.5. Number of hauls in which scanmar (or equivalent equipment) was used and add a scatter plot of HO and VO vs. depth:

GSA 01: 63; GSA 02: 8

- 1.6. Number of hauls in which minilog (or equivalent equipment) was used: CTD SBE-37 was used: GSA 01: 63 hauls GSA 02:8 hauls
- **1.7.** Other measures of environmental variables carried out: None

1.8. Litter recording: comments on the results of the last survey and feedback on the protocol:

Litter was recorded in all hauls and classified according to the following scheme:

	Weigh	t (kg)
CATEGORY	GSA-01	GSA-02
Coal	114.20	13.42
Ceramic	3.00	
Clothes	4.71	0.26
Crystal	6.94	1.22
Wood	4.44	
Metal	9.40	0.10
Plastics	26.63	2.54
Rest of fishing gears	13.89	
Others	22.57	1.07

1.9. Number of species classified by taxa:

	Species r	Species number		
CATEGORY	GSA-01	GSA-02		
Fish	140	66		
Crustaceans	65	28		
Molluscs	70	46		
Others	99	37		

1.10 Total number of classified individuals of the MEDITS reference list:

Species	GSA-1	GSA-2
ELASMOBRANCHES		
Centrophorus granulosus	8	
Dalatias licha	3	1
Etmopterus spinax	472	290
Galeorhinus galeus	4	
Galeus melastomus	7656	2883
Leucoraja circularis	1	
Oxynotus centrina	4	1
Raja asterias	7	
Raja clavata		1
Scyliorhinus canicula	1914	620
Squalus acanthias	1	
Torpedo marmorata	17	
TELEOSTEANS		
Boops boops	2165	92
Citharus linguatula	10	

Species	GSA-1	GSA-2
Diplodus annularis	2	
Diplodus vulgaris	95	
Engraulis encrasicolus	2665	
Helicolenus dactylopterus	1449	64
Lepidorhombus boscii	4	1
Lophius budegassa	78	8
Lophius piscatorius	7	3
Merluccius merluccius	1450	1
Micromesistius poutassou	89	
Mullus barbatus	903	
Mullus surmuletus	215	
Pagellus acarne	2279	281
Pagellus bogaraveo	150	23
Pagellus erythrinus	423	
Pagrus pagrus	19	
Phycis blennoides	1191	126
Sardina pilchardus	445	320
Spicara maena	1152	
Spicara smaris	951	
Trachurus mediterraneus	10906	27
Trachurus trachurus	25843	15952
Zeus faber	26	1
CRUSTACEANS		
Aristeus antennatus	313	251
Nephrops norvegicus	355	7
Palinurus elephas		1
Parapenaeus longirostris	847	47
Squilla mantis	4	
CEPHALOPODS		
Eledone cirrhosa	61	
Eledone moschata	24	24
Loligo vulgaris	30	1
Octopus vulgaris	186	22
Sepia officinalis	25	
Todarodes sagittatus	61	33

GSA-1 GSA-2 **Species ELASMOBRANCHES** 8 *Centrophorus granulosus* ---3 Dalatias licha 1 446 Etmopterus spinax 290 Galeorhinus galeus 4 ---Galeus melastomus 4079 1544 Leucoraja circularis ---1 2 Oxynotus centrina 1 Raja asterias 7 ---Raja clavata ----1 549 Scyliorhinus canicula 1600 1 Squalus acanthias ---Torpedo marmorata 15 ---**TELEOSTEANS** 1483 Boops boops 92 Citharus linguatula 9 ---Diplodus annularis 2 ---95 Diplodus vulgaris ---Engraulis encrasicolus 167 ---Helicolenus dactylopterus 1311 64 4 Lepidorhombus boscii 1 Lophius budegassa 75 8 7 3 Lophius piscatorius Merluccius merluccius 1448 1 Micromesistius poutassou 49 ---903 ---Mullus barbatus Mullus surmuletus 215 ---Pagellus acarne 974 136 Pagellus bogaraveo 23 150 Pagellus erythrinus 423 ---Pagrus pagrus 19 ---Phycis blennoides 1153 126 Sardina pilchardus 445 95 Spicara maena 798 ---Spicara smaris 377 ---5 Trachurus mediterraneus 1404 2743 239 Trachurus trachurus Zeus faber 26 1 CRUSTACEANS

1.11 Total number of sampled individuals for length distributions:

Species	GSA-1	GSA-2
Aristeus antennatus	313	251
Nephrops norvegicus	351	7
Parapenaeus longirostris	811	47
Squilla mantis	4	
CEPHALOPODS		
Eledone cirrhosa	58	
Eledone moschata	24	24
Loligo vulgaris	30	1
Octopus vulgaris	186	22
Sepia officinalis	13	
Todarodes sagittatus	56	33

1.12 Total number of sampled individuals for sex and maturity:

SPECIE	TO	TAL
SFECIE	GSA 01	GSA 02
Teleosteans		
Merluccius merluccius	575	1
Mullus barbatus	675	
Mullus surmuletus	168	
Elasmobranches		
Dalatias licha	3	1
Etmopterus spinax	310	144
Galeus melastomus	1124	301
Leucoraja circularis	1	0
Raja asterias	7	
Raja clavata		1
Raja naevus	41	30
Scyliorhinus canicula	758	133
Torpedo marmorata	17	
Crustaceans	GSA 01	GSA 02
Aristeus antennatus	313	182
Nephrops norvegicus	356	7
Parapenaeus longirostris	630	57
Cephalopods	GSA 01	GSA 02
Illex coindetii	628	
Loligo vulgaris	30	1

1.13 Number of samples of hard tissues collected for ageing by target species:

SPECIE	TOTAL			
	GSA 01	GSA 02		
Teleosteans				
Merluccius merluccius	203	1		
Mullus barbatus	143	0		
Mullus surmuletus	133	1		

1.14 Otolith reading, difficulties encountered:

Otoliths of *Merluccius merluccius* have been collected but not read because of the agreement reached during MEDITS coordination meeting held on Ljubljana (2012)

2 Focus on historical trends

- 2.12 Abundance and biomass indices of target species (MEDITS G1)
- 2.13 minimum, mean and maximum length of target species (MEDITS G1)

GSA 01

Table 1.-Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Merluccius merluccius* during MEDITS surveys (GSA 01).

	Abundance ± S.E.	Biomass ± S.E.	Lmin	Lmed	Lmax
1994			4.5	15.7	78.5
1995	112.46 ± 37.47	4.61 ± 1.26	4.5	15.2	55.5
1996	406.22 ± 154.62	14.38 ± 2.83	6.0	13.4	72.0
1997	448.34 ± 175.65	13.50 ± 4.64	5.0	13.3	58.0
1998	211.33 ± 71.19	8.01 ± 2.67	5.5	12.6	58.0
1999	316.74 ± 192.24	6.49 ± 3.03	5.5	12.6	37.5
2000	259.56 ± 93.59	9.19 ± 2.31	6.0	15.2	51.0
2001	328.38 ± 153.84	12.25 ± 2.26	6.0	14.2	56.0
2002	859.94 ± 473.36	15.34 ± 5.74	5.0	12.4	56.0
2003	409.26 ± 180.10	11.64 ± 2.39	5.5	13.4	46.0
2004	266.30 ± 120.11	5.51 ± 1.38	5.5	14.0	37.0
2005	276.48 ± 93.55	8.88 ± 1.57	4.0	12.2	64.5
2006	101.96 ± 29.58	8.54 ± 1.81	5.5	17.3	66.5
2007	591.00 ± 334.00	11.42 ± 3.13	5.0	13.1	57.5
2008	521.00 ± 276.00	13.68 ± 3.54	6.0	14.2	57.0
2009	681.00 ± 279.00	24.48 ± 7.41	7.0	16.6	56.5
2010	340.00 ± 92.00	28.47 ± 925	5.5	18.1	53.5
2011	250.00 ± 80.00	13.71 ± 4.04	0.5	15.0	47.0
2012	112.00 ± 48.00	4.94 ± 1.15	5.0	14.0	57.5
2013	67.51±19.99	5.82±0.96	6	25.0	44.0
2014	439.82±202.74	9.14±1.78	8.0	10.0	39.0
2015	198.35±58.22	7.57±1.40	0.5	39.5	67.5
2016	280.14±92.24	5.9±0.59	5.5	12	43.5

Table 2.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Mullus barbatus* during MEDITS surveys (GSA 01).

	Abundance ± S.E.	Biomass ± S.E.	Lmin	Lmed	Lmax
1994			11.0	15.1	22.5
1995	443.33 ± 230.7	17.43 ± 9.28	9.5	14.9	22.5
1996	94.21 ± 52.84	3.15 ± 1.75	11.0	14.4	22.0
1997	55.08 ± 25.06	2.25 ± 0.94	12.0	15.6	21.5
1998	137.31 ± 67.59	5.93 ± 2.74	11.0	15.4	24.0
1999	69.03 ± 33.76	3.01 ± 1.48	9.0	14.9	24.5
2000	95.91 ± 52.75	4.13 ± 2.3	11.5	15.2	23.0
2001	167.33 ± 67.23	8.32 ± 3.71	10.5	15.6	27.5
2002	180.76 ± 90.31	6.34 ± 3.01	9.5	14.3	21.5
2003	117.02 ± 69.63	5.84 ± 3.22	9.5	16.0	24.0
2004	421.05 ± 304.92	12.83 ± 7.38	9.0	14.0	23.0

	Abundance ± S.E.	Biomass ± S.E.	Lmin	Lmed	Lmax
2005	51.71 ± 23.22	3.07 ± 1.41	10.0	16.5	36.5
2006	969.34 ± 728.48	25.29 ± 17.28	10.0	14.3	23.5
2007	741.00 ± 413.00	26.46 ± 12.23	10.0	14.8	26.0
2008	542.00 ± 297.00	21.98 ± 11.23	8.0	15.3	26.0
2009	650.00 ± 478.00	21.20 ± 14.31	9.5	14.5	26.0
2010	268.00 ± 120.00	12.99 ± 5.53	7.5	15.3	24.0
2011	366.00 ± 168.00	15.85 ± 6.65	10.0	14.8	25.0
2012	155.00 ± 89.00	9.47 ± 5.08	12.5	17.1	23.5
2013	199.17±105.16	7.96±4.02	10	14.5	24.0
2014	206.47±91.77	8.82±3.30	11.0	15.0	25.0
2015	174.87±61.40	6.93±2.38	10.5	14.5	23.5
2016	217±24.67	8.00±1.00	10.5	14.5	24.0

Table 3.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Mullus surmuletus* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			13.0	19.2	32.0
1995	106.76 ± 54.37	6.71 ± 3.35	13.0	16.9	32.5
1996	67.99 ± 36.94	8.37 ± 4.53	13.5	19.8	36.5
1997	18.16 ± 9.66	2.44 ± 1.64	15.5	21.8	33.0
1998	58.45 ± 17.08	6.50 ±2.05	11.0	19.5	33.0
1999	23.81 ± 11.88	2.66 ± 1.35	16.0	19.8	32.0
2000	31.44 ± 27.71	2.28 ± 1.96	14.5	17.4	22.0
2001	26.94 ± 8.65	3.27 ± 0.95	10.5	21.2	44.5
2002	93.63 ± 58.15	11.88 ± 6.67	15.0	21.5	41.0
2003	26.39 ± 11.6	4.62 ± 3.17	13.0	22.8	36.5
2004	164.2 ± 140.08	27.97 ± 25.78	14.5	21.3	39.0
2005	18.94 ± 6.57	2.73 ± 1.04	16.0	23.2	31.0
2006	36.51 ± 16.07	6.17 ± 3.3	14.5	23.3	32.0
2007	77.00 ± 36.00	9.89 ± 4.31	14.0	21.0	31.5
2008	24.00 ± 13.00	3.18 ± 1.47	15.5	21.4	33.5
2009	94.00 ± 49.00	11.84 ± 6.07	10.5	20.1	29.5
2010	21.00 ± 11.00	2.72 ±1.28	14.0	22.4	35.5
2011	30.00 ± 14.00	5.01 ± 2.20	15.0	22.4	33.5
2012	53.00 ± 28.00	7.69 ± 4.34	16.0	21.2	31.0
2013	11.56±5.09	1.2±0.64	16.0	21.0	31.0
2014	26.26±10.02	3.00±0.92	19.5	20.5	36.5
2015	26.52±8.16	3.11±0.93	14.5	21	33.5
2016	50.25±19.06	3.85±0.92	11.0	19.5	32.0

Table 4.- Historical trends of abundance (n^o/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Etmopterus spinax* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			9.0	19.0	38.0
1995	70.40 ± 16.35	6.29 ± 1.62	9.0	25.5	38.0
1996	124.10 ± 31.86	8.69 ± 2.33	7.0	22.0	37.0

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1997	221.38 ± 56.36	18.54 ± 4.81	10.0	25.0	41.0
1998	332.62 ± 136.25	24.4 ± 9.03	10.0	22.5	42.0
1999	77.41 ± 19.05	8.47 ± 2.16	10.0	28.0	40.0
2000	95.29 ± 27.41	10.37 ± 3.26	9.0	26.5	40.0
2001	105.78 ± 23.60	10.42 ± 2.25	10.0	25.5	39.0
2002	58.14 ± 14.47	6.70 ± 2.04	9.0	26.5	40.0
2003	84.02 ± 23.84	5.82 ± 1.42	10.0	21.5	42.0
2004	122.03 ± 35.25	11.1 ± 3.78	10.0	23.5	39.0
2005	159.74 ± 58.63	17.74 ± 7.1	9.0	25.5	40.0
2006	183.99 ± 49.52	19.43 ± 6.01	10.0	27.5	41.0
2007	147.78 ± 61.55	15.85 ± 7.91	8.0	26.8	40.5
2008	66.65 ± 28.00	4.59 ± 2.07	9.5	23.6	39.5
2009	82.01 ± 34.48	5.24 ± 2.41	9.0	22.2	34.5
2010	95.03 ± 25.34	15.55 ± 4.68	10.0	26.4	40.0
2011	62.32 ± 22.21	6.45 ± 2.87	10.0	27.4	39.0
2012	81.16 ± 28.43	8.85 ± 3.61	10.0	28.4	39.0
2013	135.96±31.98	14.89±4.58	10.0	28.4	39.0
2014	76.92±11.83	7.45±1.78	9.0	25.0	41.0
2015	76.03±26.41	5.40±1.14	10.0	20.0	38.5
2016	166±58.63	15.46±6.03	9.0	21.0	39.5

Table 5.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Galeus melastomus* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			10.0	37.0	61.0
1995	828.19 ± 186.42	153.81 ± 41.88	10.0	36.0	59.0
1996	1488.47 ± 402.48	216.49 ± 56.44	10.0	37.0	57.0
1997	2670.03 ± 750.57	441.37 ± 137.78	11.0	34.5	60.0
1998	1161.52 ± 292.32	153.10 ± 34.06	11.0	37.5	62.0
1999	468.78 ± 163.98	91.04 ± 32.60	10.0	36.0	60.5
2000	717.16 ± 194.81	170.86 ± 58.70	9.5	36.2	57.5
2001	558.83 ± 134.33	132.24 ± 30.71	10.5	38.3	63.0
2002	1214.03 ± 292.3	189.21 ± 61.19	10.5	29.2	60.5
2003	904.94 ± 287.65	158.65 ± 42.69	11.5	35.0	64.5
2004	1328.05 ± 359.60	226.65 ± 70.19	10.5	35.5	62.5
2005	1100.11 ± 330.64	238.71 ± 80.59	11.0	35.1	62.0
2006	2250.85 ± 504.66	397.36 ± 108.21	10.5	32.6	58.5
2007	1241.10 ± 457.17	202.53 ± 84.83	9.5	31.7	58.0
2008	801.55 ± 420.46	110.68 ± 58.66	11.0	35.7	60.0
2009	1015.96 ± 398.23	136.70 ± 63.41	11.0	31.2	57.0
2010	921.95 ± 281.92	369.72 ± 123.31	10.0	39.8	61.0
2011	2109.69 ± 1189.67	256.46 ± 115.20	10.0	26.6	66.0
2012	1504.30 ± 543.39	193.64 ± 71.10	10.0	29.8	62.0
2013	1911±448.48	441.18±78.90	10.0	38.3	62.0
2014	1783±323.41	355.70±84.54	10.0	36.2	62.0
2015	1167.74±260.56	183.76±23.70	8.0	31.0	63.0
2016	2087.90±711.02	184.90±38.41	10.0	31.5	61.0

Table 6.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Scyliorhinus canicula* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			7.0	35.5	50.0
1995	29.66 ± 12.35	4.59 ± 1.70	9.0	31.1	54.0
1996	30.39 ± 10.19	6.51 ± 2.08	16.0	37.2	50.0
1997	79.89 ± 29.02	11.86 ± 4.03	13.0	31.8	52.0
1998	98.55 ± 30.15	21.65 ± 6.16	9.0	39.5	51.0
1999	12.32 ± 5.92	3.42 ± 2.17	10.0	37.9	51.5
2000	21.98 ± 8.49	5.33 ± 2.13	10.5	39.9	53.0
2001	58.27 ± 19.24	12.59 ± 3.60	11.0	38.5	56.5
2002	406.97 ± 111.37	73.56 ± 16.59	6.5	37.1	55.0
2003	218.36 ± 70.14	41.31 ± 11.16	9.0	39.2	54.5
2004	87.09 ± 18.11	21.47 ± 5.23	9.0	41.3	52.0
2005	212.81 ± 74.18	33.59 ± 10.66	10.0	35.6	52.5
2006	238.25 ± 98.37	53.97 ± 17.06	10.0	39.8	56.5
2007	247.91 ± 57.46	54.39 ± 10.96	11.5	38.7	56.5
2008	142.89 ± 65.59	22.92 ± 6.92	9.0	34.8	51.0
2009	102.07 ± 25.06	19.16 ± 3.17	11.0	34.8	60.0
2010	27.31 ± 11.51	3.54 ± 1.08	10.0	27.8	52.0
2011	417.76 ± 240.93	35.51 ± 18.69	9.0	31.3	50.0
2012	166.65 ± 76.49	20.12 ± 8.30	10.0	30.9	51.0
2013	114.90±50.49	18.56±6.71	13.0	34.7	50.0
2014	113.91±25.97	18.50±3.12	9.0	34.5	54.0
2015	463.43±225.19	41.46±15.53	7.0	30.7	53.0
2016	292.23±92.57	36.70±10.73	9.0	32.5	51.0

Table 7.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Torpedo marmorata* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994	0	0			
1995	2.77 ± 1.07	1.76 ± 0.85	21.0	31.0	41.0
1996	0.49 ± 0.42	0.24 ± 0.21	30.0	30.0	30.0
1997	8.98 ± 3.10	2.57 ± 1.10	14.0	22.0	33.0
1998	2.21 ± 1.15	0.24 ± 0.13	12.0	15.5	21.0
1999	1.71 ± 1.22	0.55 ± 0.47	16.0	21.5	30.0
2000	1.28 ± 0.87	0.23 ± 0.17	17.0	19.0	21.0
2001	3.87 ± 2.59	1.57 ± 0.94	18.0	23.0	37.0
2002	3.65 ± 2.40	1.89 ± 1.56	13.0	27.0	34.0
2003	2.60 ± 1.94	1.47 ± 1.13	23.0	29	35.0
2004	3.77 ± 1.98	1.66 ± 0.90	20.0	26.5	33.0
2005	6.71 ± 1.90	1.35 ± 0.41	12.0	20.0	29.0
2006	4.86 ± 2.26	0.97 ± 0.43	15.0	20.5	32
2007	2.85 ± 2.02	0.72 ± 0.54	14.5	21.3	32.0
2008	2.34 ± 1.57	0.97 ± 0.65	22.0	25.5	29.5
2009	7.49 ± 3.91	3.43 ± 1.82	20.0	27.2	46.5
2010	2.54 ± 1.18	1.31 ± 0.82	21.0	25.7	34.0
2011	3.14 ± 1.27	1.60 ± 0.83	19.0	25.0	35.0

2012	9.29 ± 3.32	4.99 ± 2.77	13.0	24.8	48.5
2013	6.40±2.15	4.00±1.51	13.0	24.5	48.0
2014	4.40±1.24	1.95±0.67	17.0	25.8	41.5
2015	3.95±2.07	0.84±0.44	12	19.7	25
2016	3.01±0.93	1.00±0.36	13.5	22.5	30.5

Table 8.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Aristeus antennatus* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			21	35	56
1995	196.96 ± 103.96	2.57 ± 1.38	16	31	53
1996	97.17 ± 54.06	1.52 ± 0.80	16	31	63
1997	204.42 ± 101.49	2.37 ± 1.17	18	28	58
1998	153.95 ± 85.22	1.77 ± 0.96	17	29	62
1999	89.89 ± 38.52	1.49 ± 0.77	15	32	55
2000	454.84 ± 246.31	4.75 ± 2.53	18	28	60
2001	124.02 ± 50.78	2.12 ± 0.83	20	31	55
2002	82.02 ± 48.26	1.17 ± 0.67	19	31	56
2003	111.25 ± 67.24	2.50 ± 1.52	20	37	60
2004	102.13 ± 73.34	1.54 ± 1.09	16	32	58
2005	121.95 ± 108.56	1.78 ± 1.58	18	32	60
2006	178.72 ± 123.08	3.03 ± 1.99	18	33	57
2007	7.53 ± 103.42	0.57 ± 0.59	20	36	56
2008	18.29 ± 12.40	0.15 ± 0.12	16	28	58
2009	0.62 ± 0.45	0.00 ± 0.00	26	19	36
2010	40.00 ± 34.00	0.71 ± 0.60	22	34	54
2011	1.17 ± 1.11	0.02 ± 0.02	30	34	61
2012	47.72 ± 26.75	0.94 ± 0.52	21	37	57
2013	1.43±1.43	0.13±0.13	20	31	50
2014	118.20±63.48	2.40±1.28	20	36	59
2015	136±83.94	2.12±1.13	20	31	60
2016	93.74±26.39	2.05±0.58	20	37	61

Table 9.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Neprhops norvegicus* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			34	43	53
1995	22.12 ± 6.22	1.12 ± 0.33	24	40	60
1996	32.46 ± 12.84	2.09 ± 0.83	27	44	71
1997	72.08 ± 35.89	3.50 ± 1.90	18	36	57
1998	14.56 ± 5.74	0.50 ± 0.22	18	36	52
1999	20.34 ± 11.9	0.70 ± 0.46	15	35	58
2000	24.62 ± 9.46	1.15 ± 0.41	22	39	65
2001	18.52 ± 6.91	1.03 ± 0.39	24	39	55
2002	66.50 ± 31.44	2.51 ± 0.95	20	36	72
2003	103.26 ± 39.89	4.81 ± 1.95	19	39	88
2004	109.33 ± 59.06	5.81 ± 3.13	15	40	63
2005	45.34 ± 19.76	2.38 ± 1.04	23	41	62

2006	70.77 ± 26.18	4.42 ± 1.54	29	43	67
2007	37.32 ± 13.11	2.29 ± 0.78	29	44	65
2008	19.52 ± 7.87	1.30 ± 0.52	24	43	68
2009	55.68 ± 37.30	3.00 ± 1.91	20	45	50
2010	38.60 ± 14.98	2.34 ± 0.85	17	42	55
2011	27.54 ± 12.26	1.26 ± 0.58	32	44	67
2012	5.78 ± 3.31	0.55 ± 0.30	37	50	62
2013	22.71±12.74	1.75±0.97	30	46	60
2014	34.44±12.88	2.27±0.77	25	43	69
2015	35.24±11.06	2.07±0.64	18	42	66
2016	34.43±12.88	2.27±0.77	12	39	69

Table 10.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Parapenaeus longirostris* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			22	24	27
1995	44.13 ± 14.06	0.28 ± 0.11	8	19	37
1996	111.15 ± 33.31	0.91 ± 0.26	9	24	41
1997	289.73 ± 143.05	2.04 ± 0.97	11	22	39
1998	477.35 ± 194.81	2.4 ± 0.94	7	19	34
1999	180.23 ± 64.49	1.39 ± 0.62	6	23	34
2000	228.48 ± 79.54	1.87 ± 0.67	9	24	35
2001	187.75 ± 82.97	1.69 ± 0.77	5	22	35
2002	241.35 ± 63.09	1.71 ± 0.42	9	22	34
2003	37.72 ± 13.16	0.4 ± 0.15	10	25	36
2004	157.62 ± 66.40	1.38 ± 0.61	6	23	40
2005	60.79 ± 43.15	0.59 ± 0.39	17	25	37
2006	106.79 ± 74.87	1.05 ± 0.66	5	26	41
2007	70.27 ± 51.36	0.51 ± 0.32	8	23	34
2008	80.19 ± 39.69	0.76 ± 0.38	15	26	35
2009	568.24 ± 205.71	5.49 ± 1.99	11	27	29
2010	270.74 ± 191.08	1.53 ± 0.79	13	25	38
2011	329.46 ± 105.37	3.11 ± 1.27	10	24	40
2012	583.72 ± 206.82	3.54 ± 1.38	9	23	36
2013	142.36±37.54	1.63±0.45	5	17	30
2014	129.11±39.12	1.21±0.36	5	25	36
2015	94.25±24.13	1.03±0.33	9	25	37
2016	101.71±14.14	10.09±0.15	11	26	39

Table 11.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Illex coindietti* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994			15.0	15.0	15.0
1995	5.47 ± 1.94	0.46 ± 0.17	8.5	13.4	25.0
1996	38.78 ± 12.92	9.76 ± 6.09	6.5	14.1	22.5
1997	62.63 ± 19.58	4.3 ± 1.17	5.5	11.6	22.0
1998	252.14 ± 175.74	6.85 ± 2.34	5.5	13.3	23.5
1999	97.92 ± 30.91	14.03 ± 3.87	5.5	16.4	27.0

2000	47.68 ± 18.7	6.51 ± 2.75	6.0	16.1	24.0
2001	90.16 ± 30.14	12.81 ± 3.63	4.0	16.5	24.0
2002	80.99 ± 22.42	7.1±2.07	4.5	13.1	22.5
2003	152.58 ± 45.35	20.45 ± 4.81	6.0	16.2	24.0
2004	13.7 ± 5.42	1.7 ± 0.62	6.5	14.6	21.0
2005	65.04 ± 21.27	9.46 ± 3.49	4.0	16.2	26.0
2006	5.09 ± 1.90	0.82 ± 0.32	7.0	14.7	21.0
2007	17.92 ± 10.46	2.46 ± 1.55	8.0	15.8	22.0
2008	9.87 ± 3.77	1.39 ± 0.53	6.5	13.9	25.5
2009	51.30 ± 15.02	3.07 ± 0.95	6.5	12.3	19.0
2010	24.82 ± 9.40	1.44 ± 0.54	2.0	10.8	18.5
2011	141.88 ± 36.72	14.34 ± 3.29	4.5	13.8	21.0
2012	137.75 ± 41.10	13.09 ± 3.91	7.0	14.5	20.5
2013	99.94±22.45	9.77±2.36	5	17.1	30
2014	184.86±46.82	7.13±1.62	5.5	10.6	20
2015	98.44±24.59	6.66±1.48	1	7.10	22.5
2016	120.78±25.43	10.67±2.03	7.0	14.0	20.0

Table 12.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Loligo vulgaris* during MEDITS surveys (GSA 01).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1994		•	23.0	23.0	23.0
1995	3.2 0 ± 1.80	0.56 ± 0.28	16.0	20.2	26.0
1996	0.74 ± 0.64	0.03 ± 0.03	10.0	10.0	10.0
1997	0 ± 0	0 ± 0			
1998	2.29 ± 1.14	0.37 ± 0.19	15.5	17.5	19.5
1999	1.55 ± 1.13	0.48 ± 0.37	19.0	21.2	24.0
2000	0.50 ± 0.49	0.13 ± 0.13	19.0	19.0	19.0
2001	3.91 ± 1.73	0.89 ± 0.45	11.5	19.1	24.0
2002	19.00 ± 7.61	3.69 ± 1.55	4.0	15.8	27.5
2003	6.17 ± 2.70	1.99 ± 1.13	11.5	21.6	26.5
2004	6.39 ± 2.33	1.56 ± 0.85	10.0	17.7	30.0
2005	2.91 ± 1.28	0.70 ± 0.37	5.5	17.7	25.5
2006	8.70 ± 6.25	4.21 ± 2.95	14.5	27.5	50.0
2007	7.00 ± 3.73	1.13 ± 0.62	12.0	15.9	28.5
2008	13.09 ± 10.58	1.91 ± 1.62	10.0	15.0	29.0
2009	28.54 ± 14.37	5.09 ± 3.12	12.0	18.7	45.0
2010	1.00 ± 0.85	0.50 ± 0.42	27.0	27.0	27.0
2011	5.42 ± 3.05	1.21 ± 0.93	7.0	18.8	38.5
2012	2.07 ± 1.57	0.08 ± 0.07	5.0	8.3	14.0
2013	0.98±0.55	0.036±0.027	5.0	8.3	14.0
2014	1.85±0.76	0.25±0.13	8.5	14.2	22.5
2015	1.86±0.97	0.33±0.18	1.0	2.7	24.0
2016	7.19±2.24	0.73±0.21	3.5	11.4	27.5

GSA 02

Table 1 Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and
minimum, mean and maximum length (cm) of the specie Merluccius merluccius during MEDITS surveys
(GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	0.03 ± 0.35	0.28 ± 4.01	21.0	22.5	23.5
2007	0.00	0.00			
2008	0.33 ± 3.35	0.26 ± 2.66	46.0	46.0	46.0
2009	0.08 ± 1.34	0.19 ± 3.23	64.0	64.0	64.0
2011	0.00	0.00			
2012	2.32 ± 33.00	0.03 ± 0.48	10.0	12.0	15.0
2013	0.00	0.00			
2014	4.11±0.00	6160.62±0.00	60.0	60.0	60.0
2015	3.86±0.00	2.31±0.00	43.0	43.0	43.0
2016	3.03±0.00	2.40±0.00	45.0	45.0	45.0

Table 2.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Mullus barbatus* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	0.00	0.00			
2007	0.00	0.00			
2008	0.00	0.00			
2009	0.00	0.00			
2011	0.00	0.00			
2012	0.00	0.00			
2013	0.00	0.00			
2014	0.00	0.00			
2015	0.00	0.00			
2016	0.00	0.00			

Table 3.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Mullus surmuletus* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	2.2 ± 19.32	0.37 ± 3.34	17.0	23.0	28.5
2007	1.00 ± 17.00	0.26 ± 4.24	23.5	26.5	33.0
2008	0.00	0.00			
2009	6.00 ± 105.85	0.32 ± 5.29	13.0	15.5	20.5
2011	0.00	0.00			
2012	0.00	0.00			
2013	0.00	0.00			
2014	0.00	0.00			
2015	3.86±0.00	0.24±0.00	18.0	18.0	18.0
2016					

Table 4.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Etmopterus spinax* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	48.36 ± 633.94	1.78 ± 18.19	10.0	26.5	39.0
2007	8.55 ± 84.57	0.73 ± 7.81	8.5	25.6	38.0
2008	7.72 ± 40.44	0.67 ± 4.78	10.5	25.0	37.5
2009	18.13 ± 161.10	1.79 ± 15.71	10.0	24.0	36.5
2011	5.42 ± 42.45	0.63 ± 6.05	10.0	27.0	38.0
2012	35.22 ± 209.49	2.83 ± 20.02	9.0	24.0	39.0
2013	49.53±25.01	3.81±1.83	9	24.5	. 39.0
2014	198.84±96.26	22.83±12.00	11.0	28.4	36.0
2015	187.99±14.49	17.53±3.75	10.5	26.3	38.5
2016	239.20±115.59	23.73±11.95	10.0	27.7	41.0

Table 5.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Galeus melastomus* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	156.3 ± 683.26	12.52 ± 59.49	11.5	30.2	63.0
2007	83.88 ± 471.06	10.17 ± 91.99	10.0	26.8	58.0
2008	125.07 ± 626.46	18.44 ± 126.2	10.0	32.4	62.0
2009	160.85 ± 469.52	18.27 ± 106.03	8.5	32.4	69.0
2011	1446.85 ± 18179.65	12.11 ± 100.26	7.0	24.0	61.0
2012	399.44 ± 1758.54	32.4 ± 129.01	9.0	30.6	61.0
2013	6046.00±3395.62	44.24±76.00	9.0	30.0	61.0
2014	2684.34±412.02	546.18±109.64	11.0	35.8	62.0
2015	2476.17±888.14	281.72±107.47	8.5	32.6	62.0
2016	2951.14±293.26	302.46±25.03	10.0	35.5	62.0

Table 6.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Scyliorhinus canicula* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	43.56 ± 400.47	7.49 ± 50.11	13.0	32.6	55.5
2007	20.01 ± 143.94	6.18 ± 41.83	18.5	44.0	54.0
2008	32.86 ± 240.96	4.78 ± 28.73	16.0	30.0	53.0
2009	32.16 ± 355.11	9.79 ± 68.58	21.0	40.5	54
2011	50.84 ± 346.1	8.57 ± 52.91	23.0	38.0	73.0
2012	53.06 ± 558.16	7.65 ± 65.2	22.0	35.5	50.0
2013	102.71±10.29	14.49±17.12	22.0	35.5	50.0
2014	700.62±86.52	12.18±1.20	24.0	37.3	52.0
2015	1113.10±475.66	112.69±31.02	13.0	29.4	52.0
2016	1427.41±108.76	145.92±19.23	18.0	31.8	49.0

Table 7.- Historical trends of abundance (n^o/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Torpedo marmorata* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	0.18 ± 1.57	0.09 ± 0.97	18.0	25.0	32.0
2007	0.11 ± 1.68	0.22 ± 3.43	43.5	43.5	43.5
2008	0.00	0.00			
2009	0.19 ± 3.02	0.03 ± 0.42	16.0	16.0	16.0
2011	0.09 ± 1.16	0.04 ± 0.48	19.0	19.0	19.0
2012	0.00	0.00			
2013	0.00	0.00			
2014	3.21±0.03	1.73±66.16	28.0	28.2	28.5
2015	1.51±1.51	0.51±0.51	22.0	22.0	22.0
2016	0.00	0.00			

Table 8.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Aristeus antennatus* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	4.72 ± 43.13	0.10 ± 0.89	14	34	56
2007	7.53 ± 103.42	0.13 ± 1.78	21	32	58
2008	12.63 ± 127.90	0.18 ± 1.84	21	32	56
2009	17.20 ± 166.50	0.36 ± 3.62	22	37	62
2011	6.77 ± 77.43	0.14 ± 1.47	22	36	59
2012	22.19 ± 182.78	0.41 ± 3.92	20	40	57
2013	29.57±18.90	2.21±1.93	20	35	50
2014	173.93±128.37	4.68±3.36	23	39	59
2015	81.67±47.22	1.59±0.96	19	37	57
2016	211.81±62.66	4.58±1.35	18	37	61

Table 9.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Neprhops norvegicus* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	0.89 ± 5.80	0.08 ± 0.59	37	48	62
2007	0.54 ± 2.79	0.05 ± 0.33	33	47	63
2008	0.63 ± 4.89	0.05 ± 0.31	33	45	69
2009	0.75 ± 9.04	0.03 ± 0.40	35	41	48
2011	0.81 ± 8.88	0.06 ± 0.41	33	46	63
2012	1.28 ± 5.74	0.55 ± 0.30	34	46	68
2013	1.88 ± 8.14	1.2±0.802	40	40	60
2014	8.04±3.11	0.66±0.31	41	48	64
2015	20.15±10.48	1.51±0.73±	34	46	60
2016	6.34±1.71	0.66±0.18	37	51	66

Table 10.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Parapenaeus longirostris* during MEDITS surveys (GSA 02).

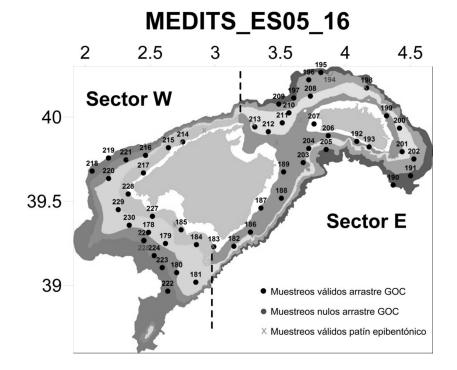
	Abundance ±S.E.	Biomass ± S.E.	Lmin	Lmed	Lmax
2006	3.26 ± 45.51	0.03 ± 0.36	15	23	27
2007	7.03 ± 113.89	0.05 ± 0.85	11	23	34
2008	10.18 ± 103.11	0.06 ± 0.63	10	24	28
2009	40.28 ± 465.09	0.29 ± 3.48	10	23	18
2011	4.07 ± 57.68	0.01 ± 3.64	12	18	30
2012	38.62 ± 513.44	0.25 ± 99.23	12	21	30
2013	65.03±70.84	0.11±0.14	10	18	30
2014	73.94±73.94	0.62±0.62	14	24	32
2015	6.08±6.08	0.03±0.03	13	18	32
2016	59.40±29.70	0.61±0.31	11	29	32

Table 11.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Illex coindietti* during MEDITS surveys (GSA 02).

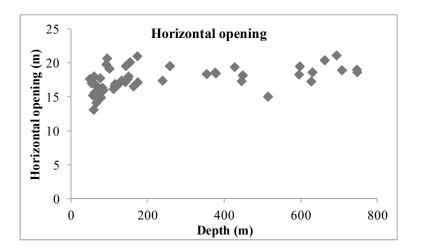
	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	0.08 ± 0.84	0.31 ± 2.92	8.5	9.0	9.5
2007	0.00	0.00			
2008	0.00	0.00			
2009	0.19 ± 3.00	0.01 ± 0.12	12.0	12.0	12.0
2011	3.20 ± 16.70	0.01 ± 3.15	9.5	16.5	20.5
2012	54.03 ± 688.40	0.01 ± 76.70	11.1	16.7	21.0
2013	106.30±29.58	12.10±39.80	11.0	16.0	21
2014	0.00	0.00			
2015	19.44±7.29	2.59±1.31	13.5	15.7	18.5
2016	0.00	0.00			

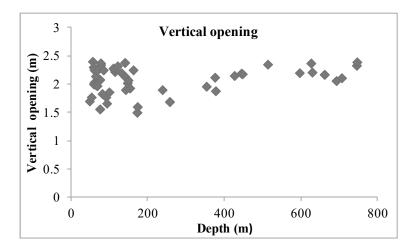
Table 12.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (cm) of the specie *Loligo vulgaris* during MEDITS surveys (GSA 02).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2006	5.39 ± 77.07	1.72 ± 24.61	13.5	22.4	30.5
2007	0.00	0.00			
2008	0.66 ± 6.71	0.27 ± 2.78	25.0	26.3	27.5
2009	0.00	0.00			
2011	5.12 ± 30.09	0.72 ± 3.94	8.0	16.8	32.5
2012	0.00	0.00			
2013	0.00	0.00			
2014	0.00	0.00			
2015	0.00	0.00			
2016	3.03±0.00	1.82±0.00	28.0	28.0	28.0

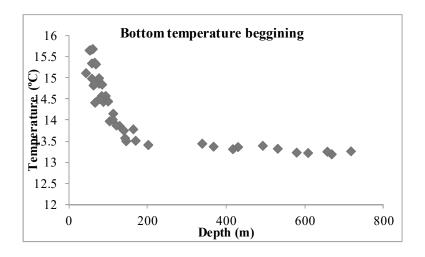

3- Planning for the next survey

3.1. Indication of the period and vessel specifying if it is in line with the previous ones, emrging issues if any


In 2017, the Spanish MEDITS survey in GSA 01 and 02 is planned from April 23th to May 11th on board the research vessel *Miguel Oliver*.


GSA 5

- 1. <u>Review of 2014 survey by GSA</u>
 - 1.1. period in which the survey was carried out 7^{th} 21^{th} June 2016
 - 1.2. vessel (indicate eventual changes with the previous years) R/V Miguel Oliver
 - 1.3. number of hauls performed, possible difficulties encountered53 (51 valid, 2 invalid)
 - 1.4. the geographic area covered with a map showing haul locations



1.5. number of hauls in which scanmar (or equivalent equipment) was used and add a scatter plot of HO and VO vs. Depth56

1.6. number of hauls in which minilog (or equivalent equipment) was used and add a plot of temperature bottom profiles56

- 1.7. other measures of environmental variables carried out Salinity (from CTD)
- 1.8. litter recording: comments on the results of the last survey and feedback on the protocol

Category	Weigh (kg)
Coal	5.64
Ceramics	24.26
Crystal	6.70
Wood	5.76
Metal	0.82
Others	68.55
Plastics	6.17
Clothes	2.64

1.9. number of species classified by taxa

Таха	Number
Fish	157
Crustaceans	78
Molluscs	56
Echinoderms	33
Algae	46
Others	61

1.10. total number of classified individuals of the MEDITS reference list

Individuals

Species	Individuals	Species
Teleosteans		Elasmobranches
Boops boops	1086	Centrophorus granulosus
Chelidonichthys cuculus	2201	Dipturus oxyrinchus
Chelidonichthys lucerna	1	Etmopterus spinax
Citharus linguatula	157	Galeorhinus galeus
Diplodus annularis	87	Galeus melastomus
Diplodus vulgaris	3	Leucoraja circularis
Engraulis encrasicolus	5356	Mustelus mustelus
Eutrigla gurnardus	6	Myliobatis aquila
Helicolenus dactylopterus	395	Raja clavata
Lepidorhombus boscii	440	Raja miraletus
Lophius budegassa	40	Raja polystigma
Lophius piscatorius	24	Rostroraja alba
Merluccius merluccius	1395	Scyliorhinus canicula
Micromesistius poutassou	134	Squalus blainville
Mullus barbatus barbatus	108	Torpedo marmorata
Mullus surmuletus	610	Crustaceans
Pagellus acarne	16	Aristaeomorpha foliacea
Pagellus erythrinus	226	Aristeus antennatus
Phycis blennoides	741	Nephrops norvegicus
Polyprion americanum	1	Palinurus elephas
Sardina pilchardus	381	Parapenaeus longirostris
Scomber japonicus	2	Cephalopods
Scomber scombrus	1	Eledone cirrhosa
Solea vulgaris	1	Eledone moschata
Spicara smaris	19083	Illex coindetii
Trachurus mediterraneus	1348	Loligo vulgaris
Trachurus trachurus	12430	Octopus vulgaris
Trigloporus lastoviza	744	Sepia officinalis
Trisopterus minutus	242	Todarodes sagittatus
Zeus faber	53	

Species	Individuals	Species	Individuals
Teleosteans		Elasmobranches	
Boops boops	1079	Centrophorus granulosus	1
Chelidonichthys cuculus	2155	Dipturus oxyrinchus	28
Citharus linguatula	156	Etmopterus spinax	108
Diplodus annularis	87	Galeorhinus galeus	1
Diplodus vulgaris	3	Galeus melastomus	4032
Engraulis encrasicolus	5346	Leucoraja circularis	4
Eutrigla gurnardus	6	Mustelus mustelus	7
Helicolenus dactylopterus	395	Myliobatis aquila	9
Lepidorhombus boscii	440	Raja clavata	195
Lophius budegassa	40	Raja miraletus	71
Lophius piscatorius	24	Raja polystigma	140
Merluccius merluccius	1395	Rostroraja alba	1
Micromesistius poutassou	134	Scyliorhinus canicula	3020
Mullus barbatus barbatus	108	Squalus blainville	4
Mullus surmuletus	645	Torpedo marmorata	3
Pagellus acarne	16	Crustaceans	
Pagellus erythrinus	226	Aristaeomorpha foliacea	113
Phycis blennoides	711	Aristeus antennatus	1292
Polyprion americanum	1	Nephrops norvegicus	257
Sardina pilchardus	376	Palinurus elephas	1
Scomber japonicus	2	Parapenaeus longirostris	525
Scomber scombrus	1	Cephalopods	
Solea vulgaris	1	Eledone cirrhosa	120
Spicara smaris	18979	Eledone moschata	38
Trachurus mediterraneus	1327	Illex coindetii	624
Trachurus trachurus	12320	Loligo vulgaris	48
Trigloporus lastoviza	732	Octopus vulgaris	240
Trisopterus minutus	242	Sepia officinalis	33
Zeus faber	53	Todarodes sagittatus	29

1.11. total number of sampled individuals for length distributions

1.12.	total number of sample	l individuals fo	r sex and maturity
-------	------------------------	------------------	--------------------

Species	Individuals
Teleosteans	
Merluccius merluccius	775
Mullus barbatus barbatus	99
Mullus surmuletus	402
Elasmobranches	
Centrophorus granulosus	1
Dipturus oxyrinchus	28
Etmopterus spinax	78
Galeorhinus galeus	1
Galeus melastomus	682
Leucoraja circularis	4
Mustelus mustelus	1
Myliobatis aquila	9
Raja clavata	195
Raja miraletus	71
Raja polystigma	140
Rostroraja alba	1
Scyliorhinus canicula	1520
Squalus blainville	4
Torpedo marmorata	1

Species	Individuals
Crustaceans	
Aristaeomorpha foliacea	51
Aristeus antennatus	892
Nephrops norvegicus	226
Parapenaeus longirostris	252
Cephalopods	
Eledone cirrhosa	120
Eledone moschata	37
Illex coindetii	423
Loligo vulgaris	48
Octopus vulgaris	240
Sepia officinalis	33
Todarodes sagittatus	29

1.13. number of samples of hard tissues collected for ageing by target species

Species	Individuals
Merluccius merluccius	353
Mullus barbatus barbatus	184
Mullus surmuletus	76

1.14. otolith reading, difficulties encountered
Otoliths of *M. merluccius* have been collected but not read because of the agreement reached during MEDITS coordination meeting held on Ljubljana (2012). Otoliths of *M. barbatus* and *M. surmuletus* are in the process of being read.

2. Focus on historical trends

- 2.1. abundance and biomass indices of target species (MEDITS G1);
- 2.2. minimum, mean and maximum length of target species (MEDITS G1)

Table 1.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Centrophorus granulosus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2008	$0.19{\pm}0.19$	0.77 ± 0.77	94	94	94
2009	0.31 ± 0.31	0.15 ± 0.15	-	-	-
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	0.61 ± 0.61	$2.40{\pm}2.40$	87	89	91
2012	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	0.21±0.21	$0.78{\pm}0.78$	118.5	118.5	118.5

Table 2.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Dalatias licha* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.39{\pm}0.39$	1.22±1.22	94.0	94.0	94.0
2008	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2009	$0.20{\pm}0.20$	0.05 ± 0.05	40.0	40.0	40.0
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	0.36 ± 0.36	$1.04{\pm}1.04$	91.0	91.0	91.0
2012	0.28 ± 0.28	1.69 ± 1.69	100.0	100.0	100.0
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-

Table 3.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Dipturus oxyrinchus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	10.47 ± 4.12	11.63±8.41	19.0	52.2	126.0
2008	11.93 ± 5.24	7.50±6.73	16.5	45.7	108.0
2009	4.67±1.67	6.18±4.95	16.5	56.8	116.0
2010	8.35 ± 2.40	4.37±2.06	18.5	46.7	92.0
2011	6.86 ± 2.64	5.22±2.76	17.0	50.2	80.5
2012	7.73 ± 3.08	9.42 ± 7.00	16.0	57.1	107.5
2013	3.22 ± 1.58	10.54 ± 4.75	11.0	76.3	127.5
2014	4.33±1.99	$9.52{\pm}6.07$	11.0	21.2	60.0
2015	$2.46{\pm}1.01$	5.52±3.31	22.5	67.7	108.0
2016	9.17±2.77	10.99 ± 4.74	17	52.9	104

Table 4.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Etmopterus spinax* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	12.53±2.35	1.66 ± 0.72	10.0	25.6	48.5
2008	7.58 ± 4.47	0.50 ± 0.17	12.0	21.7	40.5
2009	2.87 ± 0.66	0.68 ± 0.32	20.5	33.4	42.5
2010	7.58 ± 2.91	0.78 ± 0.35	9.5	23.5	48.0
2011	5.03±1.33	1.10 ± 0.37	17.5	33.1	45.0
2012	$6.54{\pm}1.64$	1.06 ± 0.32	11.0	30.6	43.0
2013	11.50 ± 4.95	0.72 ± 0.23	9.5	19.6	41.5
2014	8.69±3	$0.47{\pm}0.18$	10.5	20.3	35.5
2015	13.19±9.7	0.47 ± 0.22	10.5	17.7	45.0
2016	44.2 ± 34.4	2.03 ± 0.92	10.5	20.1	48.5

Table 5.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Galeorhinus galeus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2008	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2009	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2012	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	0.45 ± 0.45	11.20 ± 11.20	185	185	185

Table 6.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Galeus* melastomus during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	714.29±226.01	28.81±11.48	9.5	20.7	60.5
2008	822.67±247.41	30.15±7.58	11.0	21.6	60.0
2009	525.00 ± 269.00	24.78±13.10	12.0	24.9	63.0
2010	268.89±96.66	19.69±7.92	10.0	24.1	60.5
2011	173.03 ± 52.75	23.84±8.37	10.5	30.5	69.0
2012	625.21±158.66	35.96±8.76	12.0	22.5	61.0
2013	484.85±141.17	22.23±8.47	12.0	23.1	59.5
2014	543.32±127.60	16.27±3.86	11.0	21.23	60.0
2015	$640.77 {\pm} 208.06$	17.95±5.16	9.5	20.1	57.5
2016	1110.8 ± 334.85	46.95±14.64	10.5	20.6	59

Table 7.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Leucoraja circularis* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.72{\pm}0.72$	$0.58{\pm}0.58$	49.0	54.5	64.5
2008	0.39 ± 0.39	$0.80{\pm}0.80$	73.0	73.0	73.0
2009	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2010	$0.57{\pm}0.57$	1.75 ± 1.75	62.0	71.6	77.5
2011	$0.83 {\pm} 0.83$	0.23±0.23	32.0	37.8	42.0
2012	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2013	2.32 ± 1.56	1.55 ± 1.10	37.0	49.5	62.0
2014	0.92 ± 0.66	0.41 ± 0.27	30.0	42.5	60.0
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	1.76 ± 1.51	$0.84{\pm}0.62$	39.5	48	60

Table 8.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Mustelus asterias* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2008	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2009	0.34 ± 0.34	0.35±0.35	-	-	-
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2012	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-

Table 9.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Mustelus mustelus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$1.09{\pm}0.83$	0.37±0.27	47.5	49.0	51.5
2008	3.95 ± 3.95	$1.50{\pm}1.50$	47.0	50.7	53.0
2009	$1.09{\pm}1.09$	5.73±5.73	105.0	117.5	130.0
2010	7.63 ± 3.94	15.19±11.49	47.0	63.0	155.0
2011	0.96 ± 0.68	0.33±0.23	49.0	50.4	51.5
2012	1.11 ± 1.11	0.39±0.39	49.0	49.0	49.0
2013	2.56 ± 1.60	5.14±4.86	46.0	68.4	144.0
2014	0.43 ± 0.43	0.16±0.16	51.5	51.5	51.5
2015	$1.97{\pm}0.87$	6.24±5.57	6.5	62.8	146.0
2016	3.43 ± 2.93	$1.96{\pm}1.75$	38	65.6	120.5

Table 10.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Myliobatis aquila* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	1.94±1.16	5.16±4.70	70.0	81.9	95.0
2008	8.45 ± 4.90	17.89±9.12	51.0	81.8	116.0
2009	13.29±10.52	10.65±7.99	46.5	67.4	84.0
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	5.57±3.24	8.75±4.92	57.5	80.2	99.5
2012	6.08±3.33	9.17±4.70	64.5	80.5	110.0
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	5.35 ± 4.32	9.56±7.70	59.5	82.95	93
2015	3.72 ± 2.52	8.88±7.24	73.0	84.7	100.5
2016	4.36±2.41	9.78±6.93	44.5	75.7	142

Table 11.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Raja* asterias during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2008	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2009	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	$1.00{\pm}1.00$	$1.02{\pm}1.02$	43.0	52.8	62.5
2012	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-

Table 12.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Raja clavata* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	84.49±22.55	93.79±34.05	16.0	51.7	90.0
2008	54.21±18.22	46.84±12.43	16.0	48.0	91.5
2009	62.00±11.00	66.53±12.40	15.5	51.6	111.5
2010	72.73±15.81	69.75±13.75	10.5	47.1	91.5
2011	69.58±13.55	77.16±13.44	11.0	50.2	91.5
2012	61.66±16.52	50.37±11.12	16.0	47.7	85.0
2013	50.32±14.34	52.71±13.79	21.0	49.4	86.5
2014	92.95 ± 28.89	121.96±45.06	14.0	54.15	92.0
2015	60.46±18.37	52.60±14.23	18.5	48.2	93.0
2016	77.8±23.4	67.06±13.94	18.5	48.2	93.0

Table 13.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Raja miraletus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	17.63±6.75	3.70±1.26	21.5	33.6	43.0
2008	14.22 ± 4.50	2.95 ± 0.95	21.5	34.8	42.5
2009	12.41±4.66	3.21±1.14	27.0	35.7	44.0
2010	20.44 ± 5.66	4.12±1.39	16.0	32.9	41.5
2011	23.29±9.10	4.26±1.43	17.5	32.7	44.0
2012	19.71±6.50	3.87±1.42	19.0	34.4	41.0
2013	21.69±13.89	2.65±1.20	21.0	28.1	43.0
2014	20.02 ± 9.27	3.08±1.28	14.0	29.9	39.5
2015	19.01 ± 8.60	3.14±1.29	22.0	32.0	39.5
2016	36.61±15.94	5.82±2.28	16	31.6	39.5

Table 14.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Raja* polystigma during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	14.66±5.39	3.67±1.18	18.0	33.5	55.5
2008	17.70±6.99	3.75±1.19	21.0	32.4	88.5
2009	6.94±2.44	1.99±0.77	25.5	36.6	55.5
2010	18.54 ± 4.92	6.55±2.24	20.0	36.2	50.5
2011	15.51±5.41	6.40±3.27	22.5	39.8	55.0
2012	45.43±13.12	7.04±1.99	18.0	30.0	53.0
2013	17.35 ± 4.50	2.58 ± 1.00	10.5	28.8	48.5
2014	26.07±6.24	6.16±1.53	19.5	32.98	50.0
2015	10.79 ± 4.31	12.15±9.68	18.5	40.7	100.0
2016	57.66±12.92	12.07 ± 2.88	18	32.8	55

Table 15.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Rostroraja alba* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$1.04{\pm}1.04$	0.103±0.103	23.0	25.5	28.0
2008	0.58 ± 0.58	470.86±470.86	53.0	53.0	53.0
2009	0.36 ± 0.36	3.32±3.32	11.5	11.5	11.5
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2012	$0.80{\pm}0.80$	6.62 ± 5.57	72.0	93.9	142.0
2013	$0.49{\pm}0.49$	17.96±17.96	168.0	168.0	168.0
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	0.45 ± 0.45	0.06 ± 0.06	29	29	29

Table 16.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Scyliorhinus canicula* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	880.71±130.42	126.93±21.75	10.0	33.5	51.5
2008	981.18±345.19	101.06 ± 18.94	9.0	31.5	51.0
2009	924.00±233.00	89.64±13.70	9.0	28.4	67.0
2010	1059.66±214.44	118.55 ± 18.64	10.5	29.7	51.5
2011	774.40 ± 86.99	$110.97{\pm}16.07$	8.0	33.4	51.5
2012	879.41±114.60	106.51±15.11	10.5	31.1	52.0
2013	797.35±131.06	87.70±15.25	11.0	29.2	51.0
2014	1132±175.33	145.18 ± 25.84	10.0	32.19	52.5
2015	859.4 ± 98.84	96.23±12.24	9.5	30.4	50.0
2016	1276.72±176.34	128.48 ± 17.44	10	29.5	51.5

Table 17.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Squalus acanthias* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	19.08 ± 19.08	8.54±8.54	29.0	45.4	61.0
2008	$0.64{\pm}0.64$	0.15±0.15	37.0	37.5	38.0
2009	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2010	$0.69{\pm}0.69$	0.33±0.33	27.0	41.0	55.0
2011	0.32 ± 0.32	0.03 ± 0.03	26.0	26.0	26.0
2012	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2015	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2016	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-

Table 18.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Squalus blainvillei* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	0.23 ± 0.23	0.03±0.03	30.0	30.0	30.0
2008	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2009	5.66 ± 4.57	2.76 ± 2.27	25.0	45.8	65.0
2010	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2011	8.38 ± 8.38	8.38 ± 8.38	26.0	56.0	81.5
2012	6.73±4.99	2.71±2.10	15.0	42.2	63.0
2013	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2014	0.39 ± 0.39	0.96 ± 0.96	-	-	-
2015	$0.37{\pm}0.37$	$0.05 {\pm} 0.05$	32	32	32
2016	$1.27{\pm}0.92$	0.64±0.59	26.5	41.9	59.5

Table 19.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Torpedo marmorata* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$0.80{\pm}0.58$	0.23±0.16	22.5	23.3	24.5
2008	$0.00{\pm}0.00$	$0.00{\pm}0.00$	-	-	-
2009	0.37 ± 0.37	$0.03{\pm}0.03$	15.0	15.0	15.0
2010	0.76 ± 0.54	$0.10{\pm}0.07$	17.5	17.7	18.0
2011	$0.40{\pm}0.40$	$0.03{\pm}0.03$	16.0	16.0	16.0
2012	$1.24{\pm}0.84$	$1.30{\pm}1.00$	30.5	35.2	39.0
2013	$0.85 {\pm} 0.50$	$0.40{\pm}0.29$	17.5	20.0	22.5
2014	0.76 ± 0.49	$0.07{\pm}0.05$	18.5	19.25	20.0
2015	$0.98{\pm}0.57$	0.43 ± 0.33	19.5	25.3	34.5
2016	1.3 ± 0.74	$0.34{\pm}0.29$	13.5	19	29

Table 20.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Merluccius merluccius* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	745.23±176.06	28.69±3.53	5.5	14.7	63.5
2008	257.69±106.14	13.87±2.22	4.5	14.9	56.5
2009	1015.00 ± 445.00	21.81±6.64	4.0	12.8	47.0
2010	710.09±258.52	24.82±4.31	4.0	13.1	44.5
2011	553.77±214.89	18.28 ± 3.01	5.5	13.4	55.0
2012	1125.41±447.65	28.14±7.78	4.0	13.6	59.0
2013	1358.52±570.96	40.82±13.81	5.5	14.4	62.5
2014	662.27±189.41	24.55±4.14	5.0	13.98	57.0
2015	426.66±141.57	15.08 ± 2.71	5.5	13.9	55.0
2016	501.93±171.63	13.29 ± 2.54	6	13.2	52

Table 21.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Mullus barbatus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	579.11±274.21	27.44±13.08	10.0	15.5	25.0
2008	282.77±109.83	14.82 ± 5.14	10.5	16.5	25.0
2009	260.00 ± 128.00	13.34±7.32	9.5	15.7	24.0
2010	172.45±67.32	10.21±3.95	11.0	17.1	23.0
2011	94.39±40.02	5.87 ± 2.53	12.0	17.3	23.0
2012	67.70±24.10	3.68±1.37	9.5	16.6	23.0
2013	27.62±17.81	$1.49{\pm}1.02$	11.0	16.4	22.0
2014	64.03 ± 42.08	4.80±3.59	11.5	17.82	24.0
2015	38.99±23.63	1.98 ± 1.18	12.0	16.5	21.5
2016	42.03±22.32	2.32±1.25	12.5	16.7	25

Table 22.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices $(\pm standard error)$ and minimum, mean and maximum length (cm) of the species *Mullus surmuletus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	1488.15±651.25	102.88 ± 50.04	12.5	17.7	29.0
2008	476.83±183.59	35.02±13.25	13.5	18.5	27.5
2009	2050.00±1495.00	169.37±123.95	11.0	19.0	56.0
2010	468.80±224.85	38.82 ± 22.28	11.0	18.6	30.5
2011	350.96±142.18	22.52±9.44	5.5	17.6	27.0
2012	650.64±327.76	44.06±23.78	8.0	18.0	36.5
2013	135.49±41.19	9.87±3.20	13.5	18.0	25.0
2014	320.89±111.94	21.77±7.07	13.5	17.46	26.5
2015	259.13±110.87	18.43 ± 9.46	13.0	17.7	27.0
2016	272.57±126.02	16.28 ± 6.31	12.5	16.9	24.5

Table 23.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Pagellus erythrinus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	133.16±54.15	10.18 ± 4.32	9.0	17.1	27.0
2008	128.85 ± 56.49	11.96 ± 5.57	8.0	18.1	31.0
2009	61.78±18.39	4.48 ± 1.03	9.0	16.2	31.0
2010	43.56±17.73	4.89±2.11	11.0	19.5	29.0
2011	117.52±55.81	3.85±1.34	9.0	13.5	29.0
2012	106.62±35.92	6.49±1.92	10.0	15.9	34.0
2013	42.82±20.69	3.06±1.24	9.5	16.6	28.5
2014	149.34 ± 70.95	$6.84{\pm}2.86$	7.5	14.53	31.5
2015	61.08±36.19	3.48±1.94	10.0	16.2	26.0
2016	107.61 ± 39.8	6.05 ± 2.27	10	16	28

Table 24.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (mm) of the species *Aristaeomorpha foliacea* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	$1.48{\pm}0.88$	0.01±0.01	25.0	29.6	35.0
2008	0.25 ± 0.25	0.01 ± 0.01	35.0	35.0	35.0
2009	0.99 ± 0.63	$0.03{\pm}0.02$	35.0	43.4	50.0
2010	$1.70{\pm}1.45$	0.01 ± 0.01	24.0	24.0	24.0
2011	1.93 ± 1.33	$0.04{\pm}0.03$	30.0	36.8	40.0
2012	14.74 ± 14.74	$0.34{\pm}0.34$	15.0	34.3	50.0
2013	5.47±3.89	0.17±0.12	30.0	42.7	54.0
2014	3.62±1.26	$0.07{\pm}0.03$	20.0	35.7	54.0
2015	5.17±4.13	0.11±0.09	22.0	37.0	54.0
2016	42.45±33.85	0.43±0.31	20.0	30.8	57.0

Table 25.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (mm) of the species *Aristeus antennatus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	121.08±25.13	2.44±0.54	18.0	35.8	56.0
2008	322.31±46.77	4.35±0.51	16.0	29.9	63.0
2009	178.00 ± 39.00	3.47±0.96	18.0	34.9	65.0
2010	$113.40{\pm}18.98$	2.10±0.57	11.0	33.0	62.0
2011	128.44 ± 56.65	1.53 ± 0.51	17.0	28.7	55.0
2012	372.94±115.35	3.56±1.06	14.0	26.2	57.0
2013	228.43 ± 67.40	3.05 ± 0.70	14.0	31.1	57.0
2014	119.22±30.29	3.72±1.98	17.0	32.5	61.0
2015	156.02 ± 33.10	$1.74{\pm}0.37$	15.0	28.0	61.0
2016	373.6±93.6	5.54±1.32	16.0	30.6	60.0

Table 26.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (mm) of the species *Nephrops norvegicus* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	164.72±99.9	5.25±2.73	18.0	33.4	66.0
2008	179.15±90.31	7.12±3.11	19.0	35.8	69.0
2009	69.00 ± 45.00	2.43±1.34	9.0	34.9	64.0
2010	120.25 ± 44.21	4.21±1.48	6.0	36.1	63.0
2011	49.64±24.81	$2.00{\pm}1.00$	25.0	38.0	71.0
2012	65.66±25.94	$2.64{\pm}0.93$	24.0	37.8	61.0
2013	$107.40{\pm}40.66$	4.21±1.53	18.0	38.0	62.0
2014	52.86±17.21	2.16±0.59	16.0	36.8	65.0
2015	45.23±16.89	$1.92{\pm}0.68$	23.0	38.0	60.0
2016	83.06±31.21	3.93±1.49	24.0	39.0	64.0

Table 27.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (mm) of the species *Parapenaeus longirostris* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	8.27±3.69	$0.07{\pm}0.03$	10.0	24.1	37.0
2008	56.18±24.41	$0.46{\pm}0.19$	20.0	24.0	36.0
2009	43.00±21.00	0.47 ± 0.22	19.0	27.7	52.0
2010	67.29±30.10	0.68 ± 0.27	14.0	25.1	40.0
2011	15.26 ± 5.85	$0.17{\pm}0.07$	21.0	28.6	39.0
2012	70.23±23.31	0.63 ± 0.23	12.0	24.2	38.0
2013	64.95±26.11	0.81±0.33	21.0	29.3	39.0
2014	47.98±16.93	0.45 ± 0.16	7.0	25.6	23.0
2015	15.74 ± 9.07	0.19±0.12	20.0	28.0	36.0
2016	140.08 ± 45.99	0.93 ± 0.36	6.0	21.2	38.0

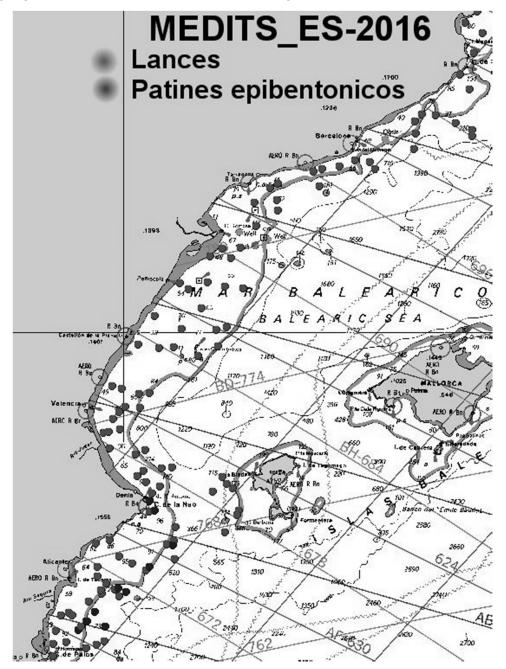
Table 28.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Illex coindetii* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	13.15±3.96	1.90±0.67	7.0	15.9	23.0
2008	11.98 ± 2.18	1.89 ± 0.35	2.0	14.4	21.0
2009	216.20±41.64	29.02±4.57	7.0	16.2	23.0
2010	393.10±77.80	59.31±10.84	5.0	17.2	27.0
2011	46.92 ± 7.88	6.54±1.27	5.0	16.3	30.0
2012	93.78±14.89	$10.84{\pm}1.86$	7.0	15.0	21.0
2013	240.63 ± 28.61	28.61±4.40	4.0	15.4	23.5
2014	241.95±31.66	25.52 ± 52.37	5.0	14.19	22.0
2015	85.43±11.46	6.44 ± 0.72	1.5	12.6	20.5
2016	218.9±69.24	$10.54{\pm}1.96$	4.5	10.2	20.5

Table 29.- Historical trends of abundance (n/km^2) and biomass (kg/km^2) indices (±standard error) and minimum, mean and maximum length (cm) of the species *Loligo vulgaris* during MEDITS surveys (GSA 5).

	Abundance ±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
2007	14.03±4.90	1.96 ± 0.54	7.0	15.7	26.0
2008	98.33±29.18	5.38 ± 1.58	2.0	8.9	38.0
2009	245.49±162.15	7.99±2.11	1.0	7.5	28.0
2010	21.16±5.12	2.27 ± 0.52	2.0	13.0	24.0
2011	40.35±11.37	7.52 ± 2.47	3.0	18.0	38.0
2012	2786.27±2239.64	7.39±1.74	1.0	3.2	44.0
2013	291.62±136.99	4.32±1.76	2.0	5.6	36.5
2014	131.24±54.39	5.11±1.26	2.5	8.96	29.0
2015	95.21±25.54	8.55±1.53	1.5	11.7	33.5
2016	24.09 ± 8.4	2.62 ± 0.69	4	14.4	34.5

No catches of the following species: Dipturus batis, Heptranchias perlo, Hexanchus griseus, Leucoraja melitensis, Mustelus punctulatus, Oxynotus centrina, Raja undulata, Rhinobatos cemiculus, Rhinobatos rhinobatos, Scyliorhinus stellaris, Squatina aculeata, Squatina oculata and Squatina squatina.


- 3. <u>Planning for the next survey</u>
 - 3.1. indication of the period and vessel specifying if it is in line with the previous ones, emerging issues if any

In 2016, the Spanish MEDITS survey in GSA 5 is planned from June 7th-21th on board the research vessel *Miguel Oliver*.

Outline of the report by GSA for presentation in the draft agenda

1. Review of 2016 survey. GSA 06 (Northern Spain)

- 1.1. Period in which the survey was carried out: May 11th- June 6th
- 1.2. Vessel: R/V Miguel Oliver
- 1.3. Number of hauls performed, possible difficulties encountered: 106 hauls. None.
- 1.4. The geographic area covered with a map showing haul locations

- 1.5. Number of hauls in which Scanmar (or equivalent equipment) was used: 106
- 1.6. Number of hauls in which CTD SeaBird 37 was used: 106.
- 1.7. Other measures of environmental variables carried out: None.
- 1.8. Litter recording: 339 kg from 8 litter categories (see table).

Category	kg
Coal	69
Ceramics	5
Crystal	17
Wood	66
Metal	23
Others	29
Plastics	93
Clothes	37

1.9. Number of species classified by taxa:

Category	Number species
Fish	153
Crustaceans	97
Molluscs	71
Others	74

1.10. Total number of classified individuals of the MEDITS reference list:

Teleosteans	Number
Aspitrigla cuculus	1104
Boops boops	1349
Diplodus annularis	829
Diplodus puntazzo	0
Diplodus sargus	0
Diplodus vulgaris	27
Engraulis encrasicolus	46758
Epinephelus spp.	0
Eutrigla gurnardus	170
Helicolenus dactylopterus	3938
Lepidorhombus boscii	627
Lithognathus mormyrus	0
Lophius budegassa	452
Lophius piscatorius	57

Merluccius merluccius	7179
Micromesistius poutassou	25706
Mullus barbatus	4482
Mullus surmuletus	552
Pagellus acarne	150
Pagellus bogaraveo	128
Pagellus erythrinus	1332
Pagrus pagrus	41
Phycis blennoides	3404
Polyprion americanus	0
Psetta máxima	0
Sardina pilchardus	7451
Scomber spp.	305
Solea vulgaris	2
Spicara flexuosa	4445
Spicara smaris	6647
Trachurus mediterraneus	1891
Trachurus trachurus	30390
Trigla lucerna	1
Trigloporus lastoviza	760
Trisopterus minutus capelanus	8324
Zeus faber	53
Elasmobranches	Number
Centrophorus granulosus	0
Dalatias licha	2
Dipturus batis	0
Dipturus oxyrinchus	1
Etmopterus spinax	33
Galeorhinus galeus	0
Galeus melastomus	1253
Hexanchus griseus	0
Leucoraja circularis	0
Leucoraja naevus	54
Mustelus asterias	0
Mustelus mustelus	0
Mustelus punctulatus	0
Myliobatis aquila	0
Oxynotus centrina	0
Raja asterias	36

Raja clavata15Raja miraletus1Raja montagui2	5
Raia montagui 2	
r aja montagai 2	
Raja undulata 0	
Rhinobatos cemiculus 0	
Rhinobatos rhinobatos 0	
Rostroraja alba 0	
Scyliorhinus canicula 428	88
Scyliorhinus stellaris 0	
Squalus acanthias 1	
Squalus blainville 4	
Squatina aculeata 0	
Squatina oculata 0	
Squatina squatina 0	
Torpedo marmorata 12	2
Crustaceans Num	ber
Aristaeomorpha foliacea 12	2
Aristeus antennatus 89	2
Nephrops norvegicus 168	34
Parapenaeus longirostris 336	61
Palinurus elephas 8	
Penaeus kerathurus 0	
Squilla mantis 10-	4
Cephalopods Num	ber
Eledone cirrhosa 27	3
Eledone moschata 24	ł
Illex coindetii 425	55
Loligo vulgaris 2	
Octopus vulgaris 23	7
Sepia officinalis17	7

1.11. Total number of sampled individuals for length distributions

Teleosteans	Number
Aspitrigla cuculus	411
Boops boops	833
Diplodus annularis	602
Diplodus puntazzo	0
Diplodus sargus	0

Engraulis encrasicolus2624Epinephelus spp.0Eutrigla gurnardus170Helicolenus dactylopterus1483Lepidorhombus boscii541Lithognathus mormyrus0Lophius budegassa426Lophius piscatorius57Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus batis0Dipturus oxyrinchus1Etmopterus spinax33	Diplodus vulgaris	24
Eutrigla gurnardus170Helicolenus dactylopterus1483Lepidorhombus boscii541Lithognathus mormyrus0Lophius budegassa426Lophius piscatorius577Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Socmber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Engraulis encrasicolus	2624
Helicolenus dactylopterus1483Lepidorhombus boscii541Lithognathus mormyrus0Lophius budegassa426Lophius piscatorius57Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Socmber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Epinephelus spp.	0
Lepidorhombus boscii541Lithognathus mormyrus0Lophius budegassa426Lophius piscatorius57Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Eutrigla gurnardus	170
Lithognathus mormyrus0Lophius budegassa426Lophius piscatorius57Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Helicolenus dactylopterus	1483
Lophius budegassa426Lophius piscatorius57Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus barbatus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Triglo porus lastoviza334Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dipturus batis0Dipturus oxyrinchus1	Lepidorhombus boscii	541
Lophius piscatorius57Lophius piscatorius5029Micromesistius poutassou1583Mullus barbatus3586Mullus barbatus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Lithognathus mormyrus	0
Merluccius merluccius5029Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Lophius budegassa	426
Micromesistius poutassou1583Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Lophius piscatorius	57
Mullus barbatus3586Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dipturus batis0Dipturus batis0Dipturus oxyrinchus1	Merluccius merluccius	5029
Mullus surmuletus467Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Micromesistius poutassou	1583
Pagellus acarne141Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dipturus batis0Dipturus batis0Dipturus oxyrinchus1	Mullus barbatus	3586
Pagellus bogaraveo128Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dipturus batis0Dipturus batis0Dipturus oxyrinchus1	Mullus surmuletus	467
Pagellus erythrinus1062Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Pagellus acarne	141
Pagrus pagrus21Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Pagellus bogaraveo	128
Phycis blennoides2074Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Pagellus erythrinus	1062
Polyprion americanus0Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus mediterraneus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dipturus batis0Dipturus batis0Dipturus oxyrinchus1	Pagrus pagrus	21
Psetta máxima0Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Phycis blennoides	2074
Sardina pilchardus1413Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Polyprion americanus	0
Scomber spp.305Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53Elasmobranches0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Psetta máxima	0
Solea vulgaris2Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Sardina pilchardus	1413
Spicara flexuosa2403Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Scomber spp.	305
Spicara smaris1239Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Solea vulgaris	2
Trachurus mediterraneus888Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Spicara flexuosa	2403
Trachurus trachurus6715Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Spicara smaris	1239
Trigla lucerna1Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Trachurus mediterraneus	888
Trigloporus lastoviza334Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Trachurus trachurus	6715
Trisopterus minutus capelanus4397Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Trigla lucerna	1
Zeus faber53Zeus faber53ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Trigloporus lastoviza	334
ElasmobranchesNumberCentrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Trisopterus minutus capelanus	4397
Centrophorus granulosus0Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Zeus faber	53
Dalatias licha2Dipturus batis0Dipturus oxyrinchus1	Elasmobranches	Number
Dipturus batis0Dipturus oxyrinchus1	Centrophorus granulosus	0
Dipturus oxyrinchus 1	Dalatias licha	2
,, , ,	Dipturus batis	0
Etmopterus spinax 33	Dipturus oxyrinchus	1
	Etmopterus spinax	33
Galeorhinus galeus 0	Galeorhinus galeus	0
Galeus melastomus 1253	Galeus melastomus	1253

Hexanchus griseus	0
Leucoraja circularis	0
Leucoraja naevus	54
Mustelus asterias	0
Mustelus mustelus	0
Mustelus punctulatus	0
Myliobatis aquila	0
Oxynotus centrina	0
Raja asterias	36
Raja clavata	15
Raja miraletus	1
Raja montagui	2
Raja undulata	0
Rhinobatos cemiculus	0
Rhinobatos rhinobatos	0
Rostroraja alba	0
Scyliorhinus canicula	4223
Scyliorhinus stellaris	0
Squalus acanthias	1
Squalus blainville	4
Squatina aculeata	0
Squatina oculata	0
Squatina squatina	0
Torpedo marmorata	12
Crustaceans	Number
Aristaeomorpha foliacea	12
Aristeus antennatus	575
Nephrops norvegicus	1530
Parapenaeus longirostris	2999
Palinurus elephas	8
Penaeus kerathurus	0
Squilla mantis	104
Cephalopods	Number
Eledone cirrhosa	273
Eledone moschata	24
Illex coindetii	3381
Loligo vulgaris	2
O stanus un la suis	219
Octopus vulgaris	219

Todarodes sagittatus	31
----------------------	----

Teleosteans	Number
Merluccius merluccius	2242
Mullus barbatus	1481
Mullus surmuletus	514
Elasmobranches	Number
Centrophorus granulosus	0
Dalatias licha	3
Dipturus batis	0
Dipturus oxyrinchus	1
Etmopterus spinax	33
Galeorhinus galeus	0
Galeus melastomus	1009
Heptranchias perlo	0
Hexanchus griseus	0
Leucoraja circularis	0
Leucoraja naevus	54
Mustelus asterias	0
Mustelus mustelus	0
Mustelus punctulatus	0
Myliobatis aquila	0
Oxynotus centrina	0
Raja asterias	36
Raja clavata	15
Raja miraletus	1
Raja montagui	2
Raja undulata	0
Rhinobatos cemiculus	0
Rhinobatos rhinobatos	0
Rostroraja alba	0
Scyliorhinus canicula	2271
Scyliorhinus stellaris	0
Squalus acanthias	1
Squalus blainville	4

1.12. Total number of sampled individuals for sex and maturity

Squatina aculeata	0
Squatina oculata	0
Squatina squatina	0
Torpedo marmorata	11
Crustaceans	Number
Aristaeomorpha foliacea	12
Aristeus antennatus	363
Nephrops norvegicus	850
Parapenaeus longirostris	1609
Cephalopods	Number
Illex coindetii	1059
Loligo vulgaris	2

1.13. Number of samples of hard tissues collected for ageing by target species

Teleosteans	Number
Merluccius merluccius	225
Mullus barbatus	486
Mullus surmuletus	326

1.14. Otolith reading, difficulties encountered: Otoliths of *Merluccius merluccius* have been collected but not read because of the agreement reached during MEDITS coordination meeting held on Ljubljana (2012).

1.15. Other samplings for common projects:

1.16. Difficulties encountered in the application of the new protocol, emerging issues and suggestions for improvements:

The sampling protocol for otoliths, individual weight and maturity stages is not totally clear. Table 2 in Annex XIV in the Medits handbook 2012 indicates the sample size for this sampling, but does not specify if this target should be covered by member state, GSA, strata level or area (see Annex II from Medits handbook 2012). There is a paragraph in this annex that states "It is recommended that otoliths, individual weight and maturity stages are collected in each haul. For example 1-2 individuals should be taken per length class and haul, or 1 fish every 10 fish per length class and haul as in the Evhoe survey. However this specific approach will be adapted to the characteristics of each GSA". This kind of approach is difficult to follow on board, especially because for each species a different number of individuals should be collected depending on their size range

2. Focus on historical trends

Table 1.- Historical trends of abundance (n^o/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Etmopterus spinax* during MEDITS surveys (GSA 6).

	Abundance		Lmin	Luce of	Lineari
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	4.70+/-2.72	0.35+/-0.26			
1996	4.79+/-3.68	0.32+/-0.24			
1997	6.46+/-5.54	0.38+/-0.27			
1998	5.62+/-6.06	0.57+/-0.64			
1999	4.10+/-2.97	0.43+/-0.42			
2000	2.71+/-3.03	0.14+/-0.17			
2001	2.84+/-2.08	0.23+/-0.26			
2002	3.94+/-3.94	0.17+/-0.15			
2003	3.17+/-2.40	0.24+/-0.20			
2004	1.96+/-1.26	0.28+/-0.23			
2005	2.56+/-1.85	0.14+/-0.15			
2006	6.08+/-4.85	0.37+/-0.28			
2007	3.83+/-4.99	0.13+/-0.15	80	228	485
2008	0.99+/-1.17	0.08+/-0.09	95	240	420
2009	2.85+/-2.97	0.21+/-0.25	90	229	425
2010	0.77+/-0.62	0.05+/-0.06	95	244	480
2011	1.83+/-2.33	0.09+/-0.09	100	250	450
2012	0.39+/-0.43	0.04+/-0.06	90	264	430
2013	0.93+/-0.93	0.06+/-0.05	120	208	364
2014	2.46+/-1.15	0.19+/-0.09	90	235	435
2015	1.75+/-0.86	0.11+/-0.06	100	240	1070

2016	3.43+/-1.20	0.22+/-0.09	113	210	397

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Galeus melastomus* during MEDITS surveys (GSA 6).

	Abundance				_
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	32.07+/-21.08	4.95+/-3.30			
1996	25.68+/-14.25	4.05+/-2.83			
1997	32.27+/-20.06	5.56+/-4.62			
1998	29.78+/-28.30	2.81+/-2.69			
1999	26.03+/-12.91	4.42+/-2.15	100	360	680
2000	19.57+/-12.62	2.79+/-2.74	95	338	620
2001	80.59+/-43.99	5.52+/-2.41	100	326	630
2002	90.12+/-73.27	9.28+/-5.61	105	329	620
2003	40.40+/-20.92	6.63+/-3.64	110	364	645
2004	36.80+/-22.74	8.27+/-6.76	105	364	750
2005	50.80+/-32.07	8.29+/-6.37	105	344	620
2006	81.52+/-55.15	8.49+/-6.35	105	327	630
2007	143.71+/-151.89	11.39+/9.95	95	316	645
2008	35.15+/-43.17	3.03+/-2.08	100	317	630
2009	45.89+/-51.60	4.86+/-3.81	85	337	690
2010	18.44+/-15.46	3.30+/-3.48	100	347	610
2011	47.67+/-41.50	3.95+/-2.27	70	342	690
2012	60.04+/-38.55	4.59+/-2.97	105	314	620
2013	57.37+/-4.68	6.45+/-4.68	110	427	620
2014	209.6+/-66.9	20.6+/-5.6	105	365	615
2015	1043.3+/-818.5	40.2+/-17.5	80	310	630

2016	128.73+/-24.06	19.48+/-2.98	116	415	615

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Scyliorhinus canicula* during MEDITS surveys (GSA 6).

	Abundance	Biomass ±S.E.	Lmin	Lmed	Imay
	±S.E.	BIOMASS 13.E.	LWIN	Lmea	Lmax
1995	52.21+/-55.42	8.27+/-9.04			
1996	82.04+/-82.08	13.15+/13.50			
1997	153.34+/-103.24	16.57+/-10.26			
1998	19.37+/-19.37	2.26+/-1.75			
1999	20.32+/-15.28	3.41+/-2.43	100	350	520
2000	198.32+/-228.37	22.73+/-22.80	105	341	53
2001	77.91+/-49.37	7.42+/-3.75	95	312	565
2002	120.24+/-64.90	16.22+/-8.97	65	341	550
2003	128.22+/-108.40	17.52+/-14.78	90	353	545
2004	88.14+/-50.67	16.15+/-10.14	65	360	520
2005	167.09+/-91.40	22.54+/-11.65	95	330	550
2006	201.66+/-121.49	24.49+/-9.64	100	358	565
2007	159.25+/-113.61	20.93+/-11.21	40	346	565
2008	85.35+/-44.02	14.76+/-8.30	80	332	530
2009	284.12+/-193.61	24.49+/-12.11	30	336	670
2010	148.98+/-93.79	22.34+/-15.46	30	322	522
2011	208.38+/-112.26	29.97+/-18.58	30	342	596
2012	147.82+/-90.60	27.43+/-21.48	90	329	535
2013	178.66+/-75.87	29.14+/-10.35	90	335	520
2014	265.5+/-13.5	54.0+/-13.5	90	340	520
2015	457+/-104	51.8+/-13.2	70	320	530
2016	512.44+/-129.04	55.80+/-8.28	74	331	645

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Merluccius merluccius* during MEDITS surveys (GSA 6).

	Abundance				Lmay
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	270.56+/-125.87	3.92+/-1.82	25	138	610
1996	751.30+/-334.54	12.57+/-3.82	35	155	720
1997	1130.53+/-510.82	12.60+/-4.27	10	146	705
1998	1081.17+/-605.04	13.08+/-6.00	45	137	580
1999	962.06+/-349.07	9.60+/-2.50	25	134	610
2000	2361.17+/-829.64	18.66+/-4.96	40	139	510
2001	849.06+/-339.58	12.07+/-2.78	35	154	685
2002	1364.66+/-492.38	16.14+/-4.08	50	148	560
2003	1094.10+/-458.02	21.65+/-11.48	30	153	660
2004	2026.45+/-616.79	24.79+/-7.84	45	134	510
2005	1965.01+/-696.91	17.97+/-4.52	35	130	645
2006	2620.80+/-1206.28	30.71+/-9.81	20	141	665
2007	794.46+/-365.72	9.77+/-2.42	30	204	635
2008	1038.85+/-589.05	13.81+/-5.74	25	205	620
2009	1138.84+/-545.08	18.75+/-6.51	25	215	640
2010	1398.92+/-795.54	17.47+/-6.68	10	204	900
2011	582.12+/-196.14	12.62+/-3.19	10	205	550
2012	752.24+/-261.36	13.93+/-3.87	40	181	625
2013	809.15+/-313.53	18.94+/-6.47	30	128	490
2014	1101.4+/-368.8	23.1+/-3.8	10	127	750
2015	943.9+/-132.8	15.5+/-1.4	50	180	670
2016	1242.06+/-198.22	19.43+/-2.48	51	194	990

Table 1.- Historical trends of abundance (n^o/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Mullus barbatus* during MEDITS surveys (GSA 6).

	Abundance	D			
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	174.14+/-76.03	5.79+/-2.60	95	148	250
1996	119.68+/-53.75	4.54+/-2.16	100	151	250
1997	69.15+/-45.06	3.66+/-2.20	110	165	250
1998	167.78+/-99.02	7.32+/-3.59	105	160	240
1999	126.97+/-51.46	5.39+/-2.01	90	155	250
2000	190.15+/-86.82	7.03+/-2.92	55	153	245
2001	86.91+/-36.69	4.20+/-1.17	105	164	275
2002	99.09+/-34.90	5.48+/-1.84	95	164	250
2003	205.70+/-77.99	8.82+/-3.50	85	154	260
2004	127.95+/-51.28	6.63+/-2.74	90	156	270
2005	119.25+/-54.21	6.71+/-3.04	100	165	365
2006	270.95+/-154.70	11.93+/-7.06	50	155	255
2007	562.27+/-307.98	22.89+/-11.94	100	170	260
2008	103.63+/-58.61	6.54+/-3.31	80	179	285
2009	183.80+/-72.45	8.23+/-3.11	70	163	300
2010	211.51+/-151.01	9.36+/-6.59	75	167	265
2011	108.05+/-51.96	5.81+/-2.63	80	172	260
2012	360.11+/-102.66	14.04+/-4.13	45	164	285
2013	245.09+/-107.90	10.73+/-3.97	100	151	270
2014	526.8+/-87.2	23.4+/-3.9	85	151	255
2015	593.1+/-97.7	29.7+/-4.1	25	170	260
2016	901.04+/-154.27	33.56+/-4.8	97	169	277

Table 1.- Historical trends of abundance (n^o/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Mullus surmuletus* during MEDITS surveys (GSA 6).

	Abundance	Bioma 10 F	• •	1	.
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	39.70+/-39.82	3.45+/-3.03	120	192	325
1996	18.01+/-10.01	1.89+/-1.19	135	204	365
1997	16.17+/-10.17	1.71+/-0.99	110	205	330
1998	18.28+/-9.54	1.64+/-0.89	110	197	330
1999	27.60+/-29.76	2.19+/-2.01	100	169	320
2000	19.05+/-12.98	1.95+/-1.23	130	195	285
2001	23.26+/-13.66	2.23+/-1.11	105	203	445
2002	16.76+/-8.47	1.78+/-0.84	150	211	410
2003	11.30+/-4.42	1.44+/-0.67	130	220	365
2004	17.06+/-10.15	1.91+/-0.92	140	206	390
2005	16.47+/-9.45	1.56+/-0.80	130	206	310
2006	59.32+/-76.60	4.62+/-5.83	55	204	360
2007	52.23+/-37.68	6.70+/-5.79	125	201	330
2008	10.36+/-3.98	1.38+/-0.51	35	209	335
2009	21.94+/-11.19	2.48+/-1.01	15	201	560
2010	24.95+/-32.19	2.38+/-2.64	11	203	355
2011	34.82+/-37.66	3.20+/-3.32	55	199	335
2012	36.54+/-25.73	3.22+/-2.47	40	196	365
2013	48.58+/-33.78	4.38+/-2.70	130	188	300
2014	65.4+/-17.7	6.3+/-1.6	110	196	315
2015	72.3+/-19.8	6.1+/-1.6	20	190	335
2016	86.88+/-19.97	6.62+/-1.43	121	196	349

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Pagellus erythrinus* during MEDITS surveys (GSA 6).

	Abundance				
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	6.40+/-3.91	0.55+/-0.26	110	209	325
1996	10.56+/-4.76	1.23+/-0.61	100	199	370
1997	10.98+/-7.91	1.24+/-0.89	45	202	315
1998	22.52+/-14.86	2.10+/-1.29	40	195	435
1999	39.43+/-23.03	3.76+/-1.72	85	196	365
2000	34.30+/-26.30	4.25+/-2.99	90	209	400
2001	46.96+/-28.02	6.07+/-3.19	85	204	460
2002	42.59+/-21.06	5.85+/-3.32	50	214	500
2003	36.06+/-29.39	4.72+/-3.83	65	209	540
2004	29.17+/-15.66	3.87+/-1.90	70	201	405
2005	17.00+/-7.54	2.27+/-1.09	90	216	390
2006	54.38+/-38.74	6.60+/-4.35	55	199	450
2007	260.52+/-232.73	13.11+/8.11	85	213	410
2008	81.91+/-63.87	6.61+/-4.30	100	223	515
2009	65.51+/-52.51	5.81+/-4.83	70	214	490
2010	183.01+/-180.01	11.80+/9.07	75	211	380
2011	125.98+/-98.93	9.27+/-7.24	65	200	370
2012	103.77+/-50.34	10.34+/5.11	80	194	340
2013	174.30+/-34.08	16.12+/-3.09	70	195	365
2014	162.04+/-31.66	18.99+/-3.54	75	195	430
2015	165.78+/-37.3	18.1+/-4.2	70	210	470
2016	160.54+/-34.2	17.5+/-3.66	71	197	341

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Aristeus antennatus* during MEDITS surveys (GSA 6).

	Abundance				
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax
1995	45.50+/-42.75	0.64+/-0.55	16	34	57
1996	79.76+/-68.23	1.38+/-1.17	16	36	63
1997	59.43+/-47.20	1.08+/-0.85	17	34	66
1998	30.29+/-26.80	0.42+/-0.37	17	33	62
1999	35.89+/-28.17	0.45+/-0.35	14	31	60
2000	63.27+/-67.92	0.78+/-0.75	18	32	60
2001	40.31+/-48.90	0.53+/-0.60	10	32	55
2002	34.25+/-29.11	0.49+/-0.40	18	33	62
2003	39.92+/-27.51	0.74+/-0.45	20	37	61
2004	32.39+/-29.42	0.53+/-0.44	16	34	64
2005	12.43+/-15.26	0.28+/-0.28	16	33	62
2006	42.62+/-50.35	0.68+/-0.81	14	35	60
2007	27.57+/-31.77	0.41+/-0.39	13	34	58
2008	63.00+/-46.47	0.82+/-0.60	11	33	63
2009	46.031+/-34.74	0.74+/-0.55	10	36	36
2010	31.26+/-31.89	0.47+/-0.50	7	34	62
2011	37.30+/-30.75	0.55+/-0.42	11	53	61
2012	66.06+/-58.30	0.91+/-0.76	12	33	57
2013	37.26+/-33.13	0.69+/-0.63	18	32	56
2014	110.4+/-44.00	3.01+/-1.40	16	31	83
2015	221.6+/-143.1	3.1+/-1.7	5	35	61
2016	101.89+/-49.04	1.41+/-0.56	18	34	62

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Nephrops norvegicus* during MEDITS surveys (GSA 6).

	Abundance	Biomass ±S.E.		Lune d	
	±S.E.	BIOMASS ±5.E.	Lmin	Lmed	Lmax
1995	69.17+/-33.84	1.95+/-0.85	16	35	65
1996	86.22+/-64.89	2.47+/-1.78	17	37	71
1997	93.83+/-73.66	2.48+/-1.76	14	34	63
1998	36.62+/-33.46	1.02+/-0.91	18	35	59
1999	32.02+/-27.20	0.74+/-0.51	10	32	64
2000	74.82+/-104.75	1.28+/-1.44	16	33	65
2001	173.07+/-110.55	4.74+/-2.75	15	34	55
2002	89.28+/-58.28	2.41+/-1.41	9	35	72
2003	69.07+/-47.65	1.99+/-1.22	15	35	88
2004	103.96+/-89.51	2.57+/-1.81	15	36	63
2005	47.17+/-31.33	1.50+/-0.99	16	37	65
2006	77.87+/-41.41	2.53+/-1.36	14	37	67
2007	61.38+/-40.64	2.08+/-1.21	14	40	68
2008	39.52+/-30.62	1.11+/-0.80	17	40	74
2009	123.94+/-97.12	3.37+/-2.44	9	38	51
2010	57.14+/-45.55	1.63+/-1.20	6	40	48
2011	60.20+/-37.46	1.77+/-1.11	17	42	63
2012	183.95+/-179.73	4.05+/-3.05	10	36	68
2013	133.63+/-100.21	3.14+/-2.23	17	32	62
2014	197.54+/-50.54	5.75+/-1.43	13	33	65
2015	714.2+/-13.7	20.0+/-13.7	10	38	66
2016	159.51+/-40.02	4.62+/-1.12	18	41	97

	Abundance	Biomass ±S.E.				
	±S.E.	BIOMASS IS.E.	Lmin	Lmed	Lmax	
1995	10.34+/-9.97	0.10+/-0.11	8	21	37	
1996	21.07+/-27.96	0.18+/-0.23	9	24	41	
1997	6.54+/-7.57	0.06+/-0.07	11	23	39	
1998	7.10+/-6.27	0.07+/-0.07	7	22	39	
1999	19.99+/-17.95	0.17+/-0.15	6	22	37	
2000	86.04+/-77.65	0.58+/-0.45	8	23	37	
2001	77.80+/-50.37	0.97+/-0.70	5	23	40	
2002	30.15+/-25.17	0.31+/-0.25	9	23	41	
2003	2.84+/-1.70	0.03+/-0.02	10	25	36	
2004	23.30+/-23.50	0.27+/-0.29	6	24	40	
2005	7.61+/-5.34	0.10+/-0.07	17	27	39	
2006	7.15+/-4.32	0.10+/-0.06	5	26	41	
2007	9.81+/-10.57	0.11+/-0.13	8	24	41	
2008	5.40+/-4.97	0.06+/-0.06	10	26	38	
2009	31.64+/-19.76	0.28+/-0.19	7	25	29	
2010	32.28+/-28.19	0.39+/-0.33	13	36	37	
2011	21.12+/-13.52	0.21+/-0.14	10	25	41	
2012	61.19+/-61.92	0.75+/-0.82	9	25	52	
2013	33.40+/-21.00	0.45+/-0.28	10	28	54	
2014	223.28+/-63.16	2.17+/-0.54	12	26	47	
2015	159.8+/-25.9	1.1+/-0.2	4	24	43	
2016	376.57+/-74.11	3.56+/-0.68	10	24	40	

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *Parapenaeus longirostris* during MEDITS surveys (GSA 6).

Table 1.- Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and minimum, mean and maximum length (mm) of the specie *llex coindetti* during MEDITS surveys (GSA 6).

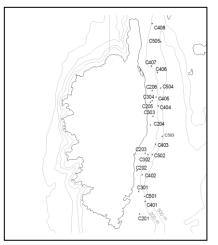
	Abundance	Diamage 10 5	L and the			
	±S.E.	Biomass ±S.E.	Lmin	Lmed	Lmax	
1995	10.11+/-3.68	0.97+/-0.40	48	133	250	
1996	102.57+/-62.49	4.26+/-1.46	30	127	240	
1997	28.73+/-10.12	3.90+/-1.31	50	147	235	
1998	9.87+/-6.49	1.27+/-0.87	55	151	235	
1999	26.73+/-10.97	3.19+/-1.26	40	158	270	
2000	584.01+/-436.76	14.19+/6.88	35	147	255	
2001	10.58+/-4.18	1.03+/-0.47	40	151	240	
2002	26.65+/-11.58	1.68+/-0.65	35	130	240	
2003	50.23+/-23.60	5.22+/-2.75	40	154	240	
2004	60.71+/-30.66	4.97+/-2.33	30	132	230	
2005	52.22+/-27.14	3.08+/-1.02	30	131	260	
2006	10.17+/-4.46	1.34+/-0.67	35	139	225	
2007	5.38+/-4.31	0.65+/-0.61	30	159	250	
2008	274.72+/-176.60	9.37+/-4.19	20	125	255	
2009	136.50+/-38.14	10.09+/2.16	45	147	470	
2010	122.10+/-34.34	11.18+/3.38	20	160	203	
2011	311.97+/-118.78	22.62+/8.18	45	136	305	
2012	264.55+/-90.44	10.96+/2.56	30	128	215	
2013	618.57+/-174.20	44.35+/12.9	30	126	210	
2014	610.07+/-64.87	44.56+/-5.12	35	123	205	
2015	125.1+/-18.37	8.7+/-1.1	15	190	255	
2016	750.66+/-88.01	41.31+/-3.53	40	161	226	

Table 1 Historical trends of abundance (nº/km²) and biomass (kg/km²) indices (±standard error) and
minimum, mean and maximum length (mm) of the specie Loligo vulgaris during MEDITS surveys (GSA 6).

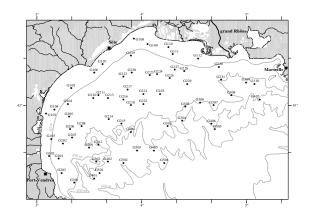
	Abundance	Biomass ±S.E.	Lmin	Lmed	Lmax
	±S.E.	bioinuss 19.2.	Liiiii	Lineu	LINGX
1995	1.82+/-2.82	0.24+/-0.29	85	164	271
1996	3.00+/-3.40	0.49+/-0.53	100	164	280
1997	1.15+/-1.19	0.52+/-0.61	160	251	370
1998	0.16+/-0.33	0.04+/-0.09	155	183	216
1999	3.35+/-2.88	0.42+/-0.35	115	161	240
2000	11.69+/-19.67	1.10+/-1.03	70	138	265
2001	1.89+/-1.15	0.28+/-0.21	80	164	260
2002	4.75+/-3.38	0.57+/-0.35	40	145	275
2003	0.24+/-0.58	0.01+/-0.03	115	208	265
2004	3.15+/-2.51	0.43+/-0.45	30	155	300
2005	1.27+/-0.86	0.31+/-0.24	55	190	255
2006	9.47+/-9.06	1.68+/-1.68	100	200	500
2007	3.55+/-3.82	0.55+/-0.56	75	166	320
2008	2.01+/-1.66	0.26+/-0.24	20	147	380
2009	2.91+/-2.27	0.29+/-0.24	15	166	450
2010	1.58+/-1.68	0.32+/-0.37	20	164	270
2011	2.09+/-1.58	0.35+/-0.24	30	199	820
2012	2.16+/-1.39	0.37+/-0.26	15	149	440
2013	4.90+/-4.71	0.73+/-0.63	62	153	250
2014	3.86+/-1.31	0.31+/-0.13	110	154	205
2015	4.5+/-1.8	0.4+/01	15	140	335
2016	0.40+/-0.28	0.24+/-0.20	146	159	167

FRANCE

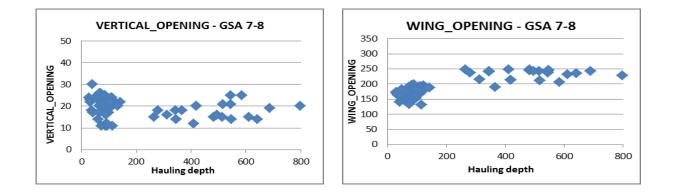
GSA 7 (Gulf of Lions) - GSA 8 (Eastern Corsica)


1. Review of 2016 survey by GSA

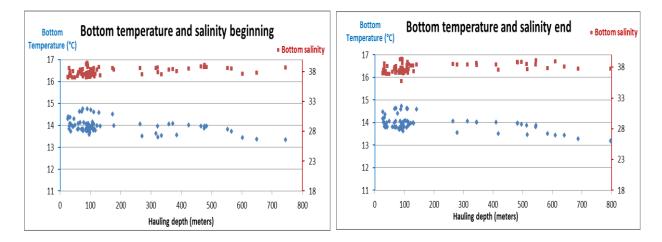
- 1.1. Period in which the survey was carried out
 - ✤ 20th may 25th June 2016
 - \checkmark GSA 8 (Eastern Corsica) : 20th may -28th may
 - ✓ GSA 7 (Gulf of Lions) : 31st may 25th June
- 1.2. Vessel (indicate eventual changes with the previous years)


The survey is carried since the beginning (1994) with the **Oceanographic French boat "L'Europe".**

- 1.3. Number of hauls performed, possible difficulties encountered
 - ✓ GSA 8 (Eastern Corsica): 23 (all the hauls performed)
 - ✓ GSA 7 (Gulf of Lions): 64 (1 deep haul not realized because of tears of the net)
- 1.4. Geographic area covered with a map showing haul locations



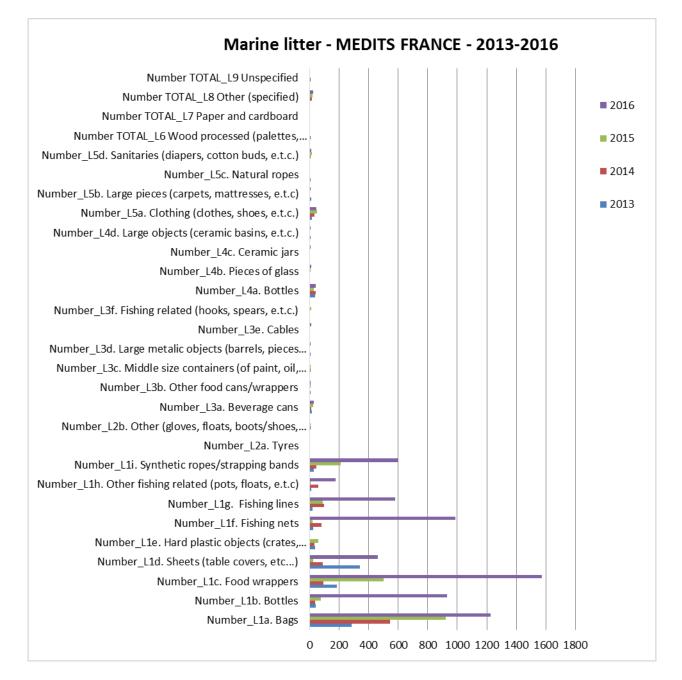
GSA 8 – Eastern Corsica


GSA 7 - Gulf of Lions

1.5. Number of hauls in which scanmar (or equivalent equipment MARPORT) was used and add a scatter plot of HO and VO vs. depth

GSA 8 (Eastern Corsica): 23/23 hauls with SCANMAR
 GSA 7 (Gulf of Lions): 64/64 hauls with SCANMAR

- 1.6. Number of hauls in which minilog (or equivalent equipment: **Oddi-star sonde**) was used and add a plot of temperature/salinity bottom profiles
 - ✓ For the period 1994-2012, minilog : Temperature/depth
 - ✓ In 2013, oddi-star DST centi : Temperature/depth
 - ✓ Since 2014, oddi-star CTD: Temperature/depth and salinity
 - ✓ 2016
- o GSA 8 (Eastern Corsica): 23/23 hauls from CTD
- GSA 7 (Gulf of Lions): 64/64 hauls from CTD


1.7. Other measures of environmental variables carried out

Considering the Marine Strategy Framework Directive, in 2016, the opportunity to use the WP2 was tested: 10 stations in the Gulf of Lions and 8 stations in the Eastern Corsica. The objective is to characterize abundance of zooplankton taxa. The samples were stored in a solution with formol (Mastail and Battaglia preparation) and will be analysed in 2017. The determination of gelatinous jelly fish was also realized.

1.8. Litter recording: comments on the results of the last survey and feedback on protocol

Litters are recorded in GSA 7 and 8 **since 1994**, (protocol from François Galgani). **From 1994 to 2012**, only 7 categories were identified in the protocol and total number by category was registered (plastics ; plastic bottles ; glass ; metal ; leather/cloth/ruber ; fishing related ; Other).

Since 2013, the protocol validated by MEDITS group in March 2013, is followed. In the present protocol, "total weight in a category and in a sub-category" is facultative, as well as "number in each subcategory". **Considering GSA 7 and 8, these informations are systematically collected since 2014.**

Number of species classified by taxa 1.9.

392 taxa were identified during MEDITS France 2016 (GSA 7 and 8 joined).

323 taxa in GSA7 232 taxa in GSA8

	ecies codes 2	2016		111 2010.		
ABRAVER	BLENOCE	ECHASEP	LEPICAU	NETTMEL	PILUSPI	SEPISPP
ACANEXI	BOOPBOO	ECHDDAE	LEPMBOS	NEZUSCL	PINNPEC	SEPOINT
ACANSPP	BOTRSPP	ECHNACU	LEPMWHS	NOTABON	PISAARN	SEPOROB
ACATPAL	BRIOLYR	ECHNMEL	LEPOLEP	NOTORIS	PLEBMEM	SEPOSPP
ACTASPP	BRYOZOA	ELEDCIR	LEPRSPP	NOTSELO	PLERMEC	SERACAB
ACTIRIA	BUCCHUN	ELEDMOS	LEPTCAV	NUCUSUL	PLESACA	SERAHEP
ACTNDAE	BUGLLUT	ENGRENC	LEPTDIE	NUDIBRA	PLESANT	SEREGAY
ADAMCAR	CALAGRA	EPIGCON	LIGUENS	OCNUPLA	PLESEDW	SERTGAY
AEQOSPP	CALLRUB	EPIGDEN	LOLIFOR	OCTODEP	PLESGIG	SERTSPP
AGLJTRI	CALMMAC	EPITCLU	LOLISPP	OCTOSAL	PLESHET	SERUDAE
ALCYPAL	CALMPHA	EPIZSPP	LOLIVUL	OCTOSPP	PLESMAR	SOESZON
ALEPROS	CALOMAC	ETMOSPI	LOPHBUD	OCTOTET	POLCTYP	SOLEKLE
ALLOSPP	CALTPAR	EUSPSPP	LOPHPIS	OCTOVUL	POLRPOM	SOLEVUL
ALOSFAL	CANIGRA	EUTRGUR	LOPOTYP	OKENELE	PONPSPI	SOLOMEM
ALPEDAE	CAPOAPE	FUNIQUA	LUIDSAR	ONYCBAN	PONTCAT	SPATPUR
ALPHGLA	CARDECH	FUSIROS	LUIDSPP	OPDIBAR	PONTLAC	SPHAGRA
ANADPOL	CARDTUB	FUSISYR	LUNAFUS	OPHCRUF	PORIERA	SPHYSPY
ANAMRIS	CARYSMI	GADIARG	LYTOMYR	OPHEDAE	PROCMED	SPICMAE
ANNEIDA	CASSECH	GALUMEL	MACOSCO	OPHNDAE	PSAMMIC	SPICSMA
ANOMDAE	CASSTYR	GELAAMO	MACRROS	OPHOFRA	PTEDSPI	SPODCAN
ANSEPLA	CAVEPUS	GELAAUT	MACRSPP	OPHOQUI	PTERHIR	SPRASPR
ANTESPP	CECACIR	GERYLON	MACRTEN	OPHRDEA	PYURMIC	SQUAACA
ANTOMEG	CELRSPP	GERYTRI	MAJACRI	ОРНООРН	PYURSPP	SQUABLA
APERADR	CENONIG	GLANTAL	MALDDAE	OPHUSPP	RAJAAST	SQUIMAN
APHRACU	CENSLON	GLOSLEI	MARIBLA	OSTREDU	RAJACIR	STERSCU
APORSER	CEPOMAC	GLOUHUM	MAURMUE	OWENDAE	RAJACLA	STICREG
APTECAE	CERAMAD	GOBIFRI	MCPIDEP	OXYNCEN	RAJAMIR	STOMBOA
ARGESPY	CHAELON	GOBINIG	MCPIMAC	PAGEACA	RAJAMON	STYECLA
ARGOOLE	CHAUSLO	GOBIQUA	MCPITUB	PAGEBOG	RAJANAE	SUBECAR
ARGRHEM	CHIMMON	GONERHO	MERLMER	PAGEERY	RAJAOXY	SUBESPP
ARISFOL	CHLAVAR	GRAIELE	MICMPOU	PAGIERE	RAJAPOL	SYMBVER
ARITANT	CHLOGRA	GRYPVIT	MICOSPP	PAGUALA	RETESPP	SYMPNIG
ARMILOV	CHRYHYS	HADRCRA	MICOVUL	PAGUCUA	RISSPAL	TETAAUR
ARMIMAC	CIDACID	HAVEINE	MICUVAR	PAGUEXC	RIZOPUL	TETHFIM
ARNOLAT	CITHMAC	HELIDAC	MODOSUB	PAGUPRI	RONDMIN	TETYSUB
ARNORUP	CLORAGA	HETEDIS	MOLGAPP	PALIMAU	ROSSMAC	THYOELO
ARNOTHO	CODIBUR	HISTREV	MOLGSPP	PALUCAR	SABLDAE	THYOSPP
ASCDDAE	COELCOE	HOLOFOR	MOLPSPP	PAPELON	SARDPIL	TODASAG
ASCIMEN	CONGCON	HOLOMAM	MOLVMAC	PARCLIV	SCALSCA	TODIEBL

In red, the **12 new species, and/or codes,** identified in 2016.

ASPICUC	CRASGIG	HOLOSPP	MORAMOR	PAROCUV	SCAPNIG	TORPMAR
ASPIOBS	DALOIMB	HOLOTUB	MULLBAR	PARTMAS	SCHICAN	TRACMED
ASTASUL	DARDARR	HOPLMED	MULLSUR	PASIMUL	SCOHRHO	TRACPIC
ASTEDEA	DASICEN	HYALTUB	MUNIINT	PASISIV	SCOMPNE	TRACTRA
ASTRARA	DASITOR	HYGOHIG	MUNIIRI	PECTJAC	SCOMSCO	TRAHDRA
ASTRIRR	DENTDEN	HYMEITA	MUNIRUG	PELANOC	SCORELO	TRAHRAD
ATELROT	DIAZVIO	ILLECOI	MUNITEN	PELSPLA	SCORLOP	TRARTRA
ATRIFRA	DIDMEAE	INACCOM	MUREBRA	PENDDAE	SCORNOT	TRIGLUC
AUREAUR	DIPLANN	INACDOR	MUSTMUS	PENTFAS	SCORPOR	TRIGLYR
AURESPP	DIPLVUL	INACPHA	MYCOPUN	PERICAT	SCYMLIC	TRIPLAS
AXINSPP	DIPOLIS	ISIDELO	MYTIGAL	PHASMAM	SCYOCAN	TRISCAP
AXINVER	DISMVAR	JORUTOM	NANSOBI	PHINAPE	SEPENEG	TURRCOM
BATHDUB	DORILAN	KALORAM	NATIHEB	PHROSED	SEPEOBS	URANSCA
BATISPO	DORSPSE	LABIDIG	NEMEANT	PHYIBLE	SEPEOWE	VALOSPP
BATYLON	DORSSPP	LAMACRO	NEMERAM	ΡΗΥΙΡΗΥ	SEPIELE	VERTDAE
BATYMAR	DROMPER	LAMEPER	NEOPCOC	PHYLTRU	SEPIOFF	XANTCOU
BENSGLA	EBALTUB	LATRELE	NEPRNOR	PILUHIR	SEPIORB	ZEUSFAB
1 10 Tatal				450170 (

1.10. Total number of classified individuals of the MEDITS reference list

•	GSA7	(Gulf o	f Lions): 323	taxa were	identified in 2016	
---	------	---------	---------	--------	-----------	--------------------	--

YEAR	AREA	FAUNISTIC_CATEGORY	GENUS	SPECIES	TOTAL NUMBERS
16	7	Ao	SPRA	SPR	186459
	7	Ao	ENGR	ENC	67340
16	7	Eec	ANTE	SPP	59398
016	7	Ao	TRAC	TRA	40180
2016	7	Eec	LEPR	SPP	25349
2016	7	Ao	SARD	PIL	13943
2016	7	Ao	TRIS	CAP	10225
2016	7	Ao	CAPO	APE	6427
2016	7	Ao	MERL	MER	5565
2016	7	Ao	GADI	ARG	5223
2016	7	Emg	TURR	COM	5007
2016	7	Eec	ASTR	IRR	4842
2016	7	Ao	MULL	BAR	3975
2016	7	Etu	ASCD	DAE	3659
2016	7	С	LOLI	SPP	3526
2016	7	Ao	GLOS	LEI	2843
2016	7	Ao	MICM	POU	2749
2016	7	Eec	OCNU	PLA	2522
2016	7	Ao	EUTR	GUR	2060
2016	7	С	ALLO	SPP	1881
2016	7	В	MCPI	DEP	1794
2016	7	Ao	LEPT	CAV	1598
2016	7	В	PAPE	LON	1579
2016	7	Ao	CEPO	MAC	1571
2016	7	Ao	SERA	HEP	1443
2016	7	Ae	GALU	MEL	1305
2016	7	Eec	STIC	REG	1262
2016	7	Ecn	CAVE	PUS	1133
2016	7	В	NEPR	NOR	1133
2016	7	Etu	MOLG	SPP	1033
2016	7	Ao	TRAC	MED	980
2016	7	Ao	GOBI	FRI	965
2016	7	Ecn	ALCY	PAL	872
2016	7	B	PAGU	PRI	861
2016	7	Ecn	ADAM	CAR	824
2010	7	Ao	COEL	COE	743
2010	7	Ao	SCOM	SCO	699
2016	7	AO	HELI	DAC	601
2016	7	B			594
2016	7		ALPH FUNI	GLA QUA	594
	-	Ecn			
2016	7	Ao	PHYI	BLE	559
2016	7	Ao	ARNO	LAT	558

2016	7	с	ILLE	COI	5.45		2016	7	В	LIGU	ENIC	7
2016	7	В	PLES	EDW	545 541		2016	7	В	PAGI	ENS ERE	7
2010	7	Ao	PAGE	BOG	530		2010	7	Dec	PARC	LIV	7
	7	C	ELED	CIR	502			7	B	PARC	CUV	7
2016							2016					7
2016	7	Ecn	VERT	DAE	494		2016	7	Emo	PLEB	MEM	
2016	7	С	LOLI	VUL	486		2016	7	B	ARIS	FOL	6
2016	7	с	SEPE	OWE	485		2016	7	Ao	ARNO	RUP	6
2016	7	Ao	MACO	SCO	459		2016	7	Dmb	CHLA	VAR	6
2016	7	Ao	CALM	MAC	446		2016	7	Emo	DORS	PSE	6
2016	7	Ao	TRAR	TRA	402		2016	7	С	HIST	REV	6
2016	7	Ao	LOPH	BUD	375		2016	7	Emg	LUNA	FUS	6
2016	7	Ao	CLOR	AGA	360		2016	7	С	ОСТО	TET	6
2016	7	Ao	PAGE	ERY	355		2016	7	Eec	SCHI	CAN	6
2016	7	Ao	SCOR	NOT	337		2016	7	Eec	CHAE	LON	5
2016	7	В	GONE	RHO	327	1	2016	7	Ecn	CHRY	HYS	5
2016	7	Ao	LEPT	DIE	325		2016	7	Eec	HAVE	INE	5
2016	7	В	ARIT	ANT	320		2016	7	Eec	HOLO	FOR	5
2010	7			ACU	320		2010	7	В		SPP	5
		Eec	ECHN							MACR		
2016	7	Ao	BOOP	BOO	288		2016	7	Dtu	MICO	SPP	5
2016	7	Dmg	CASS	TYR	285		2016	7	Dmg	PHYL	TRU	5
2016	7	Ao	LEPM	BOS	276		2016	7	Ao	STOM	BOA	5
2016	7	В	MACR	TEN	273		2016	7	Ae	TORP	MAR	5
2016	7	Ae	SCYO	CAN	268		2016	7	Eec	ASTR	ARA	4
2016	7	Ao	GOBI	QUA	263		2016	7	В	BATY	MAR	4
2016	7	Ecn	CALT	PAR	262		2016	7	Ecn	CARY	SMI	4
2016	7	Ao	TRIG	LYR	256		2016	7	Dmb	CRAS	GIG	4
2016	7	Ao	SCOM	PNE	247	1	2010	7	Ao	DALO	IMB	4
2010	7	Eec	BRIO	LYR	240	1	2010	7	C	HETE	DIS	4
2016	7	Ao	GOBI	NIG	233	1	2016	7	Eec	HOLO	TUB	4
2016	7	Esp	SUBE	CAR	215		2016	7	B	MUNI	TEN	4
2016	7	Ao	SERA	CAB	201		2016	7	В	PILU	SPI	4
2016	7	Ao	TRIG	LUC	197		2016	7	Etu	POLR	POM	4
2016	7	С	SEPI	ELE	191		2016	7	Ecn	ACTN	DAE	3
2016	7	Еро	STER	SCU	187		2016	7	Ao	ALOS	FAL	3
2016	7	Ao	LAMA	CRO	181		2016	7	Emg	APER	ADR	3
2016	7	Emg	CANI	GRA	177		2016	7	Ao	CERA	MAD	3
2016	7	Ecn	ACTI	RIA	173		2016	7	Etu	DISM	VAR	3
2016	7	В	DORI	LAN	168		2016	7	В	DROM	PER	3
2010	7	В			159			7		LAME	PER	3
			MUNI	INT			2016		Emg			
2016	7	В	PASI	SIV	153		2016	7	Ao	MORA	MOR	3
2016	7	Ao	ASPI	CUC	145		2016	7	Eec	OPHR	DEA	3
2016	7	Eec	OPHO	FRA	144		2016	7	В	PAGU	ALA	3
2016	7	Ao	NEZU	SCL	140		2016	7	В	PROC	MED	3
2016	7	Еро	APHR	ACU	136		2016	7	Ae	RAJA	AST	3
2016	7	С	TODI	EBL	135		2016	7	Ae	RAJA	NAE	3
2016	7	Ao	ARGE	SPY	133		2016	7	Еро	SABL	DAE	3
2016	7	В	SOLO	MEM	126		2016	7	Ao	SCOR	POR	3
2016	7	Ecn	EPIZ	SPP	121		2016	7	Esp	TETA	AUR	3
2016	7	Еро	HYAL	TUB	118	1	2016	7	B	ALPE	DAE	2
2010	7	В	DARD	ARR	118	1	2010	7	Ebr	BRYO	ZOA	2
2016	7	B	MCPI	TUB	111		2016	7	B	GERY	TRI	2
2016	7	С	ELED	MOS	110		2016	7	Eec	LABI	DIG	2
2016	7	Dmg	CASS	ECH	109		2016	7	С	LOLI	FOR	2
2016	7	В	PLES	ACA	107		2016	7	В	MACR	ROS	2
2016	7	Ao	HYME	ITA	106		2016	7	В	MUNI	RUG	2
2016	7	Ao	CITH	MAC	105		2016	7	EmO	NUDI	BRA	2
2016	7	В	CHLO	GRA	101		2016	7	Eec	OPHU	SPP	2
2016	7	Dmb	CARD	ECH	99		2016	7	Ao	PHYI	РНҮ	2
2016	7	Ecn	PEND	DAE	99	1	2016	7	В	PISA	ARN	2
2016	7	Ecn	AURE	SPP	97	1	2010	7	В	PONP	SPI	2
2010	7	Bci	SCAL	SCA	97	1	2010	7		PORI	ERA	2
						1			Esp			
2016	7	Ae	CHIM	MON	96		2016	7	Etu	PYUR	SPP	2
2016	7	В	PAGU	EXC	96		2016	7	Ao	SCOH	RHO	2
2016	7	Esp	SUBE	SPP	96		2016	7	С	SEPI	OFF	2
2016	7	Bst	SQUI	MAN	91		2016	7	Ao	SPHY	SPY	2
2016	7	Eec	OPHU	OPH	86		2016	7	Ae	SQUA	ACA	2
2016	7	Ao	CONG	CON	83		2016	7	Ao	SYMP	NIG	2
2016	7	Ecn	LYTO	MYR	83		2016	7	Emb	ANOM	DAE	1
2016	7	Ao	MOLV	MAC	81	1	2016	7	Ao	APTE	CAE	1
2010	7	B	PLES	MAR	81	1	2010	7	Ao	ASPI	OBS	1
						1		7				
2016	7	Eec	THYO	ELO	81		2016		Emb	ASTA	SUL	1
2016	7	Etu	DIAZ	VIO	80		2016	7	В	ATEL	ROT	1
		В	INAC	DOR	80		2016	7	Dmb	ATRI	FRA	1
2016 2016	7	Ao	LEPM	WHS	80		2016	7	Esp	AXIN	SPP	1

2016	7	в	PLES	ANT	76	1	2016	7	Ao	BATH	DUB	1
2010	7	Еро	MALD	DAE	73		2010	7	B	BATY	LON	1
2016	7	В	POLC	TYP	69		2010	7	B	CALA	GRA	1
2010	7	Ao	SPIC	MAE	68		2010	7	B	CALO	MAC	1
2010	7	Ecn	ACTA	SPP	67		2010	7	Ebr	CELR	SPP	1
2010	7	Ao	PAGE	ACA	67		2010	7	V	CODI	BUR	1
2010	7	С	SEPI	ORB	66		2010	7	Emo	DORS	SPP	1
2010	7	В	PLES	GIG	65		2010	7	Emg	EPIT	CLU	1
2010	7	Ao	SPIC	SMA	64		2016	7	Emg	EUSP	SPP	1
2016	7	Ao	CALM	PHA	62		2016	7	Emg	FUSI	ROS	1
2016	7	Ao	LEPI	CAU	59		2016	7	Emg	FUSI	SYR	1
2010	7	Ao	MULL	SUR	59		2016	7	B	INAC	сом	1
2010	7	Ao	LOPH	PIS	58		2016	7	Ecn	ISID	ELO	1
2010	7	c	осто	VUL	57		2016	7	Emo	JORU	том	1
2010	7	Dmg	MURE	BRA	56		2010	7	Emo	LAME	PER	1
2010	7	Emo	PHIN	APE	54		2010	7	Eec	LUID	SPP	1
2010	7	Ao	LEPO	LEP	53		2016	7	В	MAJA	CRI	1
2016	7	Ecn	AEQO	SPP	52		2016	7	Dmb	MODO	SUB	1
2010	7	Dmb	CARD	TUB	50		2016	7	Ao	MYCO	PUN	1
2010	7	Dmg	SCAP	NIG	50		2016	7	Dmb	MYTI	GAL	1
2016	7	Emo	MARI	BLA	48		2016	7	Ao	NANS	OBI	1
2016	7	Emb	NUCU	SUL	46		2016	7	Dmg	NATI	HEB	1
2016	7	Ao	DIPL	ANN	44		2016	7	Ao	NETT	MEL	1
2016	7	Ao	ARNO	THO	41		2016	7	Ao	NOTA	BON	1
2016	7	Ao	ALEP	ROS	40		2016	7	Ao	NOTO	RIS	1
2016	7	Ao	ANTO	MEG	39		2016	7	с	осто	SPP	1
2016	7	В	PAGU	CUA	39		2016	7	С	ONYC	BAN	1
2016	7	С	SEPO	INT	39		2016	7	Ao	OPHC	RUF	1
2016	7	Ao	MICU	VAR	34		2016	7	Eec	OPHE	DAE	1
2016	7	В	MUNI	IRI	34		2016	7	Dmb	OSTR	EDU	1
2016	7	Etu	PHAS	MAM	34		2016	7	В	PALI	MAU	1
2016	7	Ao	HOPL	MED	33		2016	7	Dmb	PECT	JAC	1
2016	7	Ecn	NEME	ANT	33		2016	7	Ebr	PENT	FAS	1
2016	7	Eec	CIDA	CID	32		2016	7	Eec	PSAM	MIC	1
2016	7	Ae	RAJA	CLA	32		2016	7	с	SEPE	NEG	1
2016	7	Dmg	APOR	SER	31		2016	7	с	SEPI	SPP	1
2016	7	Ao	TRAH	DRA	30		2016	7	Ecn	SERT	GAY	1
2016	7	В	PONT	LAC	28		2016	7	Ao	SOLE	VUL	1
2016	7	Emo	TETH	FIM	28		2016	7	Ao	SPOD	CAN	1
2016	7	Ean	ANNE	IDA	27		2016	7	В	STYE	CLA	1
2016	7	Ae	ETMO	SPI	27		2016	7	Ao	TRIP	LAS	1
2016	7	В	PONT	CAT	27		2016	7	В	XANT	COU	1
2016	7	Emb	GLOU	HUM	26							

• GSA8 (Eastern Corsica) : 232 taxa were identified in 2016

YEAR	AREA	FAUNISTIC_CATEGORY	GENUS	SPECIES	TOTAL NUMBER
2016	8	Ao	SPIC	SMA	33913
2016	8	Ao	CAPO	APE	16493
2016	8	Ao	CLOR	AGA	4896
2016	8	Eec	ECHN	ACU	4236
2016	8	Eec	CIDA	CID	3643
2016	8	Eba	GRYP	VIT	3586
2016	8	Ao	LEPT	CAV	3435
2016	8	Ao	TRAC	MED	3064
2016	8	Ao	GADI	ARG	2725
2016	8	Ao	TRAC	TRA	2578
2016	8	Ae	GALU	MEL	2479
2016	8	Eec	SPAT	PUR	2448
2016	8	Ao	SPIC	MAE	1737
2016	8	В	PAPE	LON	1673
2016	8	Ao	MACO	SCO	1510
2016	8	Ao	COEL	COE	1383
2016	8	Ao	HYME	ITA	1382
2016	8	В	NEPR	NOR	1279
2016	8	Ao	BOOP	BOO	1159
2016	8	Ae	SCYO	CAN	1133
2016	8	Ao	CECA	CIR	1035
2016	8	Ao	GLOS	LEI	937

YEAR	AREA	FAUNISTIC_CATEGORY	GENUS	SPECIES	TOTAL NUMBER
2016	8	Dmb	ANAD	POL	9
2016	8	Ao	ARGR	HEM	9
2016	8	В	CALA	GRA	9
2016	8	В	CALO	MAC	9
2016	8	В	EBAL	TUB	9
2016	8	Eec	HOLO	SPP	9
2016	8	В	INAC	PHA	9
2016	8	с	LOLI	SPP	9
2016	8	Ao	MAUR	MUE	9
2016	8	В	МСРІ	MAC	9
2016	8	с	осто	VUL	9
2016	8	В	PALU	CAR	9
2016	8	Ao	SCOR	NOT	9
2016	8	В	SOLO	MEM	9
2016	8	Eec	TETY	SUB	9
2016	8	с	ROND	MIN	8
2016	8	Bci	SCAL	SCA	8
2016	8	Ecn	ACTI	RIA	7
2016	8	В	ANAM	RIS	7
2016	8	Ao	GOBI	FRI	7
2016	8	Emo	PLER	MEC	7
2016	8	с	SEPI	ORB	7

2016			141614	DOLL	000		010		A-			-
2016	8	Ao	MICM	POU	828		2016	8	Ao	URAN	SCA	7
2016	8	Ao	MULL	BAR	823		2016	8	Ao	BENS	GLA	6
2016	8	B .	PLES	MAR	823		2016	8	Eec	ECHN	MEL	6
2016	8	Ao	ARGE	SPY	786		2016	8	C	OCTO	DEP	6
2016	8	Ae	ETMO	SPI	645		2016	8	B	PONP	SPI	6
2016	8	Ao	LEPT	DIE	537		2016	8	Ae	RAJA	AST	6
2016	8	Ao	HOPL	MED	518		2016	8	C	TODA	SAG	6
2016	8	Eec	LEPR	SPP	457		2016	8	Ae	TORP	MAR	6
2016	8	C	SEPE	OWE	450		2016	8	Ao	TRAH	RAD	6
2016	8	В	PLES	ANT	442		2016	8	В	ALPH	GLA	5
2016	8	В	POLC	ТҮР	410		2016	8	В	GONE	RHO	5
2016	8	Ao	HELI	DAC	329		2016	8	С	OCTO	TET	5
2016	8	В	PASI	SIV	302		2016	8	Esp	PORI	ERA	5
2016	8	Ao	PHYI	BLE	287		2016	8	Ao	CENO	NIG	4
2016	8	С	ILLE	COI	282		2016	8	Ecn	ISID	ELO	4
2016	8	Ao	PAGE	ACA	252		2016	8	Eec	OPHN	DAE	4
2016	8	Ao	CALM	PHA	246		2016	8	Dmg	SCAP	NIG	4
2016	8	Ao	MULL	SUR	231		2016	8	Еро	SERU	DAE	4
2016	8	С	TODI	EBL	224	2	2016	8	Eec	SPHA	GRA	4
2016	8	С	SEPO	SPP	220		2016	8	В	XANT	COU	4
2016	8	Ao	SERA	HEP	212	2	2016	8	Eec	ANSE	PLA	3
2016	8	Ae	SQUA	BLA	171		2016	8	Ae	DASI	CEN	3
2016	8	Ao	LEPM	BOS	168	2	2016	8	Ecn	GELA	AUT	3
2016	8	В	MUNI	IRI	165	2	2016	8	Eec	HOLO	MAM	3
2016	8	В	PLES	GIG	162	2	2016	8	Eec	HOLO	TUB	3
2016	8	Ao	PERI	CAT	156	2	2016	8	Ao	HYGO	HIG	3
2016	8	Ao	PAGE	ERY	142	2	2016	8	В	LATR	ELE	3
2016	8	Ecn	CALT	PAR	136	2	2016	8	В	LIGU	ENS	3
2016	8	Ao	MERL	MER	127	2	2016	8	Dtu	MICO	SPP	3
2016	8	Ao	NEZU	SCL	116	2	2016	8	Ao	NOTS	ELO	3
2016	8	Eec	OPHU	OPH	103	2	2016	8	С	ОСТО	SAL	3
2016	8	Eec	STIC	REG	102	2	2016	8	В	PAGU	ALA	3
2016	8	Ecn	PELA	NOC	94	2	2016	8	Ao	SCOR	ELO	3
2016	8	Ao	LEPI	CAU	92	2	2016	8	Ao	SYMP	NIG	3
2016	8	Ao	GOBI	QUA	86	2	2016	8	Ao	TRAH	DRA	3
2016	8	Ao	SARD	PIL	86	2	2016	8	V	VALO	SPP	3
2016	8	с	ABRA	VER	85	2	2016	8	Ao	CALL	RUB	2
2016	8	В	CHLO	GRA	80	2	2016	8	Ao	CERA	MAD	2
2016	8	В	DARD	ARR	80	2	2016	8	Ao	CONG	CON	2
2016	8	с	ELED	CIR	74	2	2016	8	Ao	DIPL	VUL	2
2016	8	Ao	PAGE	BOG	74	2	2016	8	Eec	ECHA	SEP	2
2016	8	Eec	CENS	LON	72	2	2016	8	Eec	ECHD	DAE	2
2016	8	Ae	RAJA	CLA	72	2	2016	8	Eec	HOLO	FOR	2
2016	8	Ae	RAJA	MIR	70	2	2016	8	Ao	LAMA	CRO	2
2016	8	Ao	ASPI	CUC	69	2	2016	8	Ao	LOPH	PIS	2
2016	8	Ae	RAJA	OXY	65	2	2016	8	Etu	PHAS	MAM	2
2016	8	Dtu	MICO	VUL	64		2016	8	В	PROC	MED	2
2016	8	Eec	ASTR	IRR	52	2	2016	8	Ae	RAJA	CIR	2
2016	8	Eec	ASTR	ARA	50	2	2016	8	Ae	RAJA	MON	2
2016	8	Ao	EPIG	CON	48		2016	8	Ao	SCOR	POR	2
2016	8	В	MUNI	INT	48		2016	8	Ao	STOM	BOA	2
2016	8	В	PLES	HET	45		2016	8	Ao	TRIG	LUC	2
2016	8	c	ALLO	SPP	42		2016	8	Emo	AGLJ	TRI	1
2016	8	В	PLES	ACA	42		2016	8	Ecn	ALCY	PAL	1
2016	8	Ao	TRIG	LYR	42		2016	8	Ean	ANNE	IDA	1
2016	8	Ao	TRAC	PIC	41		2016	8	Ao	ANTO	MEG	1
2010	8	Ao	ARNO	тно	39		2016	8	Dmg	ARGO	OLE	1
2010	8	C	SEPI	ELE	33		2016	8	Eec	ASTE	DEA	1
2010	8	В	MCPI	TUB	32		2016	8	Ao	BLEN	OCE	1
2016	8	Dmg	APOR	SER	28		2016	8	Dmg	CASS	TYR	1
2016	8	B	LOPO	ТҮР	28		2016	8	Dmb	CHLA	VAR	1
2016	8	Etu	ASCI	MEN	26		2016	8	Ae	DASI	TOR	1
2016	8	Emb	NEOP	COC	26		2016	8	Etu	DIAZ	VIO	1
2016	8	Ao	ZEUS	FAB	25		2016	8	Etu	DIDM	EAE	1
2016	8	B	MUNI	TEN	23		2016	8	Emg	FUSI	ROS	1
2016	8	Ecn	PEND	DAE	23	2	2016	8	В	GERY	LON	1

	_		_	-	
2016	8	Ao	ARNO	LAT	21
2016	8	Ecn	FUNI	QUA	20
2016	8	В	PISA	ARN	20
2016	8	В	PAGI	ERE	19
2016	8	Etu	POLR	POM	19
2016	8	с	ROSS	MAC	19
2016	8	Ae	СНІМ	MON	18
2016	8	Ao	ENGR	ENC	18
2016	8	Ao	SERA	CAB	18
2016	8	Ao	TRIP	LAS	18
2016	8	Etu	ASCD	DAE	15
2016	8	Ao	EPIG	DEN	15
2016	8	Ao	LOPH	BUD	15
2016	8	Ao	ACAT	PAL	14
2016	8	В	INAC	DOR	13
2016	8	Eec	MOLP	SPP	13
2016	8	Ao	DENT	DEN	12
2016	8	Etu	PYUR	MIC	12
2016	8	Ae	RAJA	POL	12
2016	8	v	CODI	BUR	11
2016	8	В	DORI	LAN	11
2016	8	Ao	LEPM	WHS	11
2016	8	с	LOLI	FOR	11
2016	8	Ao	MOLV	MAC	11
2016	8	В	PONT	LAC	11
2016	8	В	PART	MAS	10
2016	8	Ao	SPOD	CAN	10
2016	8	Dmb	ACAN	SPP	9

2016	8	Eec	GRAI	ELE	1
2016	8	с	HETE	DIS	1
2016	8	с	HIST	REV	1
2016	8	Emo	JORU	том	1
2016	8	Eec	LUID	SAR	1
2016	8	Eec	LUID	SPP	1
2016	8	В	MAJA	CRI	1
2016	8	Etu	MOLG	APP	1
2016	8	Dmg	MURE	BRA	1
2016	8	Ae	MUST	MUS	1
2016	8	Ao	NETT	MEL	1
2016	8	Eec	OCNU	PLA	1
2016	8	с	ONYC	BAN	1
2016	8	Ao	OPDI	BAR	1
2016	8	Eec	ОРНО	QUI	1
2016	8	Ae	OXYN	CEN	1
2016	8	В	PAGU	PRI	1
2016	8	В	PARO	CUV	1
2016	8	Eec	PELS	PLA	1
2016	8	Bam	PHRO	SED	1
2016	8	Bst	RISS	PAL	1
2016	8	Ao	SCOR	LOP	1
2016	8	Ae	SCYM	LIC	1
2016	8	с	SEPI	OFF	1
2016	8	Etu	SOES	ZON	1
2016	8	Ao	SOLE	KLE	1
2016	8	Ao	SYMB	VER	1

1.11. Total number of sampled individuals for length distributions

٠	GSA7	Gulf	of Lions	:): 60 taxa	were measured	in 2016 ((G1, (G2)	
---	------	------	----------	--------------------	---------------	-----------	--------	-----	--

GENUS/SPECIES	Total Number of sampled individuals for length distributions	GENUS/SPECIES	Total Number of sampled individuals for length distributions
TRISCAP	4644	TRIGLUC	93
TRACTRA	3634	SQUIMAN	91
SPRASPR	2624	SPICMAE	68
MULLBAR	2544	MULLSUR	59
MERLMER	2234	LOPHPIS	58
ENGRENC	1870	OCTOVUL	57
EUTRGUR	1654	PAGEACA	54
PAPELON	1498	SCOMPNE	54
SARDPIL	1099	SPICSMA	50
ILLECOI	545	AEQOSPP	47
TRACMED	534	DIPLANN	44
NEPRNOR	528	RAJACLA	32
ELEDCIR	502	ETMOSPI	18
GALUMEL	478	DIPLVUL	13
PHYIBLE	399	TODASAG	13
MICMPOU	376	ZEUSFAB	12
LOPHBUD	375	AUREAUR	11
ARITANT	320	RIZOPUL	10
воорвоо	288	PELANOC	9
HELIDAC	284	ARISFOL	6
LEPMBOS	263	CHRYHYS	5

SCYOCAN	256	TORPMAR	5
PAGEERY	251	GONNVER	4
SCOMSCO	221	RAJAAST	3
PAGEBOG	203	RAJANAE	3
LOLIVUL	173	SEPIOFF	2
ASPICUC	145	SQUAACA	2
ELEDMOS	110	PALIMAU	1
CITHMAC	105	SOLEVUL	1
AURASPP	96	TRIPLAS	1

• GSA8 (Eastern Corsica) : 51 taxa were measured in 2016 (G1, G2)

GENUS/SPECIES	Total Number of sampled individuals for length distributions	GENUS/SPECIES	Total Number of sampled individuals for length distributions
PAPELON	1064	RAJAMIR	62
GALUMEL	1027	ELEDCIR	60
NEPRNOR	945	SARDPIL	35
SCYOCAN	644	ZEUSFAB	25
MULLBAR	604	ENGRENC	18
SPICSMA	449	TRIPLAS	18
TRACMED	325	DENTDEN	12
HELIDAC	299	RAJAPOL	12
SPICMAE	289	LOPHBUD	8
BOOPBOO	280	RAJAAST	6
TRACTRA	238	TODASAG	6
ETMOSPI	236	TORPMAR	6
PHYIBLE	228	DASICEN	3
ILLECOI	203	DIPLVUL	2
MULLSUR	197	LOPHPIS	2
MICMPOU	186	RAJACIR	2
LEPMBOS	168	RAJAMON	2
SQUABLA	161	TRIGLUC	2
PAGEERY	125	DASITOR	1
MERLMER	117	MUSTMUS	1
PAGEACA	88	OCTOVUL	1
PAGEBOG	74	OXYNCEN	1
RAJACLA	72	SCYMLIC	1
PELANOC	71	SEPIOFF	1
RAJAOXY	65	SOESZON	1
ASPICUC	63		

1.12. Total number of sampled individuals for sex and maturity

• GSA7 (Gulf of Lions): 20 taxa were sampled for sex and maturity in 2016 (G1)

Total Number of sampled individuals for sex and maturity						
GENUS/SPECIES F I M Total général						
MULLBAR	382	1	337	720		
PAPELON	377		246	623		
MERLMER	129	161	139	429		
GALUMEL	220		197	417		
ILLECOI	127	90	131	348		
	I					

ARISANT	240		72	312
NEPRNOR	153		143	296
LOPHBUD	113	38	134	285
SCYOCAN	108		146	254
LOLIVUL	4	64	11	79
LOPHPIS	15	11	32	58
MULLSUR	26		29	55
RAJACLA	17		15	32
ETMOSPI	7		8	15
ARISFOL	5			5
TORPMAR	3	1	1	5
RAJAAST	2		1	3
RAJANAE	3			3
SQUAACA	2			2
SQUIMAN		2		2

• GSA8 (Eastern Corsica) : 26 taxa were sampled for sex and maturity in 2016 (G1)

Total N	Total Number of sampled individuals for sex and maturity					
GENUS/SPECIES	F	Ι	М	Total général		
GALUMEL	309		352	661		
SCYOCAN	257		357	614		
PAPELON	300	10	252	562		
MULLBAR	253		248	501		
NEPRNOR	216		206	422		
ETMOSPI	111		103	214		
ILLECOI	63	9	131	203		
MULLSUR	63		123	186		
SQUABLA	81		80	161		
MERLMER	55	29	27	111		
RAJACLA	42		30	72		
RAJAOXY	43		22	65		
RAJAMIR	34		28	62		
DENTDEN			12	12		
RAJAPOL	6		6	12		
LOPHBUD	3		5	8		
RAJAAST	3		3	6		
TORPMAR	3		3	6		
DASICEN	1		2	3		
LOPHPIS	1		1	2		
RAJACIR	1		1	2		
RAJAMON	1		1	2		
DALALIC	1			1		
DASITOR	1			1		
MUSTMUS	1			1		
OXYNCEN			1	1		

1.13. Number of samples of hard tissues collected for ageing by target species

Since 2014, Lophius piscatorius and Lophius budegassa illicii are collected, but not yet read

GSA7 (Guij of Lions) : S taxa were sampled for ageing in 2016 (G1)						
Total Number of samples of hard tissues collected for ageing by target species						
GENUS/SPECIES	F	I	М	TOTAL		
MULLBAR	358	1	270	629		
MERLMER	125	129	127	381		
LOPHBUD	100	27	125	252		
LOPHPIS	15	9	32	56		
MULLSUR	26		28	54		

• GSA7 (Gulf of Lions) : 5 taxa were sampled for ageing in 2016 (G1)

• GSA8 (Eastern Corsica) : 5 taxa were sampled for ageing in 2016 (G1)

Total Number of samples of hard tissues collected for ageing by target species					
GENUS/SPECIES	F	I	М	TOTAL	
MULLBAR	251		243	494	
MULLSUR	63		123	186	
MERLMER	55	29	27	111	
LOPHBUD	3		5	8	
LOPHPIS	1		1	2	

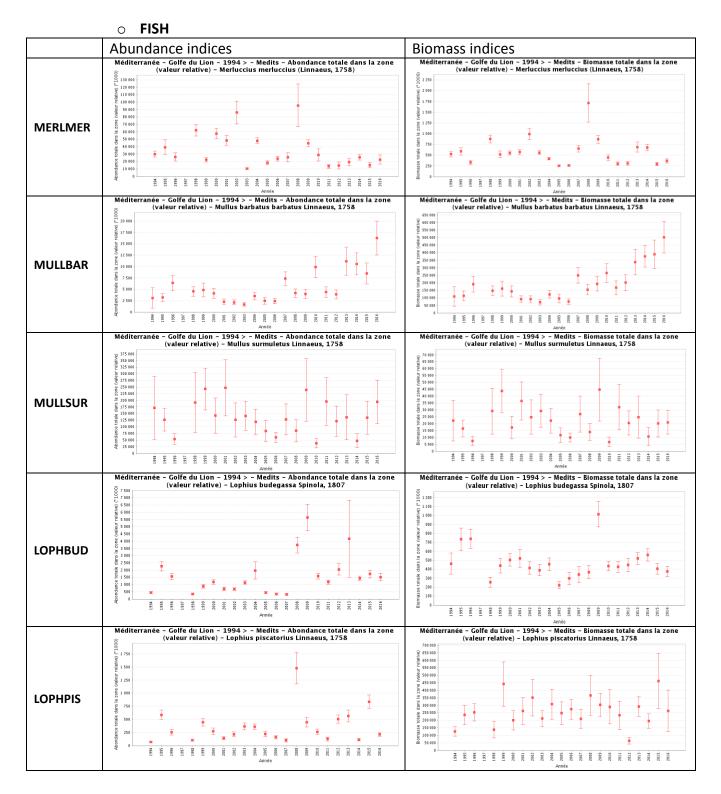
1.14. Otolith reading, difficulties encountered

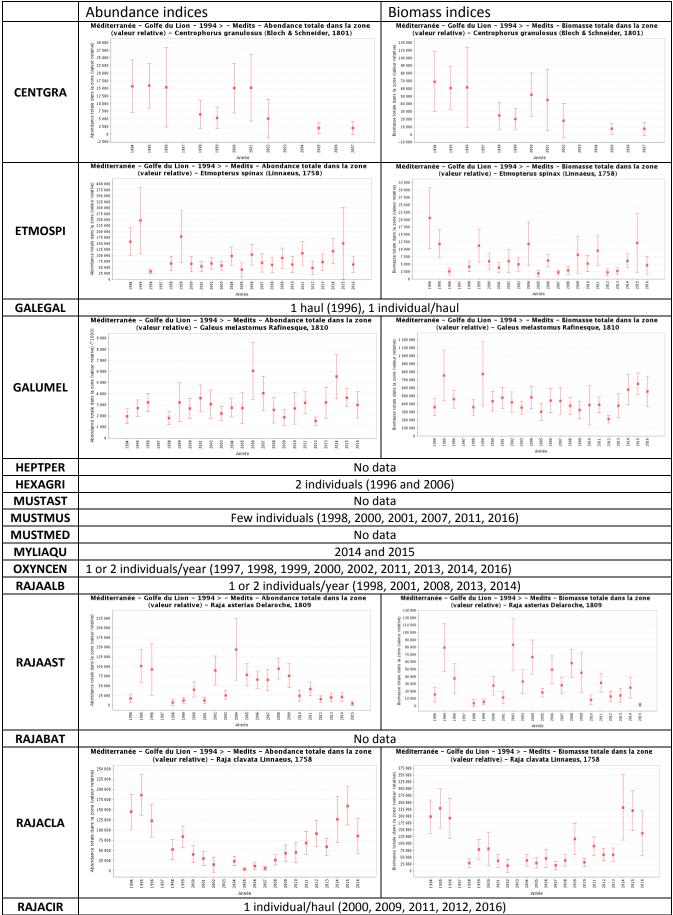
There is still some questioning around **red mullet otolith readings**. French otoliths are read by the sclerochronology pole. Kelig Mahe is responsible of IFREMER otolith readings-Boulogne/Mer. The otoliths readings give age length keys equivalent to slow growth parameters, whereas other Mediterranean countries use age length key close to fast growth parameters.

Hake otoliths are collected and sent to IFREMER Boulogne/Mer but not read, because of the incertainty around the reading.

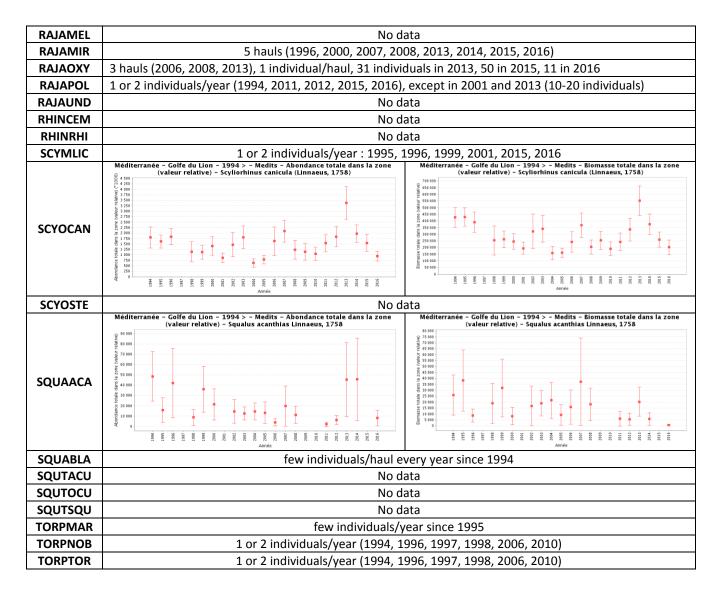
1.15. Other samplings for common projects

Project of Pascal Lorance Population analysis of Raja clavata in the ANR GenoPopTaille project Raja clavata sample harvest for population genomics

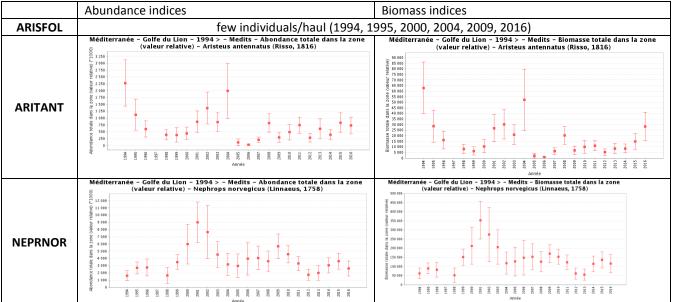

MEDITS Maturity stages working group (European hake, Norway lobster and Raja clavata : GSA 7). Collection of macroscopic photos (gonad in the body and separatly) and histological samplings, which were sent to Cristina Follesa, especially hake.

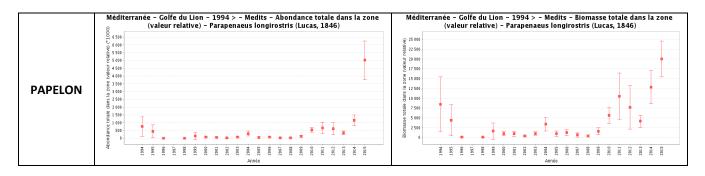

1.16. Difficulties encountered in the application of the protocol, emerging issues and suggestions for improvements

Nothing special

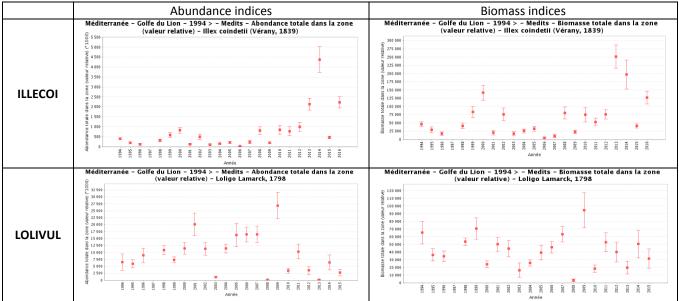

2. Focus on historical trends

- 2.1. Abundance and biomass indices of target species (MEDITS G1)
 - GSA 7 Gulf of Lions

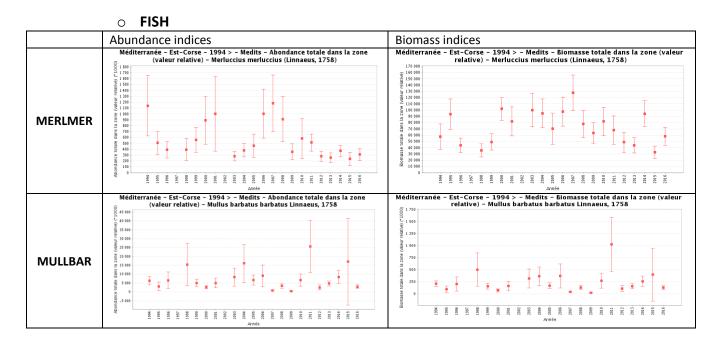


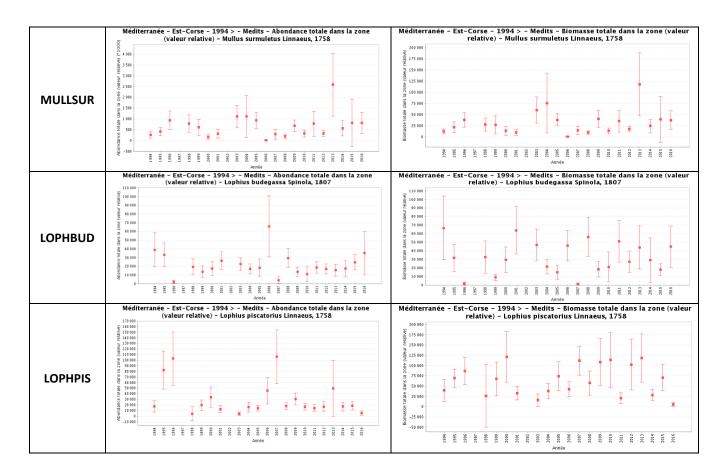


• ELASMOBRANCHS

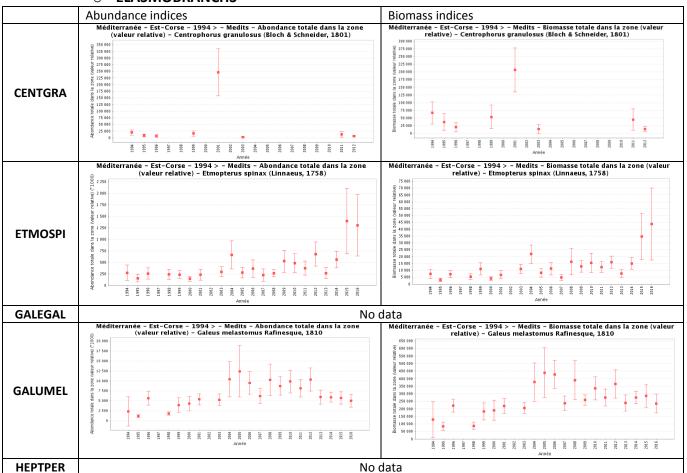


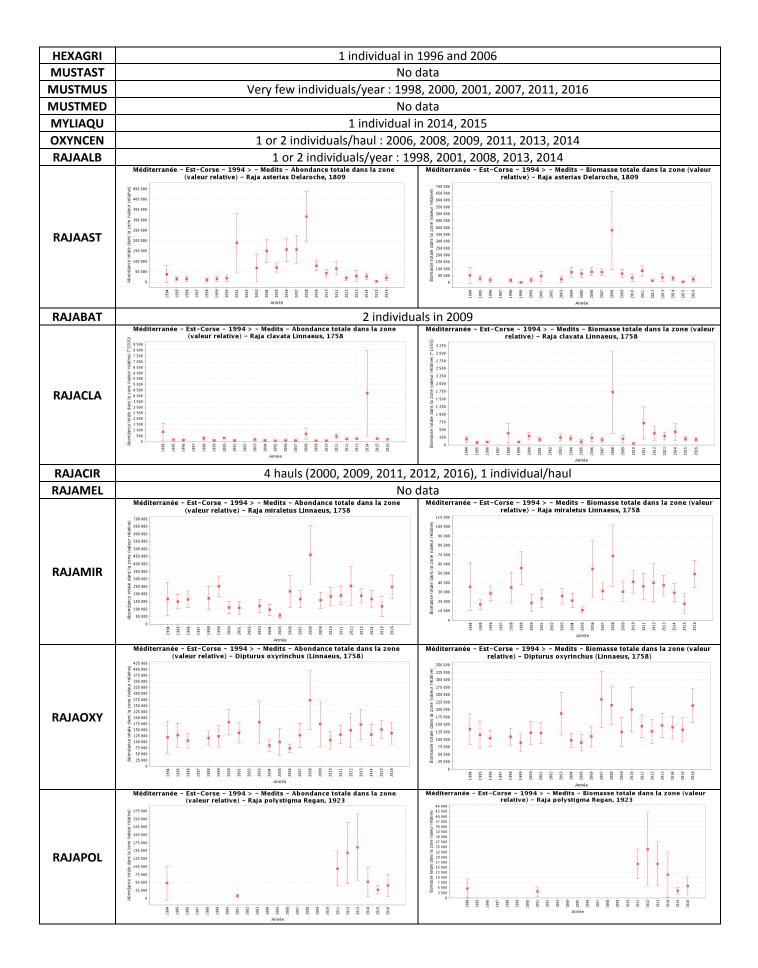
CRUSTACEANS

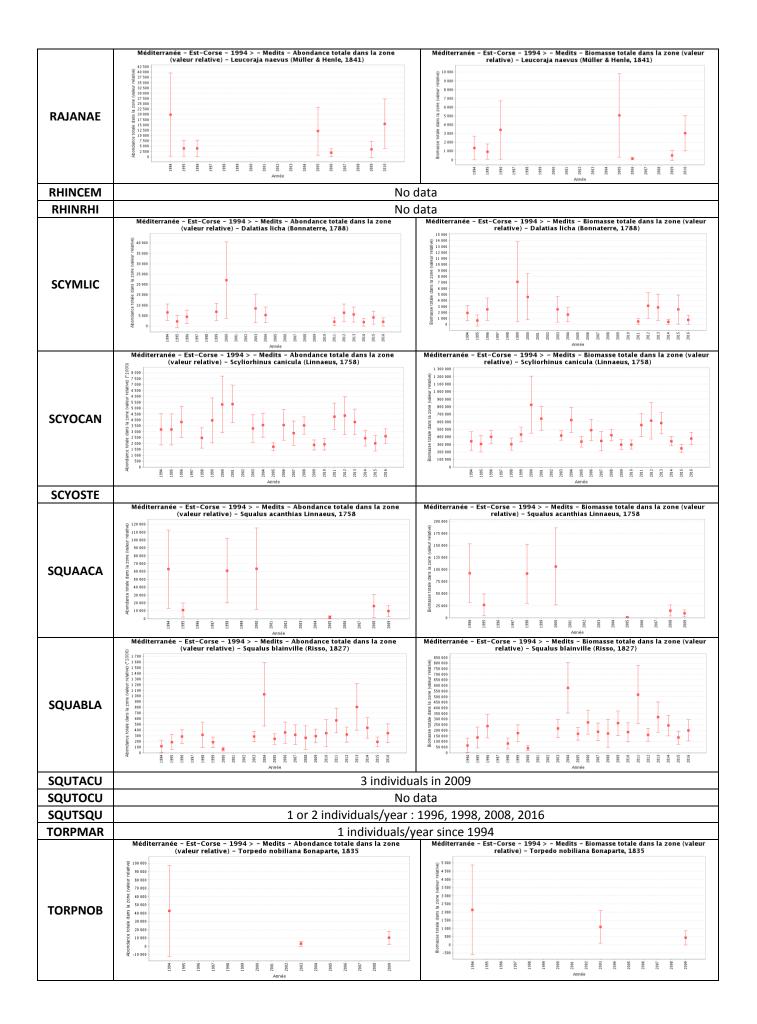


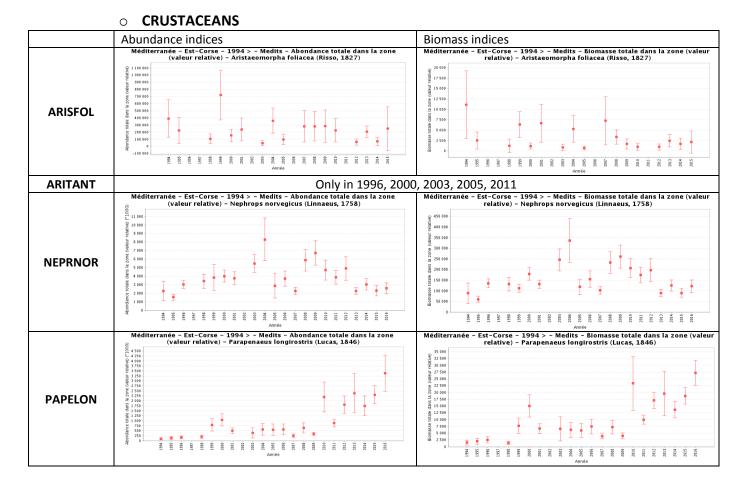


o **CEPHALOPODS**

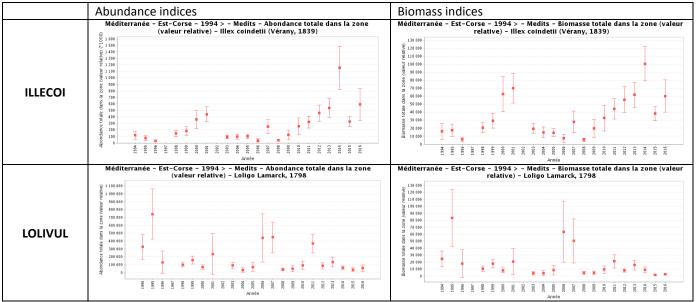


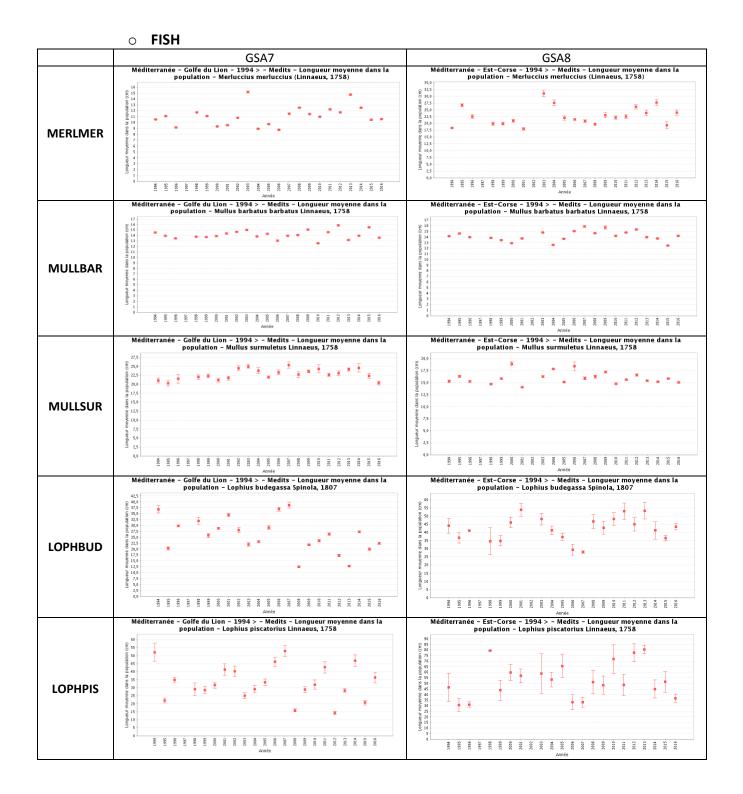

GSA 8 – Eastern Corsica

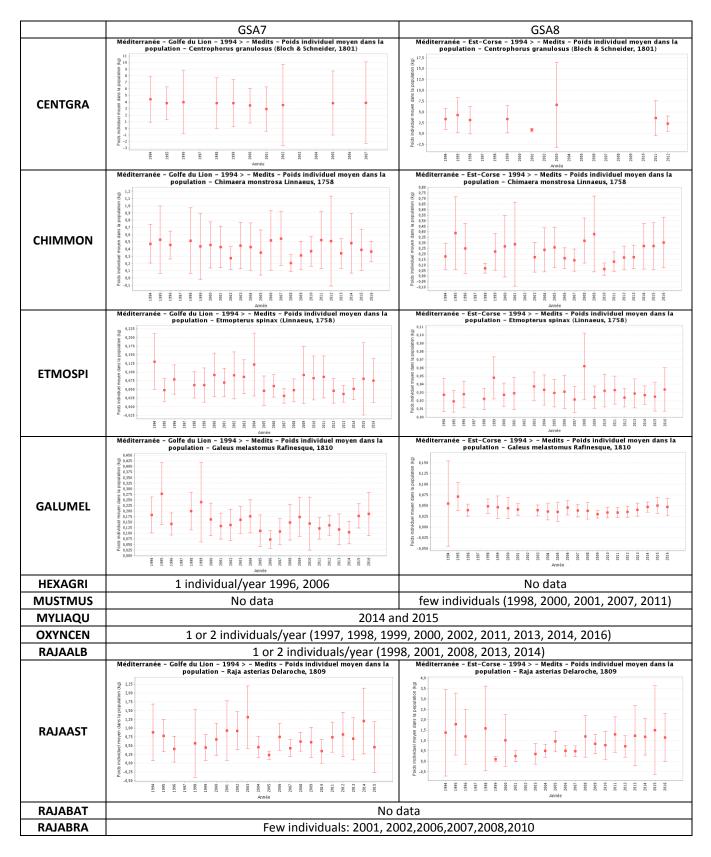


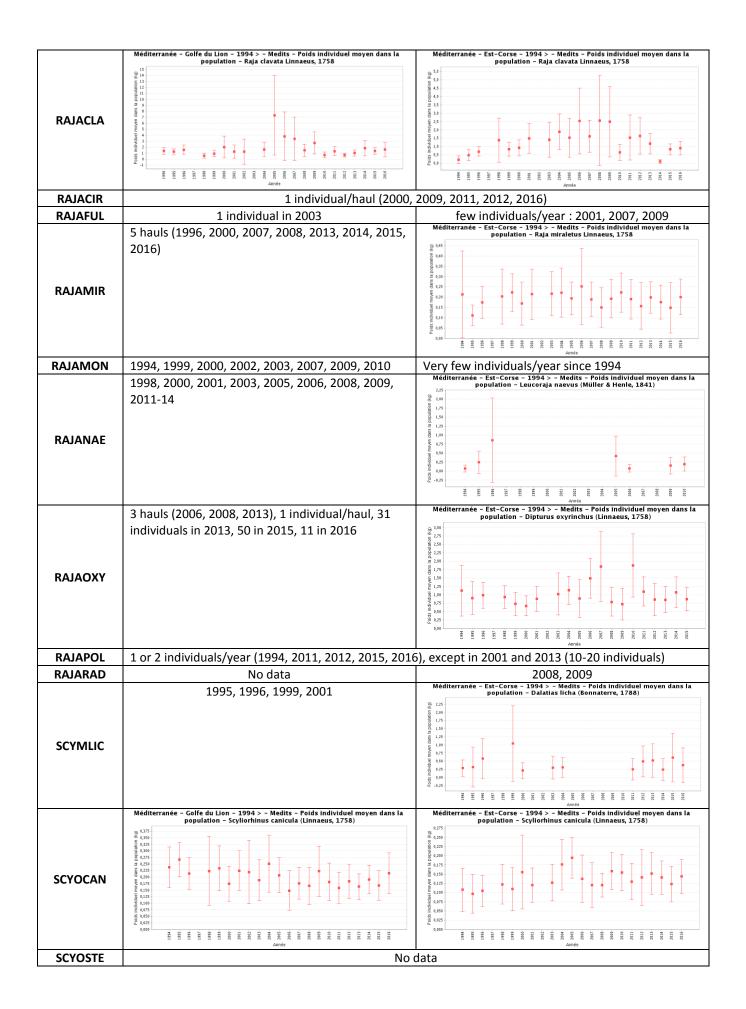


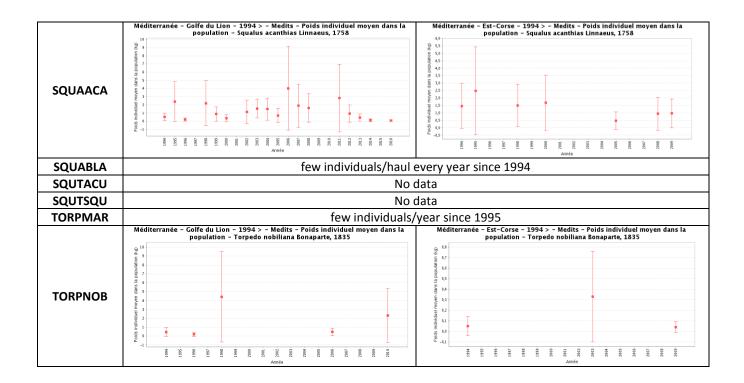
O ELASMOBRANCHS



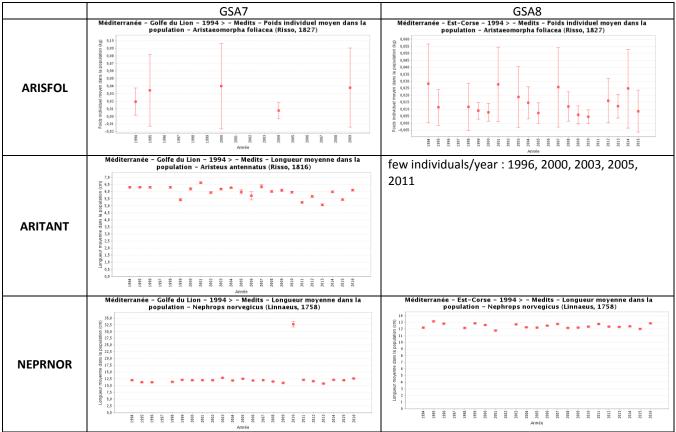


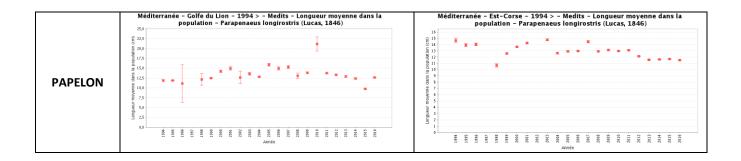

CEPHALOPODS

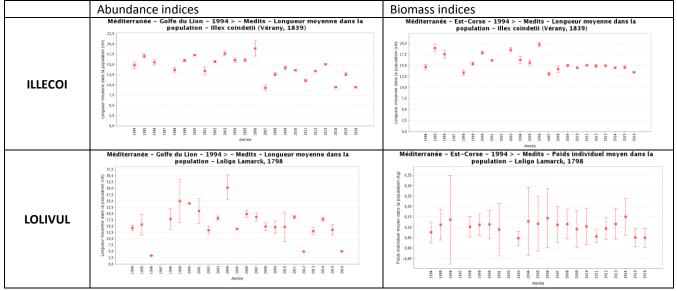




• ELASMOBRANCHS (mean weight)


For some species like elasmobranchs, crustaceans, means are on individual weight, since most of the species in the G1 group, were not measured before 2012.





O CRUSTACEANS

• CEPHALOPODS

3. Planning for the next survey

- 23rd may 26th June 2017 (first Eastern Corsica, then Gulf of Lions)
- 3.1. Indication of the period and vessel specifying if it is in line with the previous ones, emerging issues if any
 - o <u>Same boat, same period</u>
- Marine Strategy Framework Directive in 2017:
 -WP2/CTD
 -gelatinous
 -Marine litters

Outline of the report by GSA for presentation of the item 5 in the draft agenda

GSA10

P. Carbonara, L. Casciaro, I. Bitetto, M.T. Facchini, M. Donnaloia, W. Zupa, G. Lembo, M.T. Spedicato COISPA Tecnologia & Ricerca, Bari, Italy

1. <u>Review of 2016 survey by GSA10</u>

The vessel utilized was "Pasquale e Cristina" (PEC), as in previous years. The survey was, initially, carried out from 29.06.2016 to 01.07.2016, but it was interrupted for technical reasons regarding the vessel "Pasquale e Cristina". The survey continued from 28.08.2016 to 10.09.2016. The number of valid hauls performed was 70 as planned. The hauls carried out in the first stage were considered not valid and thus were repeated in the second stage. The geographic area covered and the map with haul locations is showed in Figure 1.1. The number of hauls in which Simrad was used were 55 and the results of the relationship between wing opening and vertical opening vs the depth are showed in Figure 1.2. The number of hauls in which DST centi-TD was used was 70. The relationship between the bottom temperature and depth hauls is showed in Figure 1.3. No other measures of environmental variables were recorded. Litter was recorded following the protocol showed in Figure 1.4. The numbers of species classified by taxa were 266 species and 16 faunistic categories: 16 species of Elasmobranchs, 116 species of Osteichthyes, 43 species of Crustaceans, 29 species of Cephalopods, 2 species of Mollusca Bivalvia, 11 species of Mollusca Gastropoda, 7 species of Tunicata, 1 species of Brachiopoda, 2 species of Bryozoa, 10 species of Cnidaria, 18 species of Echinoderms, 4 species of Opistobranchia, 4 species of Polychaeta, 1 species of Scaphopoda, 1 species of Sipunculida, 1 species of Porifera. The total number of classified individuals of the MEDITS reference list was 142843 individuals. The total number of sampled individuals for length distributions was 38999 individuals (Table 1.1). The total number of sampled individuals for sex and maturity was 13103 individuals (Table 1.2). The numbers of samples of hard tissues collected for ageing by target species were: M. merluccius 321 otoliths, M. barbatus 535 otoliths, M. surmuletus 16 otoliths. Genetic samples of Raja clavata were collected for common projects.

No particular difficulties were encountered in the application of the new protocol.

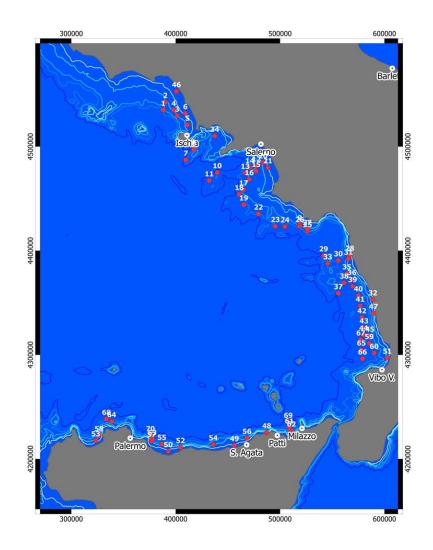


Fig. 1.1 – Hauls position in GSA10 - 2016

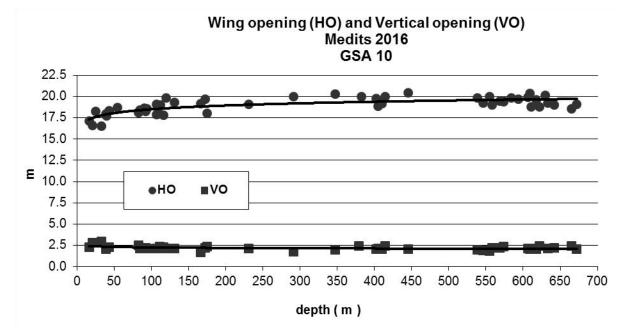


Fig. 1.2 - Wing Opening (HO) and Vertical Opening (VO) in GSA10 - 2016

Temperature data - 2016

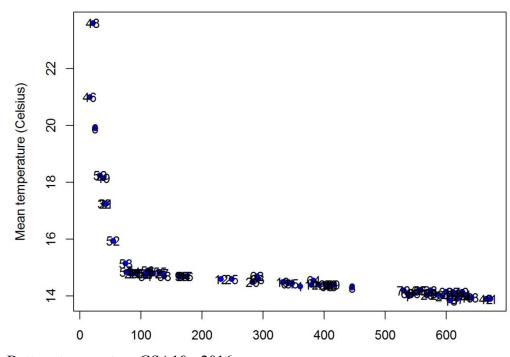


Fig. 1.3 – Bottom temperature GSA10 - 2016.

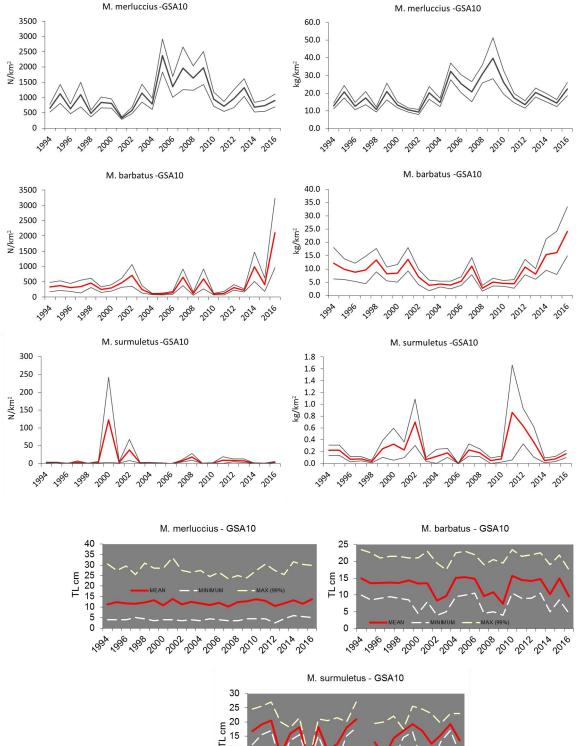
0	ampaign:	Date :		haul:	1
1		TOTAL weight of litte	er in the haul (kg) :		
	Type of Litter		Weight (kg) (facultative)	Number (facultative)	Number (mandatory
	a. Bags				
	b. Bottles				
	c. Food wrappers	11			
	d. Sheets (table cover	s, e.t.c.)			Ĭ.
	e. Hard plastic objects	(crates, containers,			
	tubes, ash-trays, lids,	etc.) (specify)			
1 Plastic	f. Fishing nets				
	g. Fishing lines				8
	h. Otherfishingrelate	d (nots floats etc.)			
	(specify)	a (p = 12)			
	j. Ropes/strapping bar	nds		3 <u></u>	
	a. Tyres				
L2 Rubber	b. Other (gloves, boot	s/shoes olskins			
	etc.) (specify)	5/5/10C5/ 8/80/18			
	a. Beverage cans				01
5	b. Other food cans/wi	anners			
	c. Middle size contain				
	chemicals)				
L3 Metal	d. Large metalic object of machinery, electric (specify)				
	e. Cables				8
	f. Fishing related (hoo (specify)	ks, spears, etc.)			
	a. Bottles				
L4 Glass/	b. Pieces of glass			-	59 C
Ceramic	c. Ceramic jars				2
	d. Large objects (speci	i6.)			2
	a. Clothing (clothes, sl				
L5 Cloth	b. Large pieces (carpe				
(textil)/	(specify)	is, marriesses, etc			
natural	c. Natural ropes				55 - C
fibres	d. Sanitaries (diapers,	anten hude etc.			6
e 101					~
	<u>cessed (palettes, crates</u>	, etc.)			4
L7 Paper an	N				C
L8 Other (sp				1	
.9 Unspecifie	ed			1	
105					
Respo	nsible:				

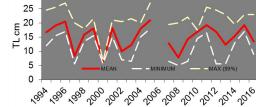
Fig. 1.4 Litter protocol us	sed in Medits Survey 2016

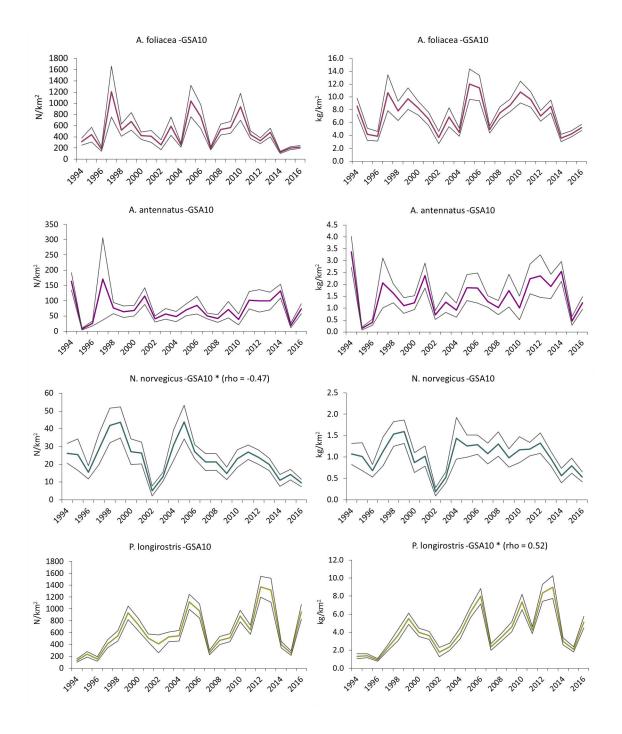
FAUNISTIC		Specimens	Specimens	Percentage
CATEGORY	SPECIES	measured	caught	(%)
	CENT GRA	2	2	100%
	CHIM MON	1	1	100%
	DASI PAS	3	3	100%
	ETMO SPI	154	154	100%
	GALU MEL	1630	1630	100%
	MYLI AQU	4	4	100%
Ichs	OXYN CEN	1	1	100%
brai	RAJA AST	4	4	100%
mol	RAJA CLA	21	21	100%
Elasmobranchs	RAJA MIR	7	7	100%
Η	RAJA OXY	1	1	100%
	SCYM LIC	3	3	100%
	SCYO CAN	58	58	100%
	SCYO STE	1	1	100%
	SQUA BLA	14	14	100%
	TORP TOR	1	1	100%
	ASPI CUC	49	49	100%
	BOOP BOO	743	743	100%
	CITH MAC	21	21	100%
	DIPL ANN	234	234	100%
	DIPL VUL	4	4	100%
	ENGR ENC	4581	8479	54%
	HELI DAC	535	535	100%
	LEPM BOS	23	23	100%
	LITH MOR	7	7	100%
	LOPH BUD	38	38	100%
	LOPH PIS	4	4	100%
ų	MERL MER	5103	5103	100%
Bony fish	MICM POU	5	5	100%
Son	MULL BAR	7967	7967	100%
Ш	MULL SUR	16	16	100%
	PAGE ACA	793	793	100%
	PAGE BOG	237	237	100%
	PAGE ERY	474	474	100%
	PHYI BLE	675	675	100%
	SARD PIL	2012	2645	76%
	SCOM PNE	54	54	100%
	SOLE VUL	2	2	100%
	SPAR PAG	1	1	100%
	SPIC FLE	2720	2720	100%
	SPIC SMA	365	365	100%
	TRAC MED	203	203	100%

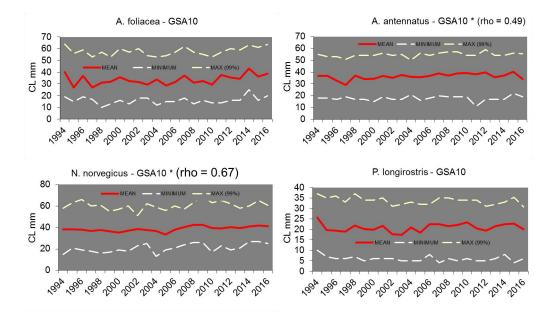
Table 1.1 - Sampled individuals for length distributions GSA10, 2016

FAUNISTIC CATEGORY	SPECIES	Specimens measured	Specimens caught	Percentage (%)
	TRAC TRA	1778	1778	100%
	TRIG LUC	16	16	100%
	TRIP LAS	3	3	100%
	TRIS CAP	128	128	100%
	ZEUS FAB	35	35	100%
	ARIS FOL	1347	1347	100%
Crustaceans	ARIT ANT	456	456	100%
stace	NEPR NOR	63	63	100%
Jrus	PAPE LON	5431	5431	100%
	SQUI MAN	52	52	100%
	ELED CIR	39	39	100%
s	ELED MOS	8	8	100%
pod	ILLE COI	565	565	100%
Cephalopods	LOLI VUL	225	225	100%
	OCTO VUL	26	26	100%
	SEPI OFF	8	8	100%
	TODA SAG	48	48	100%

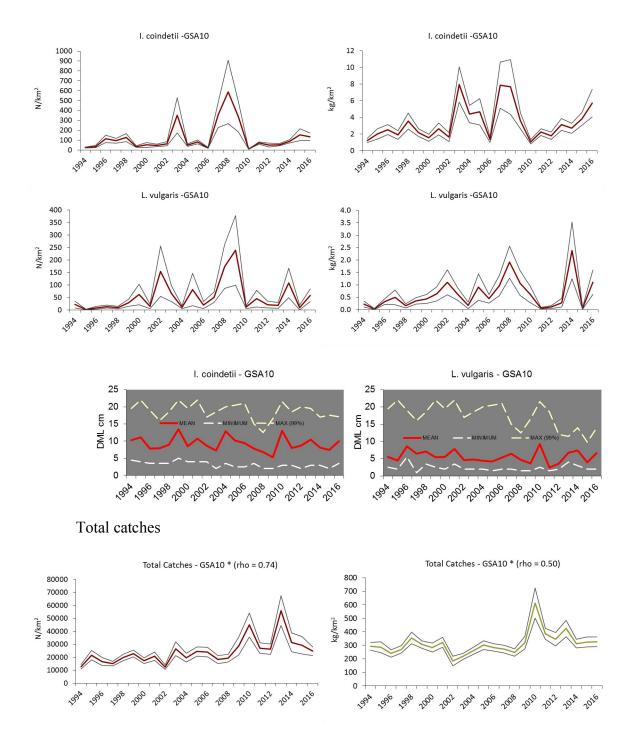

Table 1.2 – Number of specimens for sex and maturity, GSA10 2016


FAUNISTIC CATEGORY	SPECIES	N. of specimens for sex and maturity	Percentage (%)
Elasmobranchs	CENT GRA	2	100%
	CHIM MON	1	100%
	DASI PAS	3	100%
	ETMO SPI	154	100%
	GALU MEL	1630	100%
	MYLI AQU	4	100%
	OXYN CEN	1	100%
	RAJA AST	4	100%
	RAJA CLA	21	100%
	RAJA MIR	7	100%
	RAJA OXY	1	100%
	SCYM LIC	3	100%
	SCYO CAN	58	100%
	SCYO STE	1	100%
	SQUA BLA	14	100%
	TORP TOR	1	100%
Bony fish	ASPI CUC	12	24%
	BOOP BOO	7	1%
	LOPH BUD	31	82%
	LOPH PIS	4	100%
	MERL MER	1525	30%
	MULL BAR	1789	22%


FAUNISTIC CATEGORY	SPECIES	N. of specimens for sex and maturity	Percentage (%)
	MULL SUR	16	100%
	PAGE BOG	12	5%
	PAGE ERY	171	36%
	SOLE VUL	2	100%
	ZEUS FAB	32	91%
Crustaceans	ARIS FOL	1318	98%
	ARIT ANT	453	99%
	NEPR NOR	63	100%
	PAPE LON	5144	95%
	SQUI MAN	52	100%
Cephalopods	ELED CIR	39	100%
	ELED MOS	8	100%
	ILLE COI	415	73%
	LOLI VUL	31	14%
	OCTO VUL	26	100%
	TODA SAG	48	100%


2. Focus on historical trends

Bony fish 1994-2016, GSA10



Cephlopods 1994-2016, GSA10

Table 1.3 - Spearman rho – 2016, GSA10

	N/km ²	kg/km ²	Mean length
A. foliacea	-0.197	-0.048	0.362
A. antennatus	0.057	0.125	0.491
I. coindetii	0.278	0.333	-0.204
L. vulgaris	0.317	0.229	-0.180
M. merluccius	0.264	0.394	0.191
M. barbatus	0.047	0.036	-0.006
M. surmuletus	0.033	0.018	-0.037
N. norvegicus	-0.466	-0.145	0.672
P. longirostris	0.410	0.517	0.271
Total catches	0.744	0.503	

3. <u>Planning for the next survey</u> It is not possible to make a plan for the MEDITS survey in the GSA10, because the DCF program is under a tender procedure at national level.

GSA18

G. Lembo¹, P. Carbonara¹, L. Casciaro¹, I. Bitetto¹, M.T. Facchini¹, M. Durović³, D. Divanocić³, Z. Ikica³, A. Pešić³, J. Tomanić³, N. Karaduzović³, J. Kolitari², G. Kroqi², W. Zupa¹ and M.T. Spedicato¹

¹COISPA Tecnologia & Ricerca, Bary, Italy ²Agriculture University of Tirana, Durres Laboratory, Albania ³Institute of Marine Biology of Montenegro

1. Review of 2016 survey by GSA18

The survey was carried out from 29.07.2016 to 25.08.2016. The vessel utilized was Pasquale & Cristina (PEC), as in previous years. The number of hauls performed was 90, as planned. The survey was carried out late given to technical reasons occurring to the survey vessel Pasquale & Cristina (PEC). The geographic area covered and the map with haul locations is showed in Figure 1.1. The number of hauls in which Simrad was used were 53 and the results with relationship between wing opening and vertical opening vs the depth are showed in Figure 1.2. The number of hauls in which DST centi-TD was used was 90. The relationship between the bottom temperature and depth hauls is showed in Figure 1.3. No other measures of environmental variables was recorded. Litter was recorded following the protocol showed in Figure 1.4. The numbers of species classified by taxa were 321 species and 15 faunistic categories: 18 species of Elasmobranchs, 123 species of Osteichthyes, 52 species of Crustaceans, 27 species of Cephalopods, 10 species of Mollusca Bivalvia, 11 species of Mollusca Gastropoda, 8 species of Opistobranchia, 15 species of Tunicata, 1 species of Brachiopoda, 5 species of Bryozoa, 17 species of Cnidaria, 28 species of Echinoderms, 1 species of Hirudinea, 1 species of Polychaeta, 4 species of Porifera. The total number of classified individuals of the MEDITS reference list was 159793 individuals. The total number of sampled individuals for length distributions was 89554 individuals (Table 1.1). The total number of sampled individuals for sex and maturity was 22918 individuals (Table 1.2). The numbers of samples of hard tissues collected for ageing by target species were:

M. merluccius 441 otoliths, *M. barbatus* 617 otoliths, *M. surmuletus* 64 otoliths. Genetic samples of *Raja clavata* were collected for common projects.

No particular difficulties were encountered in the application of the new protocol.

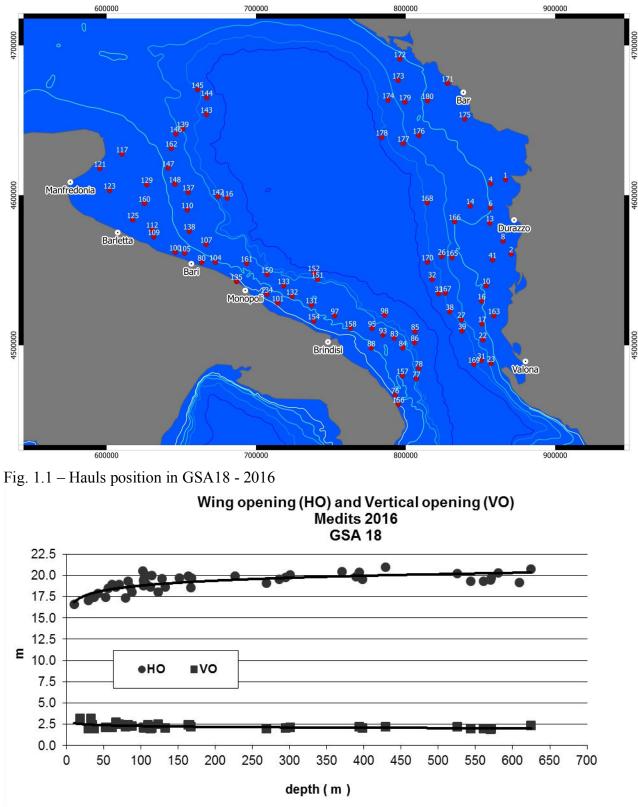


Fig. 1.2 - Wing Opening (HO) and Vertical Opening (VO) in GSA18 - 2016

Temperature data - 2016

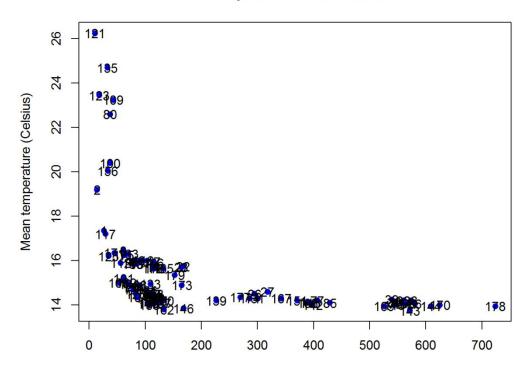


Fig. 1.3 – Bottom temperature GSA18 – 2016

L1 Plastic L1 Plastic L2 Rubber L3 Metal L3 Metal L3 Metal L3 Metal L3 Metal	ToTAI Type of Litter Bags Bottles Bottles Sheets (table covers, et.c. Hard plastic objects (crate bes, ash-trays, lids, etc.) (s Fishing nets Fishing lines Other fishing related (pots pecify) Ropes/strapping bands Tyres Other (gloves, boots/shoe) s, containers, pecify)	er in the haul (kg) : Weight (kg) (facultative)	Number (facultative)	Number (mandatory
L1 Plastic L1 Plastic L2 Rubber L2 Rubber L3 Metal L3 Metal L3 Metal L3 Metal	Bags Bottles Food wrappers Sheats (table covers, <u>st.c.</u> Hard plastic objects (crate bes, ash-trays, lids, etc.) (sj Fishing lines Fishing lines Other fishing related (pots pedfy) Ropes/strapping bands Tyres	s, containers, pecify)		A000000000000	
L1 Plastic L1 Plastic L2 Rubber L2 Rubber L3 Metal L3 Metal d L3 Metal L3 Metal	Bags Bottles Food wrappers Sheats (table covers, <u>st.c.</u> Hard plastic objects (crate bes, ash-trays, lids, etc.) (sj Fishing lines Fishing lines Other fishing related (pots pedfy) Ropes/strapping bands Tyres	s, containers, pecify)		A000000000000	
L1 Plastic L1 Plastic L2 Rubber L3 Metal L3 Metal L3 Metal L3 Metal	Bottles Food wrappers Sheets (table covers, <u>st.c.</u> Hard plastic objects (crate bes, ash-trays, lids, etc.) (s) Fishing Ines Other fishing related (pots pedfy) Ropes/strapping bands Tyres	s, containers, pecify)			
L1 Plastic E.1 Plastic E.1 Plastic F. B. b. L2 Rubber L2 Rubber L3 Metal G G C C C C C C C C C C C C C	Food wrappers Sheets (table covers, <u>s.t.c.</u> Hard plastic objects (crate bes, ash-trays, lids, etc.) (s Fishing nets Fishing lines Other fishing related (pots pecify) Ropes/strapping bands Tyres	s, containers, pecify)			
L1 Plastic L1 Plastic L2 Rubber L2 Rubber L3 Metal L3 Metal L3 Metal	Sheets (table covers, et.c. Hard plastic objects (crate bes, ash-trays, lids, etc.) (s) Fishing nets Fishing lines Other fishing related (pots pedfy) Ropes/strapping bands Tyres	s, containers, pecify)			
L1 Plastic L1 Plastic L1 Plastic L2 Rubber L2 Rubber L3 Metal L3 Metal L3 Metal	Hard plastic objects (crate bes, ash-trays, lids, etc.) (sj Fishing nets Fishing lines Other fishing related (pots pedfy) Ropes/strapping bands Tyres	s, containers, pecify)			
L1 Plastic	bes, ash-trays, lids, etc.) (s Fishing nets Fishing lines Other fishing related (pots pecify) Ropes/strapping bands Tyres	pecify)			
L1 Plastic <u>f.</u> <u>5</u> <u>6</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	Fishing nets Fishing lines Other fishing related (pots pedfy) Ropes/strapping bands Tyres				
I. I. I.2 Rubber b. I.2 Rubber b. I.2 Rubber c. I.2 Rubber b. I.3 Metal d.	Fishing lines Other fishing related (pots pedfy) Ropes/strapping bands Tyres	;, floats, etc.)			1
h. is is is 12 Rubber b. 12 Rubber is 12 Rubber is 13 Metal d.	Otherfishingrelated (pots pecify) Ropes/strappingbands Tyres	s, floats, etc.)			
L2 Rubber et a. L2 Rubber et a. b. b. b. c. L3 Metal d. of	pecify) Ropes/strapping bands Tyres	s, floats, etc.)			
L2 Rubber b. et b. b. b. b. c. c. c. c. d. d. d. of	Ropes/strapping bands Tyres				Ĩ.
L2 Rubber b. et b. c. L3 Metal d. of	Tyres			34	2
L2 Rubber b. et a. b. c. L3 Metal d. of					
et a. b. c. ch L3 Metal of	Other (gloves, boots/shoe				1
a. b. c. L3 Metal d. of		s, olskins			
b. c. L3 Metal d. of	c.) (specify)				
c. ch L3 Metal d. of	Beverage cans				
L3 Metal d. of	b. Other food cans/wrappers c. Middle size containers (of paint, oil, chemicals) d. Large <u>metalic</u> objects (barrels, pieces of machinery, electric appliances) (specify)				
L3 Metal d. of				3	÷
of					
				<	
	(speaty) e. Cables				÷
12/24	Fishingrelated (hooks, spe pecify)	ars, etc.)			
a.	Bottles				
L4 Glass / b.	Pieces of glass			-	-9
	Ceramic jars			-	8
d.	Large objects (specify)			-	2
	Clothing (clothes, shoes)				
textil)/ b.	Large pieces (carpets, mat pecify)	tresses, etc)			
e.	Natural ropes	12			
fibres d.	d. Sanitaries (diapers, cotton buds, etc.)				
L6 Wood process	ed (palettes, crates, etc.)				
L7 Paper and car	rdboard				1
L8 Other (specify)				
L9 Unspecified					
Responsib					

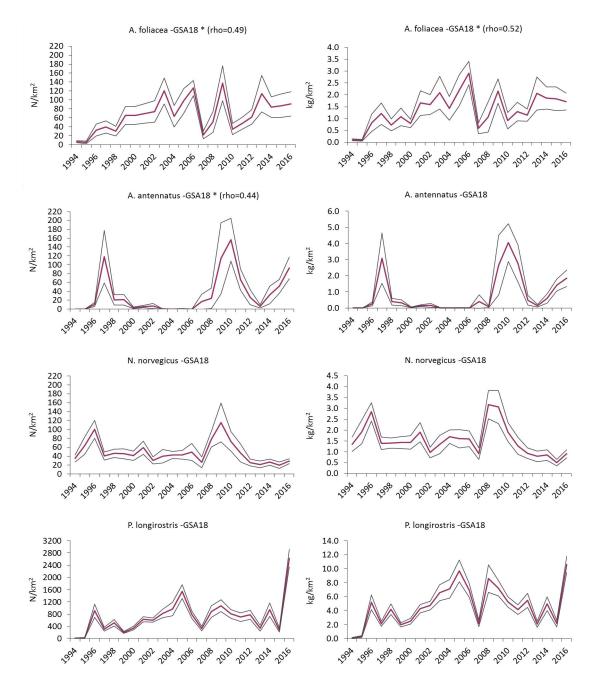
Fig. 1.4 - Litter protocol used in Medits Survey 2016

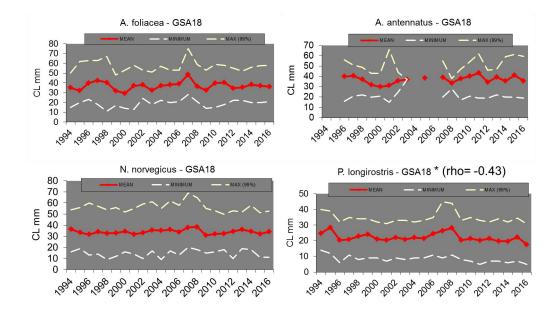
Table 1.1 - Sampled individuals for length distributions GSA18, 2016

FAUNISTIC CATEGORY	SPECIES	Specimens measured	Specimens caught	Percentage (%)
	CENT GRA	1	1	100%
	CHIM MON	46	46	100%
	DASI PAS	9	9	100%
	ETMO SPI	330	330	100%
~	GALU MEL	592	592	100%
Elasmobranchs	MUST MUS	6	6	100%
braı	MYLI AQU	1	1	100%
om	RAJA AST	6	6	100%
Elas	RAJA CIR	2	2	100%
	RAJA CLA	28	28	100%
	RAJA MIR	44	44	100%
	RAJA NID		1	100%
	RAJA POL	4	4	100%
	SCYM LIC	4	4	100%

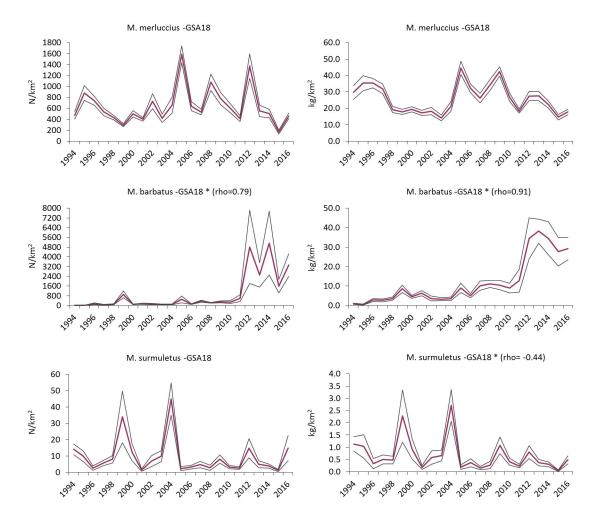
FAUNISTIC CATEGORY	SPECIES	Specimens measured	Specimens caught	Percentage (%)
	SCYO CAN	274	274	100%
	SQUA ACA	2	2	100%
	SQUA BLA	7	7	100%
	TORP MAR	3	3	100%
	ASPI CUC	1782	1782	100%
	BOOP BOO	309	309	100%
	CITH MAC	161	161	100%
	DIPL ANN	315	523	60%
	DIPL VUL	2	2	100%
	ENGR ENC	12803	25390	50%
	EUTR GUR	5	5	100%
	HELI DAC	370	370	100%
	LEPM BOS	189	189	100%
	LITH MOR	15	15	100%
	LOPH BUD	65	65	100%
	LOPH PIS	1	1	100%
	MERL MER	2401	2401	100%
	MICM POU	291	291	100%
	MULL BAR	16129	16129	100%
ísh	MULL SUR	72	72	100%
Bony fish	PAGE ACA	1010	1428	71%
Bor	PAGE BOG	566	566	100%
	PAGE ERY	569	569	100%
	PHYI BLE	604	604	100%
	SARD PIL	10844	15005	72%
	SCOM PNE	1165	1165	100%
	SCOM SCO	20	20	100%
	SOLE VUL	9	9	100%
	SPAR PAG	53	53	100%
	SPIC FLE	5371	7109	76%
	SPIC SMA	577	1906	30%
	TRAC MED	774	1009	77%
	TRAC TRA	3009	3009	100%
	TRIG LUC	79	79	100%
	TRIP LAS	41	41	100%
	TRIS CAP	668	668	100%
	ZEUS FAB	30	30	100%
~	ARIS FOL	809	809	100%
Crustaceans	ARIT ANT	834	834	100%
tace	NEPR NOR	251	251	100%
Jrus	PAPE LON	15349	15349	100%
	SQUI MAN	127	127	100%
Cepha lopods	ELED CIR	130	130	100%
Cer	ELED MOS	20	20	100%

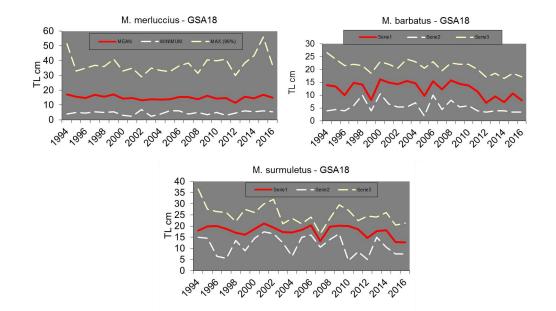
FAUNISTIC	SPECIES	Specimens	Specimens	Percentage
CATEGORY	SFECIES	measured	caught	(%)
	ILLE COI	8215	8215	100%
	LOLI VUL	1997	1997	100%
	OCTO VUL	95	95	100%
	SEPI OFF	38	38	100%
	TODA SAG	30	30	100%

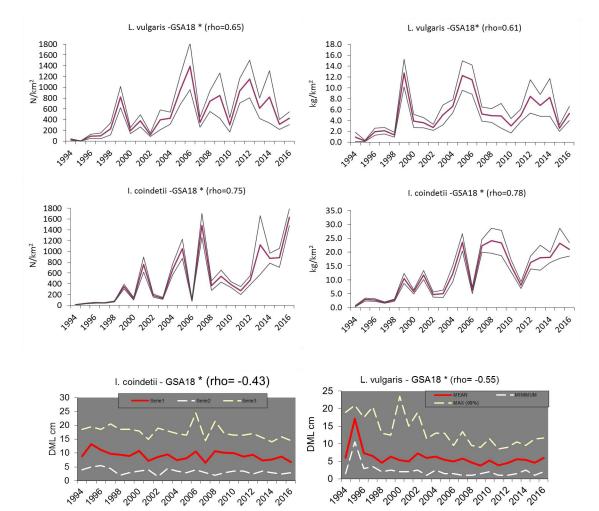

Table 1.2 – Number of specimens for sex and maturity GSA18, 2016


FAUNISTIC CATEGORY	SPECIES	N. of specimens for sex and maturity	Percentage (%)
	CENT GRA	1	100%
	CHIM MON	46	100%
	DASI PAS	9	100%
	ETMO SPI	330	100%
	GALU MEL	592	100%
	MUST MUS	6	100%
	MYLI AQU	1	100%
Ichs	RAJA AST	6	100%
brar	RAJA CIR	2	100%
mol	RAJA CLA	28	100%
Elasmobranchs	RAJA MIR	44	100%
	RAJA NID	1	100%
	RAJA POL	4	100%
	SCYM LIC	3	75%
	SCYO CAN	274	100%
	SQUA ACA	2	100%
	SQUA BLA	7	100%
	TORP MAR	3	100%
	LOPH BUD	61	94%
	LOPH PIS	1	100%
	MERL MER	985	41%
	MULL BAR	3053	19%
Bony fish	MULL SUR	59	82%
ony	PAGE BOG	55	10%
B 8	PAGE ERY	289	51%
	SOLE VUL	9	100%
	TRIG LUC	1	1%
	ZEUS FAB	17	57%
	ARIS FOL	786	97%
eans	ARIT ANT	821	98%
tace	NEPR NOR	251	100%
Crustaceans	PAPE LON	12988	85%
	SQUI MAN	127	100%

FAUNISTIC CATEGORY	SPECIES	N. of specimens for sex and maturity	Percentage (%)
	ELED CIR	130	100%
_S	ELED MOS	20	100%
Cephalopods	ILLE COI	1672	20%
	LOLI VUL	87	4%
, ept	OCTO VUL	95	100%
	SEPI OFF	21	55%
	TODA SAG	30	100%


2. Focus on historical trends


Crustaceans 1994-2016, GSA18



Bony fish 1994-2016, GSA18

Cephalopods 1994-2016, GSA18

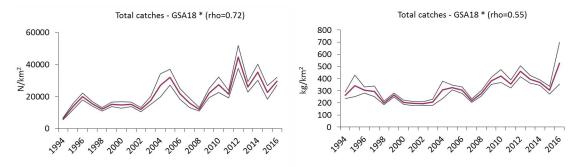


Table 2.1 Spearman rho - Medits 2016 GSA18

	N/km ²	kg/km ²	Mean length
A. antennatus	0.476	0.450	0.165
A. foliacea	0.509	0.532	0.052
I. coindetii	0.779	0.772	-0.427
L. vulgaris	0.631	0.512	-0.547
M. barbatus	0.812	0.914	-0.410
M. merluccius	-0.029	-0.198	-0.230
M. surmuletus	-0.202	-0.407	-0.308
N. norvegicus	-0.384	-0.477	0.081
P. longirostris	0.434	0.415	-0.433
Total catches	0.721	0.635	

3. <u>Planning for the next survey</u>

It is not possible to make a plan for MEDITS survey in the GSA18 because the DCF program is under a tender procedure at national level.

Mediterranean International Trawl Survey (MEDITS) in Greece in 2016

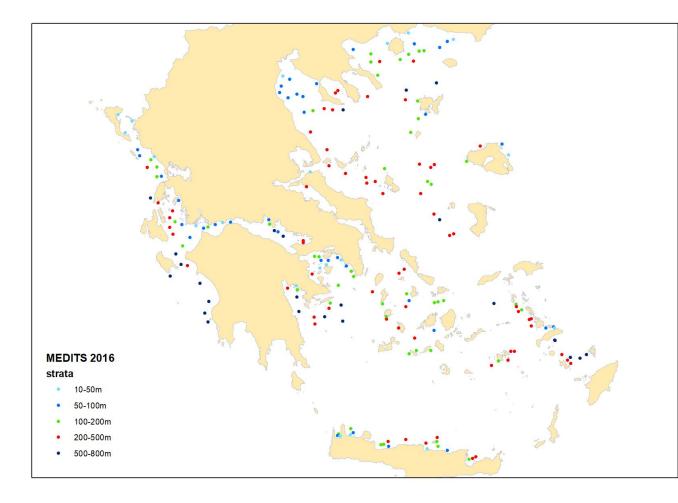
Summary report

The MEDITS Survey was realized in Greece in the frames of the DCF 2016, in the three GSAs of the Greek territory, i.e. GSA 20 (E. Ionian Sea), GSA 22 (Aegean Sea) and GSA 23 (Cretan Sea) (Picture 1). The sampling was made according to the MEDITS manual 8/2016. Additionally, the litters caught by the trawl net were recorded according to the updated Protocol for Litter. Three commercial fishing boats were hired for the survey, one for the area E. Ionian and Argosaronikos Gulf, one for S. Aegean and Cretan Seas and one for the N. Aegean Sea. Details about the boats involved in the Survey are given in the table 1. The scientific team of HCMR (Athens) was in charge of the sampling in GSA 20 and Argosaronikos Gulf (part of GSA 22), the scientific team of HCMR (Crete) was responsible for the sampling of GSA 23 and S. Aegean (part of GSA 22) and the scientific team of FRI (Kavala) was responsible for the survey of N. Aegean (part of GSA 22).

FRI realized the MEDITS Survey in N. Aegean (224) from 5/7/2016 to 8/8/2016, with an interruption between 19-26/7/2016 due to emergency rasons. 24 persons were involved in the sampling (scientific personnel and collaborators). 63 of the 66 stations were sampled by the vessel «MEGALOHARI». 180 species were recorded and otoliths from 568 specimens were collected (269 Merluccius merluccius, 118 Mullus surmuletus, 181 Mullus barbatus). CTD was used for depth, temperature and salinity recording. Measures of the trawl-net used were taken.

HCMR (Crete) realized the MEDITS Survey in S. Aegean (225) and Cretan Seas (GSA 23) from 19/7/2016 to 18/8/2016. Eight persons were involved in the sampling and in the lab analysis of samples (all scientific personnel). 60 stations were sampled by the vessel «NAUTILOS». 170 species were recorded and otoliths were collected from 1398 specimens (292 Merluccius merluccius, 278 Mullus surmuletus, 828 Mullus barbatus). STAR-ODDI sensors were used for depth and temperature recording. New trawl-net used for the sampling.

HCMR (Athens) realized the MEDITS Survey in E. Ionian (220) and Argosaronikos Gulf (223) from 24/6/2016 to 26/7/2016. 17 persons were involved in the sampling and 16 persons were involved in the lab analysis of samples (all scientific personnel). In total 70 stations were sampled by the vessel «TAKIS-MIMIS», 26 in the region of Agosaronikos and 44 in the eastern Ionian Sea. In Argosaronikos were recorded in total 152 species and 165 in the Ionian Sea . In total otoliths of 1359 specimens were collected (401 Merluccius merluccius, 185 Mullus surmuletus, 773 Mullus barbatus). CTD and SCANMAR were used for depth, temperature, salinity and the net geometry recording. New trawl-net used for the sampling.


Table 1. Commercial fishing vessels used for the Greek MEDITS Survey in2014.

Vessel name	Total	Institute	Sampling area
	Length		
	(m)		
MEGALOHARI	33	FRI	N. Aegean (GSA 22, 224)
NAUTILOS	29	HCMR (Crete)	S. Aegean (GSA 22, 225)
			Cretan Sea (GSA 23, 225)
TAKIS-MIMIS	29	HCMR (Athens)	Argosaronikos (GSA 22, 223)
			E. Ionion (GSA 20)

The number of stations realized by GSA and depth zone are presented in table 2.

Table 2. Number of stations sampled during 2016 MEDITS Survey in Greece, by
GSA and depth zone.

GSA	10-50 m	50-100 m	100-200 m	200-500 m	500-800 m
20 (Ionian)	6	11	7	9	10
22 (Aegean)	8	20	35	44	16
23 (Cretan)	3	4	7	6	1

Picture 1. Greek MEDITS 2016 sampling stations.

Problems encountered

The required number of otoliths and individual weights was very high and produced a lot of extra work not always feasible to accomplish during the works at sea, especially under rough sea conditions. This resulted to a lot of additional working time after the survey, at the lab.

MEDITS REPORT, France GSA 7 and 8

Review of MEDITS France, GSA7 and 8, 2016, Angélique Jadaud

The MEDITS survey was conducted in GSA 7 and 8, from the 20th May until the 26th of June 2016. All the hauls were performed (23 in GSA 8-Eastern Corsica and 65 in GSA 7-Gulf of Lions, with one of the 65 hauls invalidated because of tears of the net). The openings of the net were measured using MAREPORT system, on all the hauls and the bottom temperature and salinity were measured using an Oddistar CTD. The temperature oscillated around 13 and 15 °C and the salinity between 35.7 and 39.3. Macro litters were collected, weighted and counted by sub-category and mostly plastic were analyzed. In GSA 7 and 8 joined, 392 taxa were identified with 12 new species. In GSA7 and 8, 60 taxa (G1 and G2 species) and 51 taxa were respectively measured. Considering sex and maturity 20 taxa (GSA7) and 26 taxa (GSA 8) were sampled (G1 species. Focusing on Total numbers of hard tissues collected for ageing, 5 species were analysed (Mullus barbatus, M. surmuletus. Lophius budegassa, L. piscatorius and M. Merluccius), around 600 otoliths of M. barbatus were collected in GSA 7 and also 8, precisions for the other species can be found in the report "Review2016 GSA7 GSA8". Other samplings were done considering different projects; Raja clavata samples harvested for population genomics (Pascal Lorance); MEDITS Maturity stages working group, collection of macroscopic photos of hake and red mullet (gonad in the body and separately) and histological samplings (C. Follesa). Moreover, samplings were done considering Marine Strategy Framework Directive (MSFD): characterization of abundance of zooplankton taxa by use of WP2 for 10 stations in the Gulf of Lions and 8 stations in the Eastern Corsica (different depths strata), samples stored in a solution with formol and will be analysed in 2017, Determination of jelly fish. Next year 2017, the survey will be conducted from the 23rd of may until the 26th June (first Eastern Corsica, then Gulf of Lions). Some samplings will be done for MSFD (WP2, CTD, contaminants, stomachs contents and isotopy).

Synthesis of the conclusions of the working group on French fisheries surveys in Mediterranean sea. Angelique Jadaud

In 2016, a working group was conducted by IFREMER on Mediterranean IFREMER Surveys (MEDITS and PELMED/MEDIAS) to propose a strategy for years to come. Similar working groups were conducted for other IFREMER Atlantic surveys (IBTS...). The working group had to consider the potential and the reference expectations revalued in reference to the **Common Fisheries Policy** needs, **Strategy of the EU for the marine environment** (Marine Strategy Framework Directive) and **national needs** (in particular to Fisheries and other uses, by example in coastal area or considering offshore wind or extractions)

The WG had to propose solutions for the continuation of the fisheries monitoring program of the surveys in the area for the next ten years, including reflection on the insertion of the device into a European framework. The priorities should take into account explicitly the obligations of Member States under the DCF (international protocols,...). **Strenghts, weaknesses, opportunities and threats** were listed (detailed in the presentation made during MEDITS meeting, Nicosia, April 2017).

Three different scenarios were tested; **Optimization**, **reduction** and **adding a demersal survey in autumn/winter (quarter 4)**. Considering:

- 1. Optimization of MEDITS (total number of days is constant over 1 cycle), by deployment of traits between strata looking at CVs, or doing the Corsican part (GSA 8) every 2-3 years or 3-year block every 3 years and reallocate days to Gulf of Lions (GSA 7). There is no advantage for the deployment of traits between strata because the coefficients of variation of the indices of abundance in the different strata are comparable. The proposal of making Corsica every 2-3 years or 3-year block was suggested, leaving 9 days/year available for Gulf of Lions (GSA7). A preference was given to add 4 additional days/year for GSA7. The feasibility of this "optimization plan" depends on DCMAP requirements, currently annual data by GSA required by the European Commission.
- 2. Reduction of MEDITS (decrease of the numbers of days), by the reduction of the number of hauls or doing the Corsican part (GSA 8) every 2-3 years or 3-year block every 3 years. The advantage of this measure is the decreasing of the cost by the reduction of number of hauls or Corsica every 2-3 years or 3-year block: 9 days maximum won, years without Corsica. The disadvantages are the loss of precision for strata with fewer traits (impact on red mullet and hake index) and also the feasibility depends on DCMAP requirements, currently annual data by GSA required by the European Commission
- 3. Additionnal demersal survey in autumn/winter (quarter 4): To be demonstrated, but would give more information on the seasonality and would be better for some species (considering maturity period by exemple...).

The conclusion of the IFREMER WG was that the feasibility of the different scenarios will depend on DCMAP requirements, currently annual data by GSA required by the European Commission.

The conclusion of the international MEDITS group, was that it was not possible to change the period sampling considering Corsica from an annual basis to a **2-3 years** or a **3-year block** and then 3 years without it. The survey has to be maintained annually. Indeed, there are very low fishing informations (biological samplings) considering eastern Corsica (GSA 8), which means that the MEDITS survey is the only mean to obtain biological informations on demersal species, on a yearly basis. Moreover, this area has been sampled since 1994 on a yearly basis. Changing the sampling period would be a consequent loss of quality of the data. The MEDITS WG recommended to maintain the survey in GSA 8 annually and insisted on the fact that this point should be presented at the RCM-MED.

IFREMER Working group on scientific fishing surveys in the Mediterranean sea, Moving towards the Marine Strategy Framework Directive : Examples in the Mediterranean Sea, Common research activity by partners of MEDITS surveys – April 2017. Anik Brind'Amour, Angélique Jadaud, Damien Delaunay, Verena Trenkel and others.

The main objective of the Marine Strategy Framework Directive (MSFD; 2008/56/EC) is to achieve

or maintain good environmental status (GES) by 2020. To fulfil MSFD requirements, 11 qualitative descriptors and a suite of indicators associated with each descriptor have been selected. European Member States have already initiated the reviews required to provide information for these descriptors and the estimation of the related indicators that will be used to assess the GES. For monitoring purposes, the Biodiversity (D1) and Food web (D4) descriptors were divided into ecosystem components (Fish, Cephalopods, Turtles, ...), with several species per group.

For ecosystem components such as fish and cephalopods, which comprise mobile species, three species-level Criteria are listed under Descriptor 1 in the Decision document: these are Criterion 1.1 Species population distribution, Criterion 1.2 Species population size and Criterion 1.3 Species population condition. The Decision suggests two Indicators for Criterion 1.1, Distributional range (Indicator 1.1.1) and Distributional pattern within the range (Indicator 1.1.2), one, or possibly two, Indicator(s) for Criterion 1.2, Population abundance and/or biomass (Indicator 1.2.1) and two Indicators for Criterion 1.3, Population demographic characteristics (Indicator 1.3.1) and Population genetic structure (Indicator 1.3.2).

To date, metrics of population range (PR) and distribution pattern (DP) within the range have been considered to fulfil the Indicators 1.1.1 and 1.1.2, but these have not been agreed and development of appropriate metrics is ongoing. For this study both metrics are used. Metrics of both species population abundance (PAB) and species population biomass (PBIO) are considered in this study to fulfil the Indicator 1.2.1. Several metrics have been proposed to address the Indicator 1.3.1, but agreement over which metric should be used has not been reached. One potential metric, the proportion of the population exceeding the species' length-at-first-maturity (Bmat), is considered as an Indicator in this study. Currently no metrics of population genetic structure have been proposed to fulfil the Indicator 1.3.2. That indicator is thus excluded from this work.

Concurrently to the species-level Criteria, the MSFD also suggest Criterion, 1.7 Ecosystem Structure, which is relevant to mobile species such as fish. Five potential indicators to assess the status of fish communities against the Ecosystem Structure Criterion 1.7 have either been proposed, or are currently under development. These are the Typical length (TyL), the Mean Maximum Length (MML), the Proportion of Mature Fish in the Community (PMFC), Size-based Species Richness (SBSR) and Size-based Species Evenness (SBSE). Those five indicators are retained for this work.

The proposed analysis consists in computing the ten indicators belonging to the four Criteria in different GSAs to assess the GES of the Mediterranean Sea based on the MSFD approach.

Investigating the genetic structure of the curly line (Raja clavata) in the Northeast Atlantic and evaluate the value of a new method for estimating the abundance of the species in the Bay of Biscay, GENOPOPTAILLES, Pascal LORANCE

The first phase of the GenoPopTaille project analyses the populations structure, connectivity and genetic diversity of the thornback ray in the Altantic and Mediteranean Sea, using high throuput sequencing techniques (RADseq). The main aim of the project is to estimating the total number of adults in the population of the Bay of Biscay. The method relies on the principle of capture-mark-recapture (CMR) which is well tested using physical tags. Instead of physical tags, the project intends to use the genetic fingerprint of adults and recapture via their offsprings. Parent-offspring pairs will be identified by genotyping a large sample of adults and juveniles, which is now possible owing to rapid progress of high-throughput genotyping.

Benthic habitat sensitivity: process-driven vs functional approaches (in the Gulf of Lions) M. Llapasset, S. Vaz, A. Jadaud, 2016

In the Gulf of Lions, various environmental descriptors of sediments, currents, hydrology and food availability were processed in order to produce a risk map of the benthic sensitivity to trawling. This approach can also be enlarged to the whole of the Mediterranean bassin. In parallel, a trawl disturbance index was produced on the basis of in situ observations of the macro-benthic fauna, to illustrate the distribution of sensitive assemblages. This work had shown that the distribution of vulnerable benthic species in the Gulf of Lions was not coherent with that of their environmental preferedum but could be linked to their vulnerability to trawling. Most sensitive bentic species are generally found in areas where fishing effort is low which could reflect the fact that fishery has impacted and restructures seabeds some time ago. It would be interesting to use MEDITS data on benthic invertebrates to check this results in other areas.

Improving management efficiency of SW Europe waters through integrated assessment of marine networks SW Europe Marine Network (SoMarNet), INTEREG-SUDOE, S. Vaz

The South western european region is surrounded by both Atlantic and Mediterranean waters, both of which exhibiting a large number of threatened habitats and being managed as separate entities. This situation may lead to mismatch between conservation and management objectives as well as implemented protection and regulations. In the frame of the last interreg SUDOE call, we have proposed (french, spanish and portugues partners) a project which aims to develop a framework to improve management coherence and efficiency and decrease conflict in natural marine sites. Our goal is thus to provide knowledge usable by multiple stakeholders enabling them to support or challenge (currently implemented and future) spatial planning and management decisions in an integrated framework between the Mediterranean and the Atlantic. If accepted SoMarNet will bring together researchers and stakeholders with multi-disciplinary and complementary expertise which are essential to accomplish this objective. It will make heavy use of survey data from all countries (DATRAS and MEDITS) and will communicate results through website, geoportals and public meetings all through the project.

Demersal Surveys at the Romanian Black Sea Coast

dr. Valodia **MAXIMOV**,

Description of the Romanian Fisheries

The Romanian fishing fleet is operating in the area of competence of the Regional Fisheries Management Organisations - G.F.C.M., Area 37 - Mediterranean and Black Sea, Sub-area 37.4., Division 37.4.2, GSA 29. The Romanian fishing area is comprised between Sulina and Vama Veche; the coastline extends for over 240 km, which can be divided into two main geographical and geomorphologic sectors:

♦ the northern sector (about 158 km in length) lies between the secondary delta of the Chilia branch and Constanta, and is constituted of alluvial sediments;

♦ the southern sector (about 85 km in length) lies between Constanta and Vama Veche and is characterised by promontories with active, high cliffs, separated by large zones with accumulative beaches often protecting littoral lakes.

The distance from the sea shore to the shelf limits (200 m depth) varies from 100 to 200 km in the northern sector and to 50 km in the southern one. The submarine slope of the shelf is very gentle in the north, while in the southern sector the slope increase very quickly (Fig. 1 and 2).

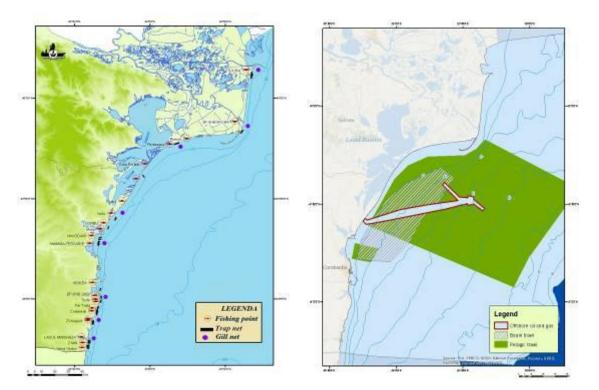


Fig. 1 Fishery ports and distribution area for stationary fishing gears

Fig. 2 Distribution of trawling zones for active fishing gears

In the coastal zone of the Romanian marine sector with small depth, fishing with fixed gear is characterized by the concentration of activity mainly in the first six-seven months of the season (March-September), when usually the species migrate to the coastal area for spawning and other species migrate for feeding. Generally, the total fishing season lasts

about eight months. The catch level and the level of fishing productivity differs from one year to another, depending on the fishing effort (number of pound nets and effective fishing days), and also depends on the evolution of hydro climatic conditions and, last but not least, the state of fish stocks. The structure on species in the catches mirrors only partly the composition of Black Sea ichtyofauna from the Romanian sector, because the type of gear used determines the ratio between the different fish species. As a general rule, the small-sized short-lived pelagic species continue to be dominant in catches.

In **2016**, only **151 vessels** were registered, of which **121** were active. Even though compared to the previous years the total number of registered vessels slightly dropped (about 5%), the number of active vessels increased, by the activation of 12 - 18 m and 18 - 24 m LOA vessels, specialized for rapa whelk fishing. The passive fishing gears include the equipment for catching in general the fish migrating for spawning and feeding in shallow waters, namely: long lines and bottom lines; *gillnets for turbot*, Danube shad, gray mullet, gobies and horse mackerel; trap nets for gobies; sea pound nets. Another category of fishing equipment used in the Romanian coastal zone includes the active fishing gear like beach seine, pelagic trawl and, since 2013, beam trawl.

Qualitative and quantitative structure of catches

After a decreasing trend during 2002-2010, when it dropped from more than 2,000 t, in 2002, to 1,390-1,940 t, during 2003-2006, and below 500 t during 2007 - 2009, reaching a minimum value in 2010/258 t, in the past years the total catch has had an increasing trend, namely 568 t, in 2011, 835 t, in 2012, 1,711 t in 2013, 2,231 t in 2014 (more than 23.31% higher than the previous year), 4,847 in 2015 (more than 105.5 % higher than the previous year) and 6,839.5 tons in 2016, official registered (Fig. 3). During 2011 - 2016, the total catches increased compared to the previous period due to the rapa whelk catches. The main species in the 2016 catches were: rapa whelk (6,504.5 tons / 95 % of total catches); anchovy (102.42 tons); sprat (49.27 tons); turbot (30 tons); horse mackerel (32.34 tons); shad (13.77 tons) and gobies about 20.24 tons (Fig. 4).

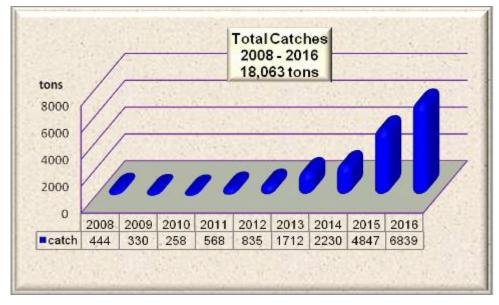
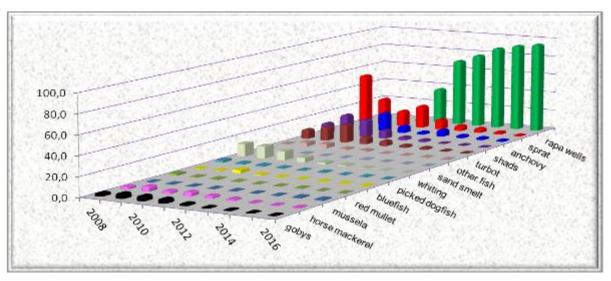
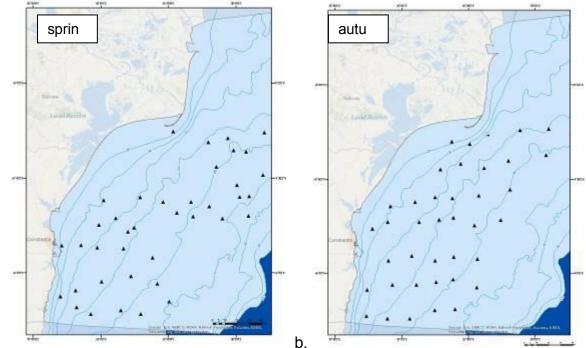


Fig. 3 Total catches at the Romanian littoral




Fig. 4 Structure on species at the Romanian littoral, during 2008 - 2016

Demersal survey 2016:

- ◆ period: 07–27 may 2016 and 23-27 november / 08-12 december 2016 (Fig. 5).
- ♦ type of fishing vessel: B-410 (STEAUA DE MARE 1);

methodology: evaluation of part of the stock of turbot and other demersal species
 (agglomerations fishing) was made by the method holistic trawl survey (method surface),
 that can be applied to restricted areas, without regard of the distribution of the entire stock
 and used as parameters: vessel speed, and the horizontal opening of the trawl during
 trawling;

◆ characteristics: demersal trawls: 22/27-34 m; horizontal trawl opening - 13 m; vertical trawl opening - 2 m; no trawls: 81; drepth: 13.3 - 80.1 m; trawl speed: 1.6 - 2.2 knots; time trawling: 60 min; catch: 20 - 250 kg.

a.

Fig. 5 The distribution points trawling in spring (a) and autumn (b) season, in the Romanian area

Estimated total biomass:

a. **Psetta maxima maeotica** (turbot):

Spring - in the **41** sample trawlings made with the demersal trawl, on a surface of **3,225** Nm², the average values of the catches were of about **0.078 – 0.508** t/Nm². The maximum value was recorded in the depths of 50-70 m along entire Romanian coast, between Sf. Gheorghe and Cap Midia sectors and 30-50 m Cap Midia – Vama Veche sectors (Fig. 6a). The estimated biomass for turbot agglomerations, in the research a area, was of about **2,116.72 to**.

Assessment of turbot agglomerations (tons), in May 2016, in the Romanian area

Depth range (m)	0 - 30 m	30 - 50 m	50 - 70 m	Total
Investigated area (Nm ²)	600	1,125	1,500	3,225
Variation of the catches (t/ Nm ²)	0.027 - 0.129	0 - 0.918	0 - 3.112	0 - 3.112
Average catch (t/ Nm ²)	0.078	0.225	0.508	0.423
Biomass of the fishing	47.308	253.366	762.884	1365.282
agglomerations (t)				
Biomass extrapola	2.116.72			

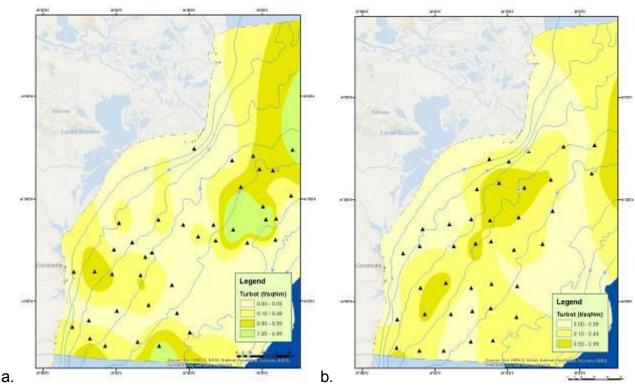
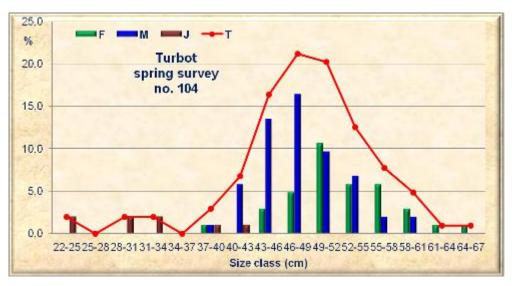
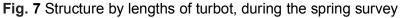




Fig. 6 The distribution of the turbot agglomerations in spring (a) and autumn (b), demersal trawl survey, in the Romanian area

The analysis of the structure by lengths and weights of turbot shoals during the survey highlighted the presence of mature specimens and a high homogeneity of fish shoals. The lengths of turbot individuals were within the limits of classes of length 22.0-67.0 cm / 175.0 - 4,650.0 g. The dominant classes were 40.0 - 58.0 cm / 1m121.4 - 3,143.8 g (Fig. 7). Males were dominant – 56.7%, compared to females (38.6%) and juvenil (7.7%). The average body length was 48.19 cm and the average weight 2,019.23 g.

The age composition of turbot catches indicates the presence of individuals from 2 to 6 years old. Most of the individuals caught are 3 year old (64.18% of all specimens analyzed), followed closely by those 4 years old (16.42.1%), 5 years old (11.94%) and 6 years old (5.97%)(Fig. 8).

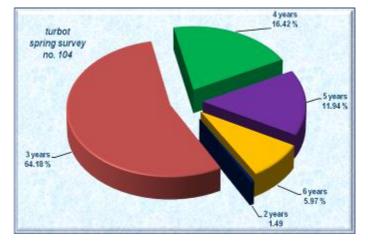


Fig. 8 Structure by age composition of turbot, during the spring survey

Autumn - in the **40** sample trawlings made with the pelagic trawl, on a surface of **3,000** Nm², the average values of the catches were of about **0.068 - 0.299** t/Nm² (Fig. 6b). The maximum value was recorded in the Gura Portita – Vama Veche (30 - 50 m) sectors. The estimated biomass of about **1,372.63 t**.

Depth range (m)	0 – 30 m	30 – 50 m	50 - 70 m	Total
Investigated area (Nm ²)	600	1,125	1,275	3,000
Variation of the catches (t/ Nm ²)	0 - 0.136	0 - 0.887	0 - 0.916	0 – 0.916
Average catch (t/ Nm ²)	0.068	0.299	0.275	0.274
Biomass of the fishing agglomerations	40.821	337.006125	350.738881	823.576
(t)				
Biomass extrapolated for	1,372.63			

Assessment of turbot agglomerations (tons), in November/December 2016

The lengths of turbot individuals were within the limits of classes of length 19.0-70.0 cm / 125.0 - 6,250.0 g. The dominant classes were 46.0 - 64.0 cm / 1,950.0 - 4,050.0 g (Fig. 9). Males were dominant – 57.56%, compared to females (29.17%) and juvenil (15.63%). The average body length was 50.66 cm and the average weight 2,482.8 g.

Age composition of turbot catches indicates the presence of individuals from 2 to 5 years old. Most of the individuals caught are 3 year old (41.0% of all specimens analyzed) and 2 years old (40%), followed closely by those 4 years old (15.0%) and 5 years old (4.0%) (Fig. 10).

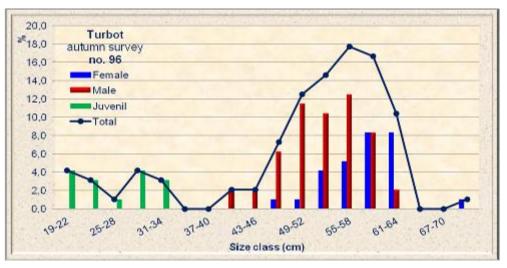


Fig. 9 Structure by lengths of turbot, during the autumn survey

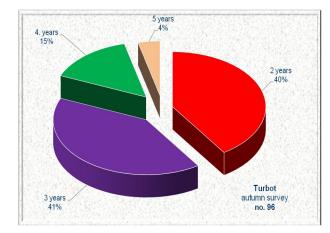


Fig. 10 Structure by age composition of turbot, during the autumn survey

b. Merlangius merlangus (whiting):

Spring - in the **41** sample trawlings made with the demersal trawl, the on surface of **3,225** Nm². The average values of whiting catches were situated in the limits between **0.689** - **1.677** t/Nm². It revealed that whiting had a flat distribution on a large area between Chituc - Mangalia (0.0 - 2.138 t/Nm² / depth 30 - 50 m, respectively 0.0 - 7.92 t/Nm² / depth 50 - 70 m)(Fig. 11a). The estimated biomass for the Romanian continental shelf was about **6,927.66 t.**

Depth range (m)	0 – 30 m	30 – 50 m	50 - 70 m	Total
Investigated area (Nm ²)	600	1,125	1,500	3,225
Variation of the catches (t/Nm ²)	0.586 - 0.791	0 - 2.138	0 - 7.919	0 - 7.919
Average catch (t/ Nm ²)	0.689	0.600	1.677	1.385
Biomass of the fishing	413.679	675.49	2515.782	4468.344
agglomerations (t)				
Biomass extrapola	6,927.66			

Assessment of whiting agglomerations (tons), in May 2016, in the Romanian area

The analysis of structure by lengths and weights of whiting caught during the survey showed that the lengths of whiting individuals are within the limits of classes of length 60.0-160.0 mm / 2.08-33.88 g. The dominant classes are those of 90.0-135.0 mm / 4.99-18.03 g (Fig. 12). Females were dominant - 65.21%, compated to males (34.79%). The average body length was 110.91 mm and the average weight 11.18 g.

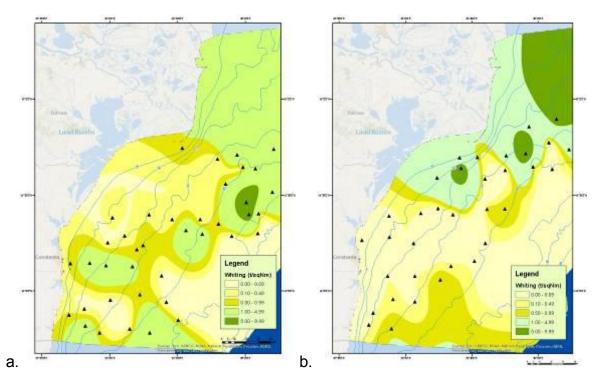


Fig. 11 The distribution of the whiting agglomerations in spring (a) and autumn (b), demersal trawl survey, in Romanian area

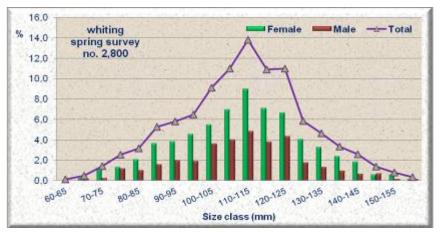


Fig. 12 Structure by lengths of whiting, during the spring survey

Age composition of withing catches indicates the presence of individuals from 0 to 4 years old. Most of the individuals caught are 1 year old (41.8% of all specimens analyzed) and 2 years old (34.6%), followed by those 3 years old (12.2%) and 0 years old (6.6%)(Fig. 13).

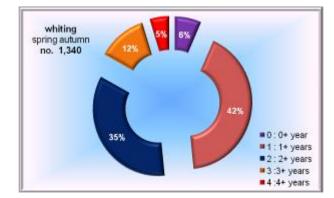


Fig. 13 Structure by age composition of whiting, during the autumn survey

Autumn - in the **40** sample trawlings made with the demersal trawl, on a surface of **3,000** Nm², the average values of the catches were of about **1.112 – 1.473** t/Nm². The maximum value was recorded in the Sulina – Chituc sector (0 -70 m) and Constanta - Managalia sectors (30 - 70 m)(Fig 11b). The estimated biomass for the whiting agglomerations, in the research area, was of about **6,042.48 tones**.

Depth range (m)	0 – 30 m	30 – 50 m	50 - 70 m	Total
Investigated area (Nm ²)	600	1,125	1,275	3,000
Variation of the catches (t/ Nm ²)	0 - 3.36	0 - 6.735	0 - 7.998	0 - 7.998
Average catch (t/ Nm ²)	1.473	1.226	1.112	1.208
Biomass of the fishing agglomerations (t)	920.92	1624.64	806.65	3232.73
Biomass extrapolated for the Romanian shelf (t)				

Assessment of whiting agglomerations (tons), in November/December 2016, in the Romanian area

The analysis of structure by lengths and weights of whiting during the survey showed that lengths of whiting individuals are within the limits of classes of length 80.0-185.0 mm / 5.52 - 42.1 g. The dominant classes are those of 105.0-140.0 mm / 9.39-20.79 g (Fig. 14). Females were dominant - 64.2%, compared to males (35.8%). The average body length was 117.98 mm and the average weight 13.98 g.

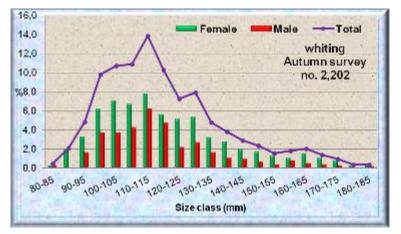


Fig. 14 Structure by lengths of whiting, during the autumn survey

Age composition of whiting catches indicates the presence of individuals from 1 to 5 years old. Most of the individuals caught were 2 years old (42.0% of all specimens analyzed) and 1 year old (39.0%), followed by those 3 years old (11.0%)(Fig. 15).

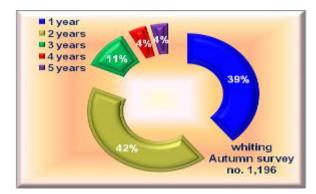
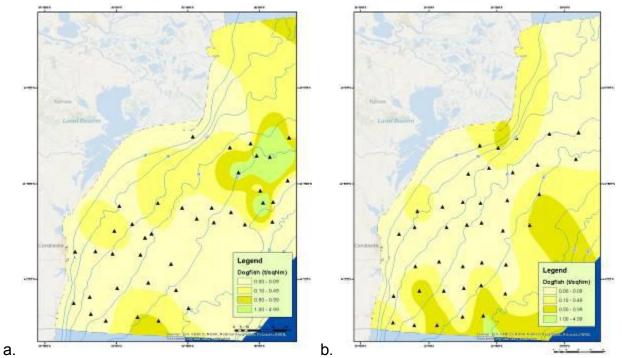
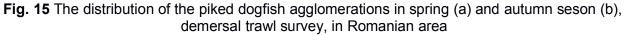


Fig. 15 Structure by age composition of whiting during the autumn survey


c. Squalus achanthias (piked dogfish)


Spring - in the 42 sample trawlings made with the demersal trawl, on a surface of 3,225

 Nm^2 , the average values of the catches were of about **0.102 - 0.395 t**/ Nm^2 . The maximum value was recorded in the Sf. Gheorghe – Cap Midia (50 - 70 m) sectors (Fig. 15a). The estimated biomass in the research area was of about **1,550.15 to**.

Depth range (m)	0 – 30 m	30 – 50 m	50 - 70 m	Total
Investigated area (Nm ²)	600	1,125	1,500	3,225
Variation of the catches (t/ Nm ²)	0	0-0.463	0-0.902	0-0.902
Average catch (t/ Nm ²)	0	0.102	0.395	0.310
Biomass of the fishing agglomerations (t)	0	114.833	593.922	999.843
Biomass extrapolated for the Romanian shelf (t)				

Assessment of piked dogfish agglomerations (tons), in May 2016, Romanian area

The lengths of piked dogfish individuals were within the limits of classes of length 108.5-123.5 mm / 4,880 - 8,150 g. The dominant classes were 110.0 - 120.0 cm / 5,486 - 7,057 g (Fig. 16). Only males were identified (100.0%). The average body length was 114.63 cm and the average weight 6,295.21 g.

Fig. 16 Structure by lengths of piked dogfish, during the spring survey

Age composition of piked dogfish catches indicates the presence of individuals from 13 to 16 years old. Most of the individuals caught were 14 years old (47.8% of all specimens analyzed) and 15 years old old (26.1%), followed closely by those of 13 years (17.4%) (Fig. 17).

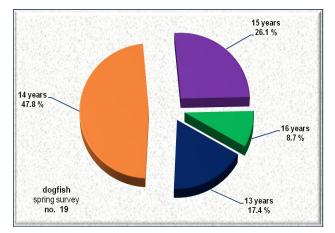


Fig. 17 Structure by age composition of piked dogfish, during spring survey

Autumn - in the **40** sample trawlings made with the demersal trawl, on a surface of **3,000** Nm², the average values of the catches were of about **0.063 – 0.195** t/Nm². The maximum value was recorded in the Chituc - Managalia sectors (50 - 80 m)(Fig 15b). The estimated biomass for the dogfish agglomerations, in the research area, was of about **747.18 tones**.

Assessment of dogfish agglomerations (tons), in November/December 2016, in the Romanian area

Depth range (m)	0 – 30 m	30 – 50 m	50 - 70 m	Total	
Investigated area (Nm ²)	600	1,125	1,275	3,000	
Variation of the catches (t/ Nm ²)	0-0.126	0-0.401	0-1.020	0-1.020	
Average catch (t/ Nm ²)	0.063	0.096	0.195	0.149	
Biomass of the fishing agglomerations (t) 37.9059 109.115 249.159					
Biomass extrapolated for the Romanian shelf (t)					

The lengths of piked dogfish individuals were within the limits of classes of length 101.5-125.5 mm / 4,500 - 8,300 g. The dominant classes were 110.0 - 120.0 cm / 5,470 - 6,829 g (Fig. 18). Only males were identified (100.0%). The average body length was 115.59 cm and the average weight 6,285.0 g.

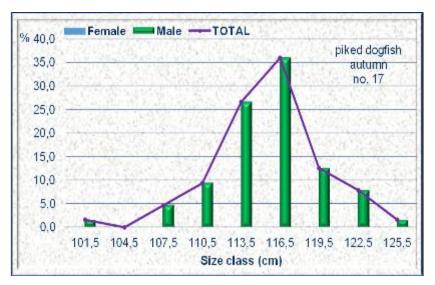


Fig. 18 Structure by lengths of piked dogfish, during the autumn survey

Age composition of piked dogfish catches indicates the presence of individuals from 12 to 17 years old. Most of the individuals caught were 14 years old (34.9%, of all specimens analyzed), 13 years old (25.6%), and 15 years old (20.9%), followed closely by those of 16 years old (11.6%)(Fig. 19).

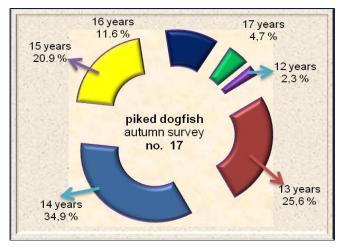


Fig. 19 Structure by age composition of piked dogfish, during autumn survey

The biomass of the main species' agglomerations from the Romanian coast

The swept area method is used for the assessment of the biomass of fishing agglomerations of turbott, whiting and dogfish, based on the statistical processing of productivity data obtained in sampling trawling and industrial trawling. The calculated biomasses by the swept area method for the main species at the Romanian littoral ranged between: turbot (300 tons and 2,400 tons); whiting (5,650 t and 21,000 t) and dogfish (1,529 t and 13,051 t)(Fig. 20).

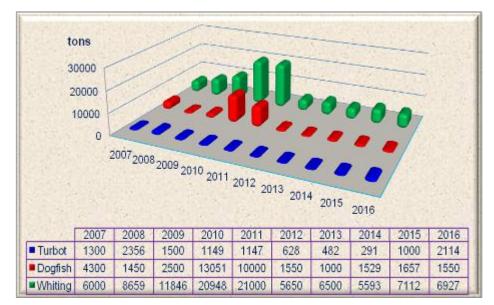


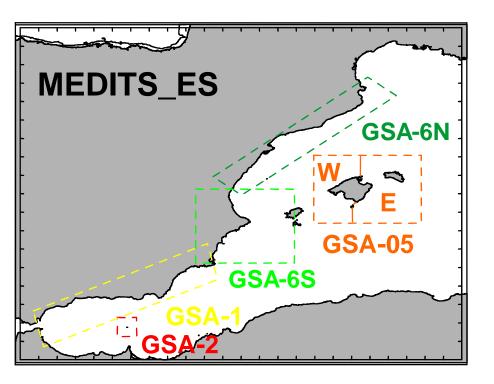
Fig. 20 The biomass of the main species' agglomerations from the Romanian coast

dr. eng Valodia MAXIMOV

APPENDIX 4 - Presentations (separated by a blank page)

2017 MEDITS Coordination Meeting

MEDITS_ES_2016



23 April - 21 June 2016

MEDITS_ES_2016

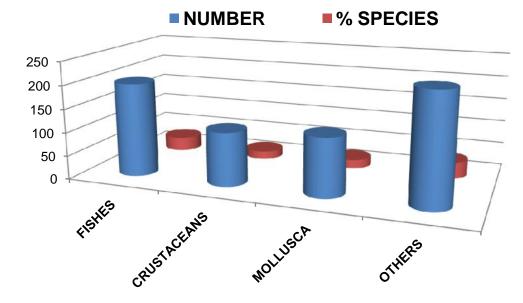
Spanish GSAs

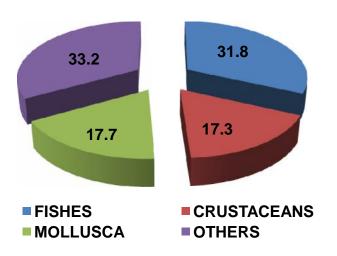
- GSA 1: Northern Alboran
- GSA 2: Alboran Island
- GSA 5: Balearic Islands
 - West
 - East
- GSA 6: Northern Spain
 - North
 - South

2017 MEDITS Coordination Meeting

MEDITS_ES_2016: Hauls

R/V Miguel Oliver	GSAs	Hauls	Days
	1-2	71	17
	5	53	13
	6	106	25
	Total	230	55
• Size: 70 x 14 m			
• GT: 2480 t			
Capacity: 18 scientists			
	¥		


2017 MEDITS Coordination Meeting


MEDITS_ES_2016: Catches

Таха	Species
Fishes	212
Crustaceans	115
Molluscs	118
Others	221
TOTAL	666

Taxa1677341	Number	Weight (kg)
Fishes	772614	14912
Crustaceans	86078	487
Molluscs	36891	1222
Others	781758	5931
TOTAL	1677341	22552

MEDITS_ES_2016: Catches

TELEOSTS	Weight (kg)	Number	ELASMOBRANCHS	Weight (kg)	Number
Boops boops	225	4692	Dalatias licha	16	6
Chelidonichthys cuculus	122	3364	Dipturus oxyrhinchus	33	29
Chelidonichthys gurnardus	6	176	Etmopterus spinax	644	877
Chelidonichthys lastoviza	70	1560	Galeus melastomus	1348	15810
Chelidonichthys lucerna	0.026	2	Leucoraja naevus	51	158
Citharus linguatula	7	264	Raja asterias	34	43
Diplodus annularis	52	918	Raja clavata	195	214
Diplodus sargus			Raja montagui	2	5
Diplodus vulgaris	24	125	Raja spp	117	340
Engraulis encrasicolus	663	54779	Scyliorhinus canicula	1000	9825
Gadiculus argenteus	156	29054	Torpedo marmorata	10	32
Helicolenus dactylopterus	184	3757			
Lepidorhombus boscii	51	1072			
Lophius budegassa	214	574			
Lophius piscatorius	97	91	CRUSTACEANS	Weight (kg)	Number
Merluccius merluccius	191	10023	Aristeomorpha foliacea	2	125
Micromesitius poutassou	282	25928	Aristeus antennatus	44	2748
Mullus barbatus	209	5493	Nephrops norvegicus	78	2375
Mullus surmuletus	101	1377	Palinurus elephas	6	10
Pagellus acarne	242	2726	Parapenaeus longirostris	46	6747
Pagellus bogaraveo	32	301	Squilla mantis	3	108
Pagellus erythrinus	148	1981		-	
Pagrus pagrus	11	60			
Phycis blennoides	203	5072			
Sardina pilchardus	101	8597	CEPHALOPODS	Weight (kg)	Number
Scomber spp	10	309	Eledone cirrhosa	97	452
Spicara flexuosa	103	4445	Eledone moschata	18	110
Spicara maena	34	1152	llex coindetti	334	5571
Spicara smaris	506	26681	Loligo vulgaris	11	82
Trachurus mediterraneus	244	14172	Octopus vulgaris	385	685
Trachurus trachurus	2741	84584	Sepia officinalis	16	75
Trisopterus minutus	98	8566	Todarodes sagittatus	46	149
Zeus faber	44	133		_	

2017 MEDITS Coordination Meeting

MEDITS_ES_2016: Biological sampling

Species	Number	Species	Number
Dalatias licha	7	Merluccius merluccius	3594
Dipturus oxyrhinchus	29	Mullus barbatus	2255
Etmopterus spinax	565	Mullus surmuletus	1085
Galeorhinus galeus	1		
Galeus melastomus	3116		
Leucoraja naevus	144	Aristeomorpha foliacea	63
Raja asterias	43	Aristeus antennatus	1750
Raja clavata	211	Nephrops norvegicus	1439
Raja miraletus	72	Parapenaeus longirostris	2548
Raja montagui	3		
Raja spp	256		
Scyliorhinus canicula	4682	llex coindetti	2110
Torpedo marmorata	29	Loligo vulgaris	81

Species	Otoliths/Illicia
Merluccius merluccius	781
Mullus barbatus	705
Mullus surmuletus	643
Lophius budegassa	386
Lophius piscatorius	57

MEDITS_ES_2016_Summary.doc

During 2016, the Spanish MEDITS survey was carried out from 23 April to 21 June (60 days), on board R/V Miguel Oliver. Four geographic sub-areas (GSAs) were covered: 1 (Northern Alboran), 2 (Alboran Island), 5 (Balearic Islands) and 6 (Northern Spain). A total of 230 hauls were performed, by several teams of the Spanish Institute of Oceanography (71 in GSAs 1 and 2, 53 in GSA 5 and 106 in GSA 6), following the MEDITS protocol. A total of 666 species or taxa (212 fishes, 115 crustaceans, 1118 molluscs and 221 other invertebrates and algae) were identified, counted and weighted. SCANMAR was used in all hauls. The CTD SeaBird-37 was also used in all the hauls attached to the flotsam. The total number of individuals of species captured was 1677341, weighing 22552 kg. The number of individuals measured in length was 160664 and the number of biological sampling made was 28276 individuals. A total of 2572 samples of hard tissues for age estimations were taken from *Merluccius merluccius*, *Mullus* barbatus, M. surmuletus, Lophius budegassa and L. piscatorius. In 2017, the Spanish MEDITS survey is planned from 23 April to 21 June on board R/V Miguel Oliver.

- Outline Report GSAs 1-2.doc
- Outline Report GSA 5.docx
- Outline Report GSA 6.docx

2017 MEDITS Coordination Meeting

MEDITS_ES_2017

2016 MEDITS survey in the GSA9

Ligurian Sea, northern and Central Tyrrhenian Sea

GSA 9

Medits 2016 – Period in which the survey was carried out

Date	N° progressive days	Valid Hauls	Notes				
21/05/2016	1	5	Sampling activities				
22/05/2016	2	4	Sampling activities				
23/05/2016	3	5	Sampling activities				
24/05/2016	4	5	Sampling activities				
25/05/2016	5	5	Sampling activities				
26/05/2016	6	5	Sampling activities	Date	N° progressive	Valid	Notes
27/05/2016	7	5	Sampling activities		days	Hauls	
28/05/2016	8	3	Sampling activities	04/06/2016	15	4	Sampling activities
29/05/2016	9	5	Sampling activities	05/06/2016	16	7	Sampling activities
30/05/2016	10		Stand by	06/06/2016	17	5	Sampling activities
31/05/2016	11		Stand by	07/06/2016	18	6	Sampling activities
01/06/2016	12		Stand by	08/06/2016	19	5	Sampling activities
02/06/2016	13	5	Sampling activities	09/06/2016	20	6	Sampling activities
03/06/2016	14	5	Sampling activities	10/06/2016	21	4	Sampling activities
				11/06/2016	22	5	Sampling activities
				12/06/2016	23	7	Sampling activities
				13/06/2016	24	6	Sampling activities
				14/06/2016	25	5	Sampling activities
				15/06/2016	26	5	Sampling activities
				16/06/2016	27	3	Sampling activities
				Total	27	120	

Name of the vessel	LIBERA
Mooring port	Fiumicino (Rome)
Registration number	RM8125
Year of construction	1991
Length (LOA)	25.5 m
Tonnage (GT)	69 t
Engine brand	Guascor
Engine power (kW)	522
Maximum number of engine revolution	1800
Maximum capacity of warps	2000 m

Vessel characteristics

Period: 2004-2015

Name of the vessel	S. ANNA
Mooring port	Mazara del Vallo (TP)
Registration number	MV0292
Year of construction	1981
Length (LOA)	32.2 m
Tonnage (GT)	197 t
Engine brand	M.A.K.
Engine power (kW)	744
Maximum number of engine revolution	1800
Maximum capacity of warps	3100 m

Vessel characteristics

Period: 2016

14.00°E | 8.00°E | 10.00°E | 12.00°E 44.00°N — 44.00°M Cross 0 - 42.00°N 42.00°N — 35 33 33

12.00°E

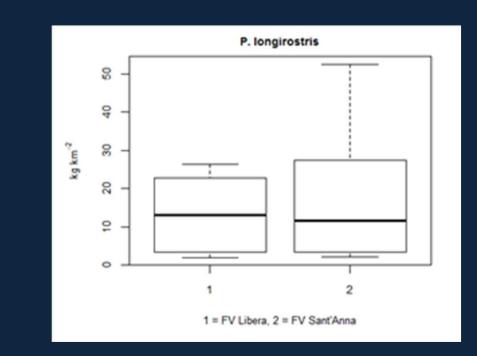
14.00°E

10.00°E

B.00°

Intercalibration – Position of the hauls

Intercalibration


- ✓ Statistically rigorous approach to estimating differences in catchability between the two vessels (FV Libera and FV Sant'Anna)
- ✓ Data analysed: biomass indices obtained in the paired tows performed during the intercalibration survey
- ✓ Model applied: Negative Binomial GLMM (Generalized Linear Mixed Modelling) to model the catches obtained by the two vessels
- ✓ The R library *glmmADMB* was used for the analysis
- ✓ The initial model that was used is the following:

weight = depth x vessel + offset(swept) + (1 | site)

Where: weight is the catch in kg in each tow; depth is the mean depth (m) at each tow; vessel is a two-levels factor (1 = FV Libera; 2 = FV Sant'Anna); swept is the logarithm of the swept area in each tow (used as offset in the model); site represents each paired tow, and is used as a random effect in the model.

Intercalibration

- ✓ Starting from the initial model a backward stepwise selection procedure base on AIC (Akaike's Information Criterion) was performed to select the best model.
- ✓ As concerns model validation, we checked for over-dispersion, and we performed a visual analysis of residuals to check for homogeneity and normality.

Main results

Parapenaeus longirostris

Boxplot of the catches (biomass index) of deep-water rose shrimp obtained by the two vessels.

Intercalibration Main results - Parapenaeus longirostris

The model with the lowest AIC was the following. However, **no significant effect of the factor vessel was observed**.

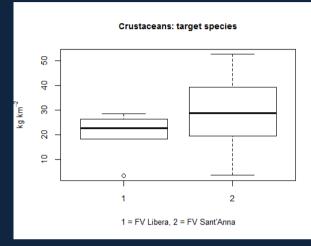
```
Call:
```


```
glmmadmb(weight ~ vessel + offset(swept) + (1|site), family = nbinom)
AIC: 185.6
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
Intercept	9.956492	0.705950	14.10	<0.001
vessel2	0.410530	0.225490	1.82	0.069

The graphs show the plot of residuals versus fitted values (to check for homogeneity) and the QQ-plot (for normality).


Therefore, we can assume homogeneity and normality of the residuals

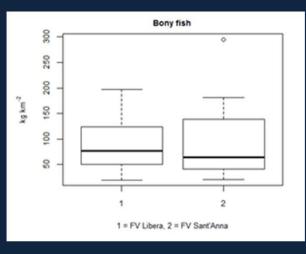
The dispersion due to the model was 1.01; therefore, we can assume there is no over-dispersion.

Intercalibration Main results - Crustaceans: target species

The figure shows a boxplot of the combined catches (biomass index) of blue and red shrimp (*Aristeus antennatus*), giant red shrimp (*Aristaeomorpha foliacea*), deep-water rose shrimp (*P. longirostris*), and Norway lobster (*Nephrops norvegicus*) obtained by the two vessels.

The model with the lowest AIC was the following. However, <u>no significant effect of the factor</u> <u>vessel was observed</u>.

Call: glmmadmb(weight ~ vessel + offset(swept) + (1|site), family = nbinom) AIC: 200.9


Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
Intercept	9.778	0.328	29.82	<0.001
vessel2	0.268	0.160	1.68	0.094

The dispersion due to the model was 0.81; therefore, we can assume there is no overdispersion.

Intercalibration Main results – Bony fish

The following figure is showing a boxplot of the combined catches (biomass index) of all the bony fish (small pelagics, i.e. anchovy and sardine, were not included) obtained by the two vessels.

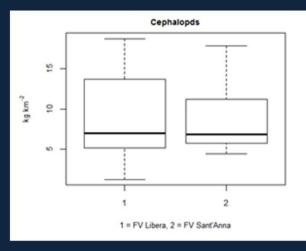
The model with the lowest AIC was the following.

However, **no significant effect of the factor vessel was observed**. A significant effect of depth is highlighted, showing a slight decrease of fish biomass with increasing depth. However, this effect is not linked to difference in catchability by the two vessels.

Call:

```
glmmadmb(weight ~ depth + offset(swept) + (1|site), family = nbinom)
```

AIC: 298.4


Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
Intercept	11.929639	0.246850	48.33	<0.001
depth	-0.002549	0.000699	-3.64	<0.001

The dispersion due to the model was 0.93; therefore, we can assume there is no overdispersion.

Intercalibration Main results – <u>Cephalopods</u>

The following figure is showing a boxplot of the combined catches (biomass index) of all the cephalopods obtained by the two vessels.

The model with the lowest AIC was the following. However, <u>no significant effect of the factor</u> <u>vessel was observed</u>.

Call:

```
glmmadmb(weight ~ depth * vessel + offset(swept) + (1|site), family = nbinom)
AIC: 237.4
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
Intercept	9.207588	0.320030	28.77	<0.001
depth	-0.000410	0.000912	-0.45	0.65
vessel2	-0.259701	0.453130	-0.57	0.57
depth:vesse	0.000870	0.001294	0.67	0.50

The dispersion due to the model was 1.22; therefore, we can assume there is no overdispersion.

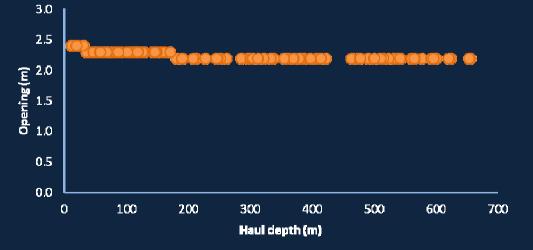
Geographic position of the hauls

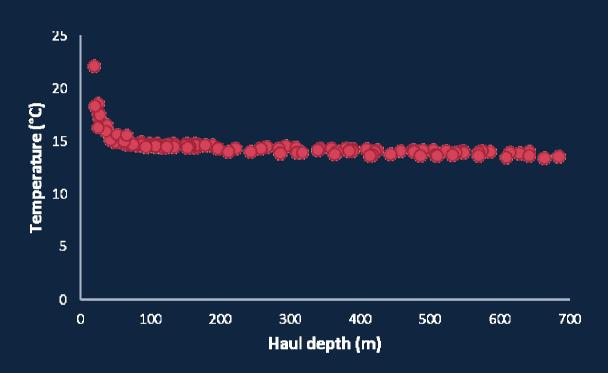
Number of hauls and allocation in the bathymetric strata

Survey MEDITS 2016

Bathymetric strata	GSA9 n. of hauls	GSA9 Area (km ²)
Stratum A (10-50 m)	15	5762
Stratum B (51-100 m)	17	5992
Stratum C (101-200 m)	31	10878
Stratum D (201-500 m)	36	10587
Stratum E (501-800 m)	21	9191
Total	120	42410
Macro-stratum 10-200 m	63	22632
Macro-stratum 201-800 m	57	19778

Quality check of the MEDITS gear


Net measurements


Positive hauls: 113

Vertical Opening

Sea bottom temperature

Positive hauls: 118

Number of species classified by taxa collected during the 2016 Medits survey

Таха	Number of species
Fish Osteichthyes	123
Fish Elasmobranchs	16
Cephalopods	27
Crustaceans Decapoda	46
Crustaceans Cirripeda	1
Crustaceans Euphausiacea	1
Crustaceans Stomatopoda	2
Mollusca bivalvia	5
Mollusca Gastropoda	8
Mollusca Opistobranchia	2
Brachiopoda	1
Cnidaria	10
Echinoderms	26
Hirudinea	1
Polychaeta	1
Sponges	3
Tunicata	6
Vegetalia	2
Total	281

	Medits code	Scientific name	N. of specimens caught
	ENGRENC	Engraulis encrasicolus	116297
	SARDPIL	Sardina pilchardus	19128
	MERLMER	Merluccius merluccius	12000
	TRACMED	Trachurus mediterraneus	9690
	TRACTRA	Trachurus trachurus	6994
	MULLBAR	Mullus barbatus	5092
	PHYIBLE	Phycis blennoides	1843
	HELIDAC	Helicolenus dactylopterus	1442
	PAGEACA	Pagellus acarne	1272
	TRISCAP	Trisopterus capelanus	1077
	SPICFLE	Spicara flexuosa	984
	SPICSMA	Spicara smaris	917
	DIPLANN	Diplodus annularis	686
	PAGEERY	Pagellus erythrinus	672
	ΜΙϹϺΡΟυ	Micromesistius poutassou	555
Bony fish	воорвоо	Boops boops	370
	PAGEBOG	Pagellus bogaraveo	290
Ω Ω	LEPMBOS	Lepidorhombus boscii	224
B	ASPICUC	Aspitrigla cuculus	93
	EUTRGUR	Eutrigla gurnardus	85
	CITHMAC	Citharus linguatula	76
	ZEUSFAB	Zeus faber	72
	MULLSUR	Mullus surmuletus	70
	LOPHBUD	Lophius budegassa	56
	TRIGLUC	Chelidonichthys lucerna	49
	SPICMAE	Spicara maena	16
	DIPLVUL	Diplodus vulgaris	5
	SCOMSCO	Scomber scombrus	4
	DIPLPUN	Diplodus puntazzo	3
	LOPHPIS	Lophius piscatorius	3
	SOLEVUL	Solea vulgaris	3
	TRIPLAS	Trigloporus lastoviza	2
	SCOMPNE	Scomber colias	1
	SPARPAG	Pagrus pagrus	1

Total number of classified individuals of the **MEDITS reference list collected during the 2016 Medits survey**

	Medits code	Scientific name	N. of specimens caught
	GALUMEL	Galeus melastomus	2724
	SCYOCAN	Scyliorhinus canicula	871
	ETMOSPI	Etmopterus spinax	299
	RAJACLA	Raja clavata	159
hs	RAJAMIR	Raja miraletus	38
ncl	RAJAOXY	Dipturus oxyrhinchus	20
Elasmobranchs	SQUABLA	Squalus blainvillei	20
lok	TORPMAR	Torpedo marmorata	11
asn	RAJAAST	Raja asterias	6
Ē	RAJAPOL	Raja polistigma	4
	SCYMLIC	Dalatias licha	4
	CENTGRA	Centrophorus granulosus	2
	HEXAGRI	Hexanchus griseus	2
	RAJACIR	Leucoraja circularis	2
	ILLECOI	Illex coindetii	527
ds	ELEDCIR	Eledone cirrhosa	416
od	LOLIVUL	Loligo vulgaris	192
Cephalopods	TODASAG	Todarodes sagittatus	26
hq	OCTOVUL	Octopus vulgaris	16
Ce	SEPIOFF	Sepia officinalis	4
	ELEDMOS	Eledone moschata	2
าร	PAPELON	Parapenaeus longirostris	17517
Crustaceans	NEPRNOR	Nephrops norvegicus	1775
tac	ARISFOL	Aristaeomorpha foliacea	558
lsn.	ARITANT	Aristeus antennatus	146
້ວ	SQUIMAN	Squilla mantis	52

	Medits code	Scientific name	N. of specimens measured	% on the total catch
	ASPICUC	Aspitrigla cuculus	93	100
	воорвоо	Boops boops	370	100
	LEPMBOS	Lepidorhombus boscii	224	100
	LOPHPIS	Lophius piscatorius	3	100
	PAGEBOG	Pagellus bogaraveo	290	100
	PHYIBLE	Phycis blennoides	1843	100
	SCOMPNE	Scomber colias	1	100
	SCOMSCO	Scomber scombrus	4	100
	SOLEVUL	Solea vulgaris	3	100
	SPICMAE	Spicara maena	16	100
	TRIGLUC	Chelidonichthys lucerna	49	100
	TRIPLAS	Trigloporus lastoviza	2	100
	ZEUSFAB	Zeus faber	72	100
	CITHMAC	Citharus linguatula	75	99
	MULLSUR	Mullus surmuletus	69	99
	LOPHBUD	Lophius budegassa	55	98
וופוו לווטם	TRISCAP	Trisopterus capelanus	1049	97
È	MICMPOU	Micromesistius poutassou	523	94
2	SPICFLE	Spicara flexuosa	927	94
	HELIDAC	Helicolenus dactylopterus	1351	94
	PAGEERY	Pagellus erythrinus	626	93
	EUTRGUR	Eutrigla gurnardus	73	86
	SPICSMA	Spicara smaris	780	85
	DIPLVUL	Diplodus vulgaris	4	80
	MULLBAR	Mullus barbatus	3495	69
	DIPLANN	Diplodus annularis	404	59
	MERLMER	Merluccius merluccius	6406	53
	TRACTRA	Trachurus trachurus	3525	50
	PAGEACA	Pagellus acarne	405	32
	TRACMED	Trachurus mediterraneus	2676	28
	SARDPIL	Sardina pilchardus	3064	16
	ENGRENC	Engraulis encrasicolus	5645	5
	DIPLPUN	Diplodus puntazzo	0	0
	SPARPAG	Pagrus pagrus	0	0

Total number of sampled individuals for length distributions collected during the 2016 Medits survey

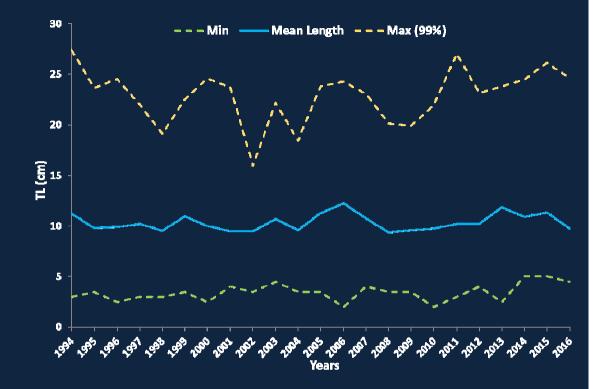
	Medits code	Scientific name	N. of specimens measured	% on the total catch
	CENTGRA	Centrophorus granulosus	2	100
	ETMOSPI	Etmopterus spinax	299	100
	HEXAGRI	Hexanchus griseus	2	100
	RAJAAST	Raja asterias	6	100
hs	RAJACIR	Leucoraja circularis	2	100
ncl	RAJACLA	Raja clavata	159	100
Elasmobranchs	RAJAMIR	Raja miraletus	38	100
lot	RAJAPOL	Raja polistigma	4	100
asn	SCYMLIC	Dalatias licha	4	100
Ë	SCYOCAN	Scyliorhinus canicula	871	100
	SQUABLA	Squalus blainvillei	20	100
	GALUMEL	Galeus melastomus	2592	95
	RAJAOXY	Dipturus oxyrhinchus	17	85
	TORPMAR	Torpedo marmorata	9	82
	ELEDMOS	Eledone moschata	2	100
ds	ILLECOI	Illex coindetii	527	100
od	SEPIOFF	Sepia officinalis	4	100
Cephalopods	ELEDCIR	Eledone cirrhosa	415	100
hq	LOLIVUL	Loligo vulgaris	187	97
Ce	TODASAG	Todarodes sagittatus	23	88
	OCTOVUL	Octopus vulgaris	14	88
ns	ARISFOL	Aristaeomorpha foliacea	558	100
Crustaceans	ARITANT	Aristeus antennatus	146	100
tac	NEPRNOR	Nephrops norvegicus	1775	100
sn.	SQUIMAN	Squilla mantis	52	100
G	PAPELON	Parapenaeus longirostris	8660	49

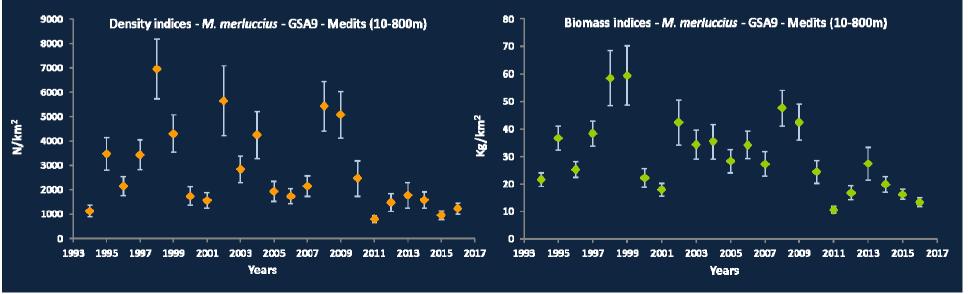
Total number of sampled individuals for sex and maturity collected during the 2016 Medits survey

	Medits code	Scientific name	N. of specimens for sex and maturity	% on the total catch
> -	MERLMER	Merluccius merluccius	1332	11
Bony fish	MULLBAR	Mullus barbatus	3394	67
	MULLSUR	Mullus surmuletus	68	97
	CENTGRA	Centrophorus granulosus	2	100
	ETMOSPI	Etmopterus spinax	299	100
	GALUMEL	Galeus melastomus	2592	95
	HEXAGRI	Hexanchus griseus	2	100
	RAJAAST	Raja asterias	6	100
s	RAJACIR	Leucoraja circularis	2	100
anch:	RAJACLA	Raja clavata	159	100
Elasmobranchs	RAJAMIR	Raja miraletus	38	100
Elasr	RAJAOXY	Dipturus oxyrhinchus	17	85
	RAJAPOL	Raja polistigma	4	100
	SCYMLIC	Dalatias licha	4	100
	SCYOCAN	Scyliorhinus canicula	871	100
	SQUABLA	Squalus blainvillei	20	100
	TORPMAR	Torpedo marmorata	9	82
Cepha- lopods	ILLECOI	Illex coindetii	485	92
Cel	LOLIVUL	Loligo vulgaris	14	7
su	ARISFOL	Aristaeomorpha foliacea	558	100
Crustaceans	ARITANT	Aristeus antennatus	146	100
Crust	NEPRNOR	Nephrops norvegicus	1775	100
	PAPELON	Parapenaeus longirostris	8660	49

Total number of sampled individuals for individual weight collected during the 2016 Medits survey

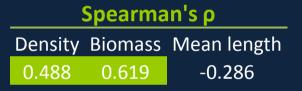
	Medits code	Scientific name	N. of specimens for individual weight	% on the total catch
	MERLMER	Merluccius merluccius	427	4
Bony fish	MULLBAR	Mullus barbatus	568	11
	MULLSUR	Mullus surmuletus	69	99
	CENTGRA	Centrophorus granulosus	2	100
	ETMOSPI	Etmopterus spinax	233	78
	GALUMEL	Galeus melastomus	627	23
	HEXAGRI	Hexanchus griseus	2	100
	RAJAAST	Raja asterias	6	100
s	RAJACIR	Leucoraja circularis	2	100
anch	RAJACLA	Raja clavata	158	99
Elasmobranchs	RAJAMIR	Raja miraletus	38	100
Elasr	RAJAOXY	Dipturus oxyrhinchus	17	85
	RAJAPOL	Raja polistigma	4	100
	SCYMLIC	Dalatias licha	4	100
	SCYOCAN	Scyliorhinus canicula	517	59
	SQUABLA	Squalus blainvillei	20	100
	TORPMAR	Torpedo marmorata	7	64
Cepha- lopods	ILLECOI	Illex coindetii	505	96
Ce Lop	LOLIVUL	Loligo vulgaris	124	65
Crustaceans	ARISFOL	Aristaeomorpha foliacea	354	63
	ARITANT	Aristeus antennatus	146	100
Crust	NEPRNOR	Nephrops norvegicus	608	34
	PAPELON	Parapenaeus longirostris	543	3

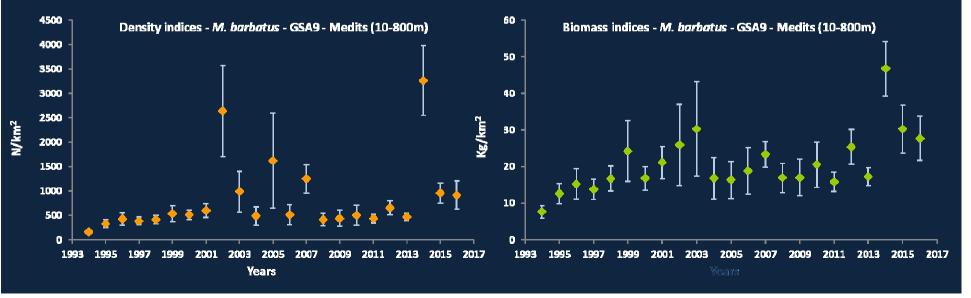

Number of samples of hard tissues collected for ageing by target species during the 2016 Medits survey


	Number of otoliths collected	Size range covered
Merluccius merluccius	382	4.5 - 66.5 cm TL
Mullus barbatus	535	8.5 - 26.0 cm TL
Mullus surmuletus	69	14.5 - 33.0 cm TL

Merluccius merluccius

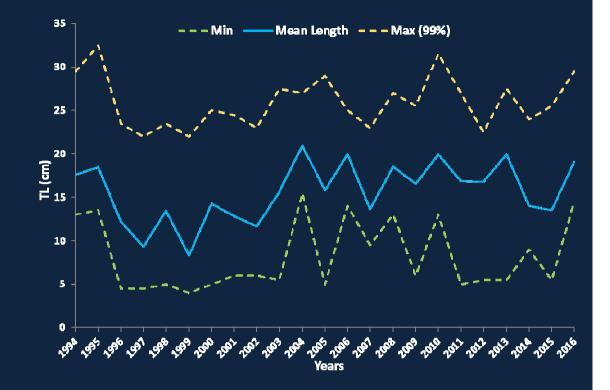
Historical trends of the demographic structure, density and biomass indices


Spearman's ρDensity Biomass Mean length-0.408-0.470.183

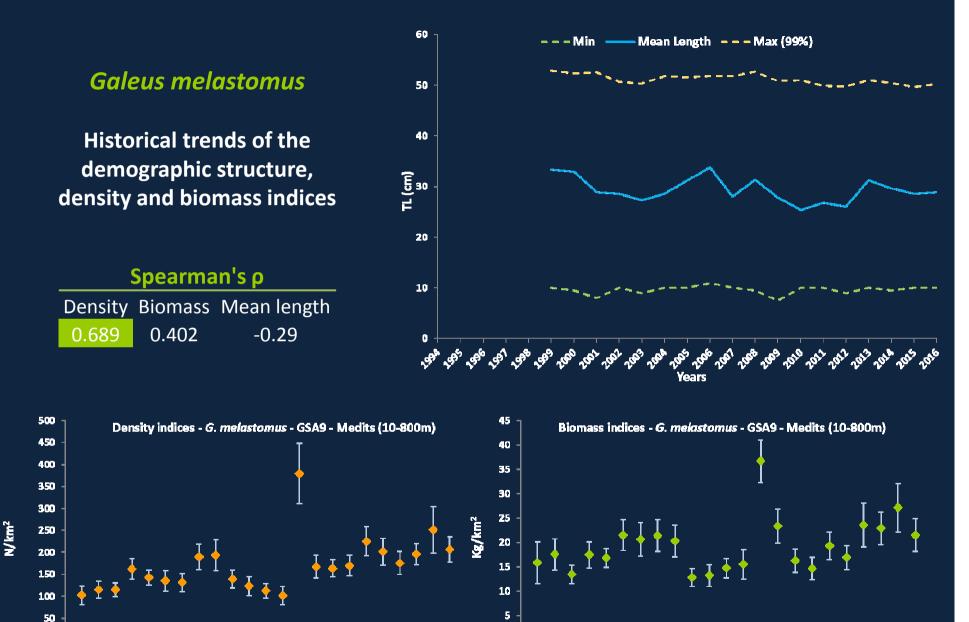


Mullus barbatus

Historical trends of the demographic structure, density and biomass indices



Mullus surmuletus

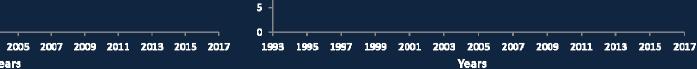

Historical trends of the demographic structure, density and biomass indices

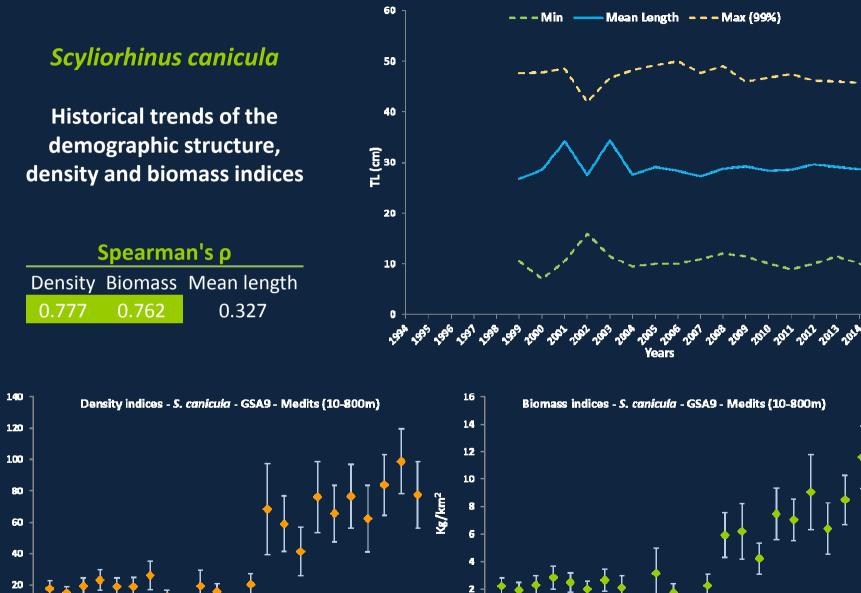
Spearman's p

Density BiomassMean length-0.0840.080.385

F

1993


1995


1997

1999

2001 2003

Years

N/km²

F 1993

1995

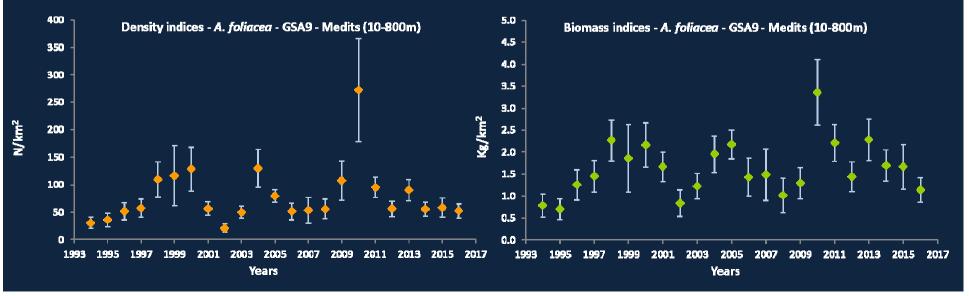
1997

1999

2001 2003

Years

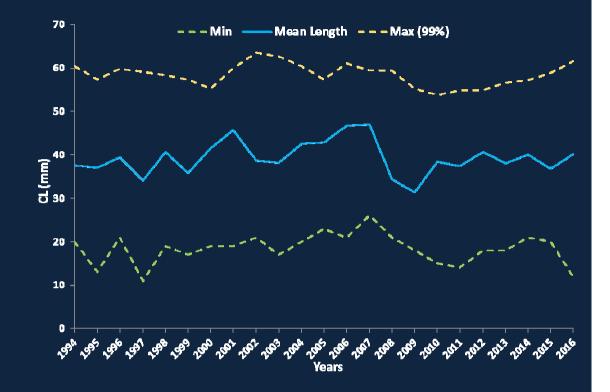
<u>2005 20</u>07 2009 2011 2013 2015 2017 1993 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 1995 **Years**

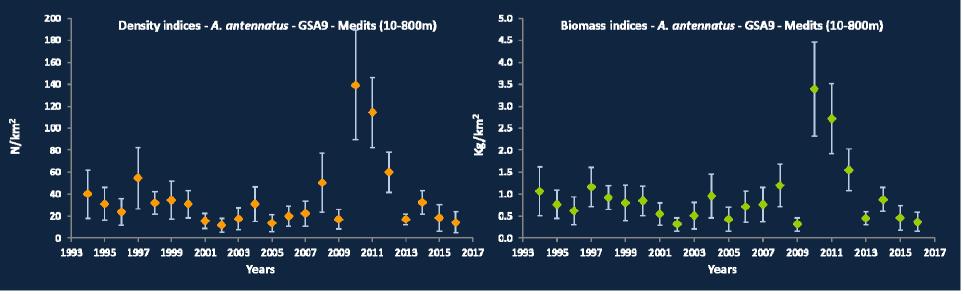

Aristaeomorpha foliacea

Historical trends of the demographic structure, density and biomass indices

Spearman's p

Density Biomass Mean length 0.192 0.265 -0.027

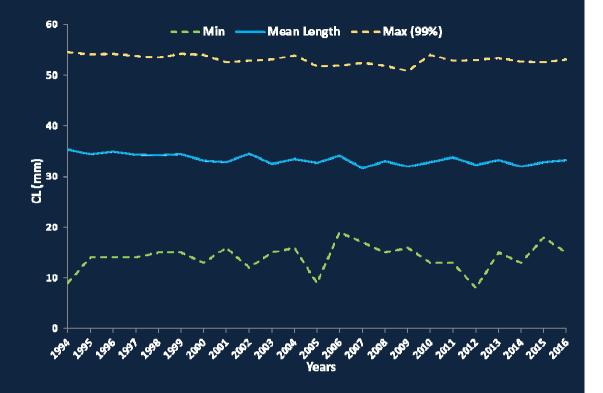


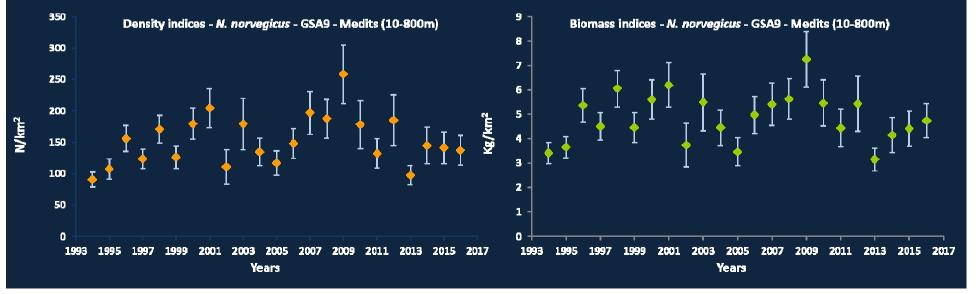

Aristeus antennatus

Historical trends of the demographic structure, density and biomass indices

Spearman's p

Density Biomass Mean length -0.112 -0.114 0.026

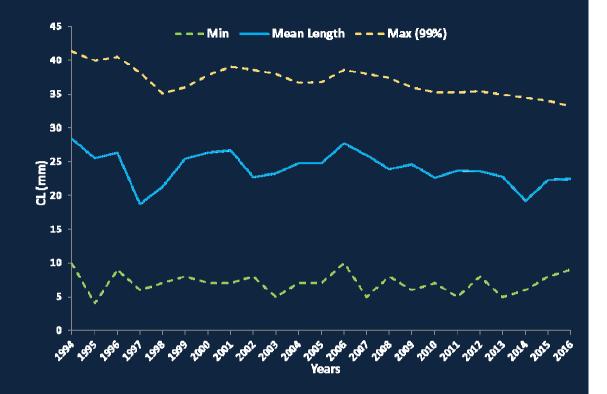


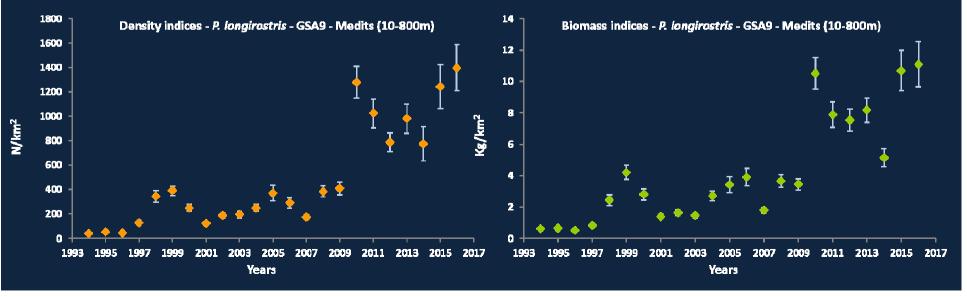


Nephrops norvegicus

Historical trends of the demographic structure, density and biomass indices

Spearman's ρDensity Biomass Mean length0.214-0.022-0.613

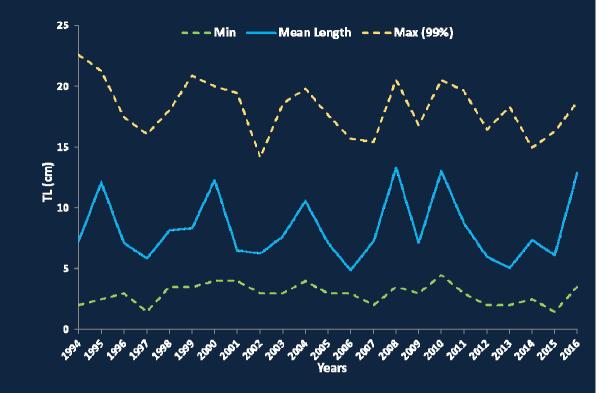


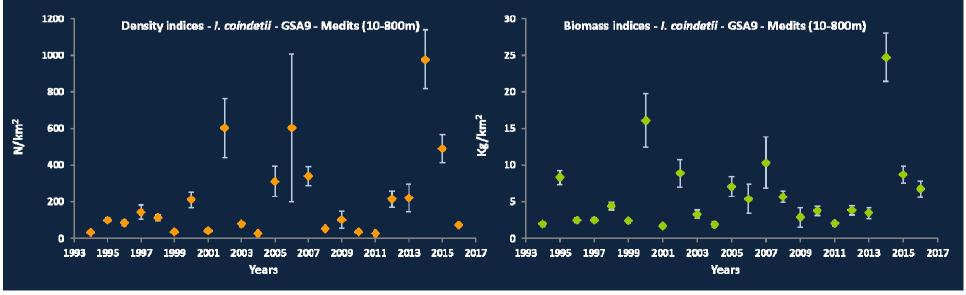


Parapenaeus longirostris

Historical trends of the demographic structure, density and biomass indices

Spearman's ρDensityBiomassMean length0.8580.875-0.492

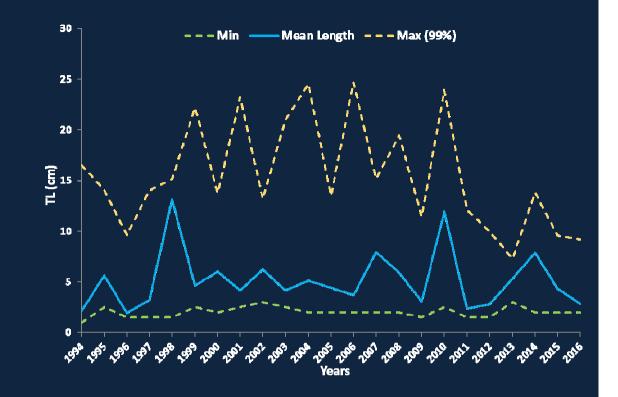


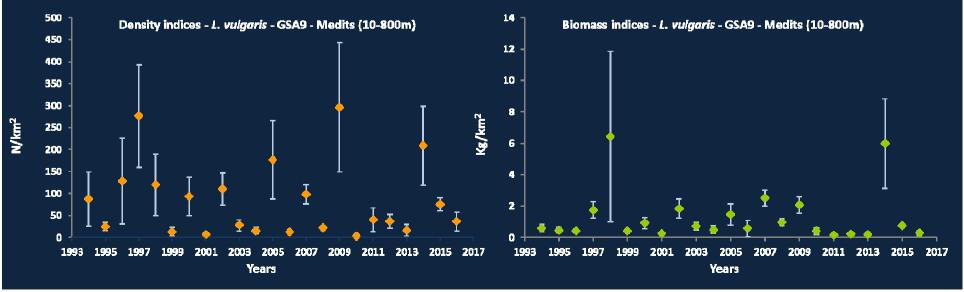

Illex coindetii

Historical trends of the demographic structure, density and biomass indices

Spearman's ρ

Density Biomass Mean length 0.265 0.307 -0.099



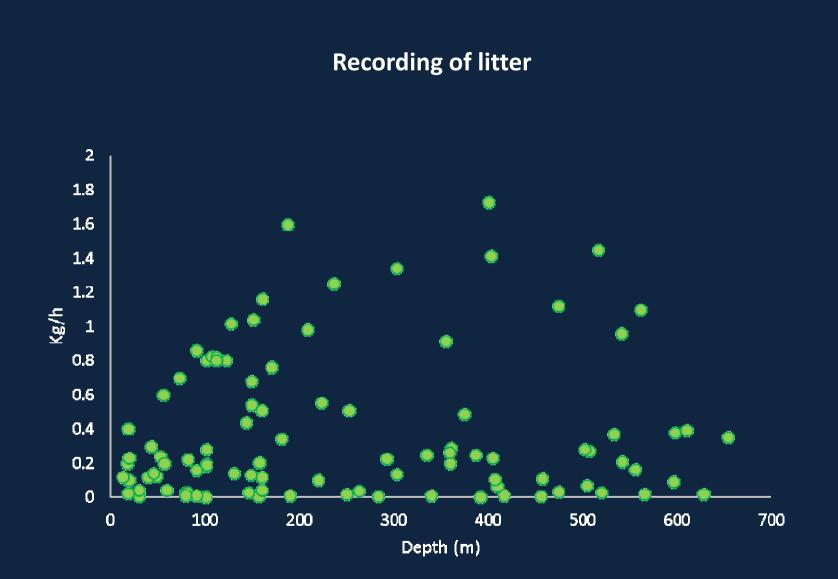

Loligo vulgaris

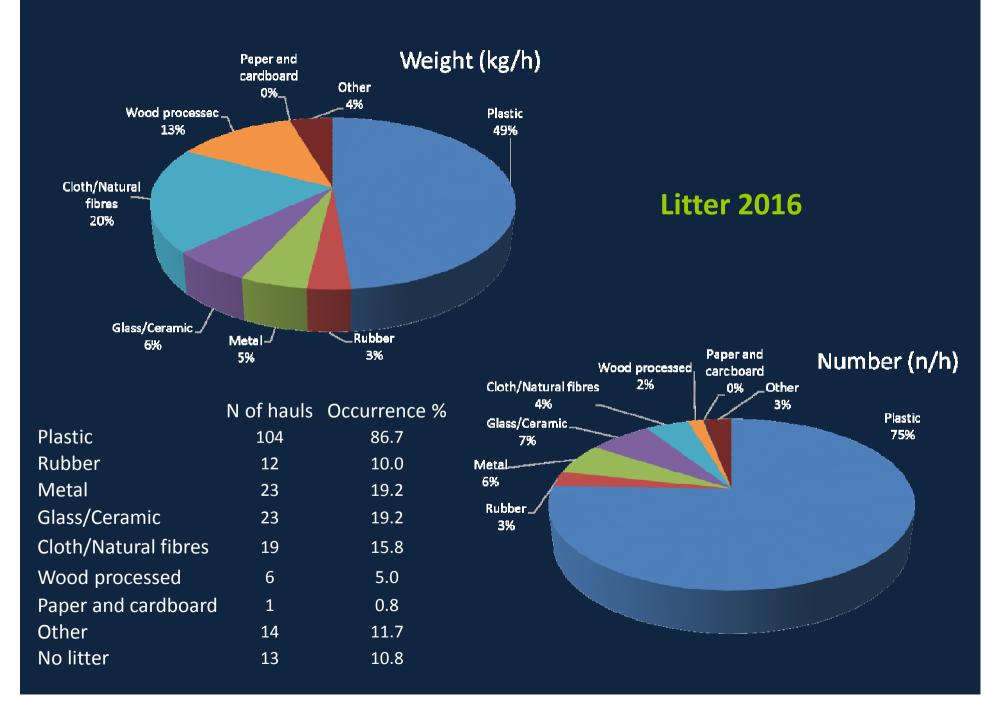
Historical trends of the demographic structure, density and biomass indices

Spearman's ρ

Density Biomass Mean length -0.108 -0.151 0.02

Results of Spearman's rho test


	D	ensity	Bi	omass	Mean length		
	ρ value	significance	ρ value	significance	ρ value	significance	
M. merluccius	-0.408	n.s.	-0.470	*	0.183	n.s.	
M. barbatus	0.488	*	0.619	**	-0.286	n.s.	
M. surmuletus	-0.084	n.s.	0.080	n.s.	0.385	n.s.	
N. norvegicus	0.214	n.s.	-0.022	n.s.	-0.613	**	
P. longirostris	0.858	***	0.875	***	-0.492	*	
A. foliacea	0.192	n.s.	0.265	n.s.	-0.027	n.s.	
A. antennatus	-0.112	n.s.	-0.114	n.s.	0.026	n.s.	
I. coindetii	0.265	n.s.	0.307	n.s.	-0.099	n.s.	
L. vulgaris	-0.108	n.s.	-0.151	n.s.	0.02	n.s.	
G. melastomus	0.689	***	0.402	n.s.	-0.29	n.s.	
S. canicula	0.777	***	0.762	***	0.327	n.s.	

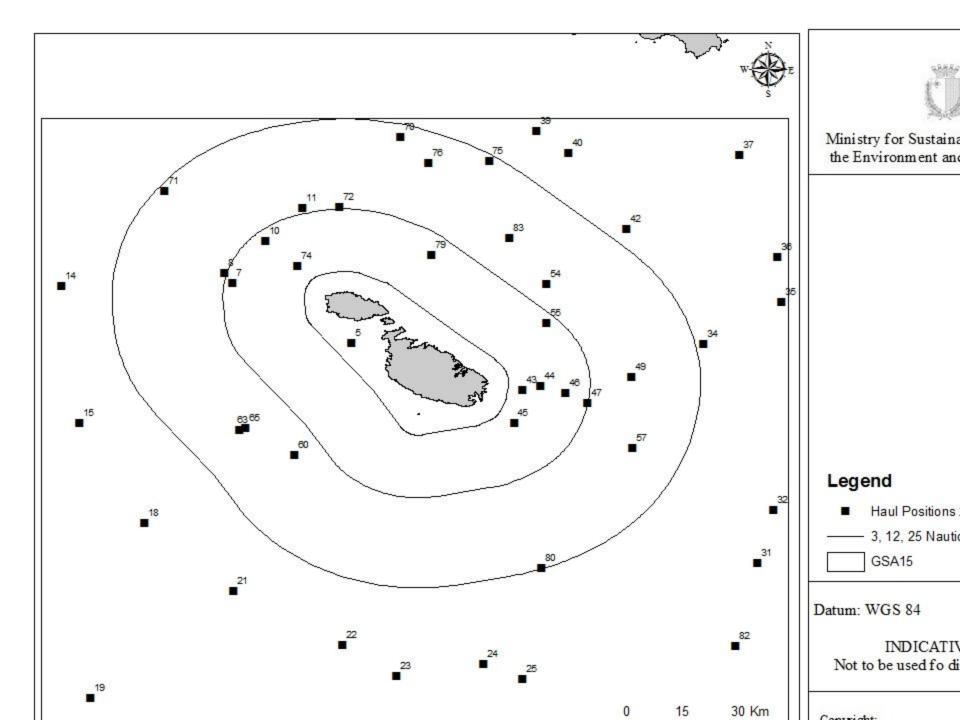

n.s. = not significant * = p<0.05 ** = p<0.01 *** = p<0.001

Litter was recorded in all hauls and classified according to the following scheme:

		Weight (kg)	Number	Number	
	Type of Litter	(mandatory for category and sub- category)	(facultative for subcategory)	(mandatory for category)	
	a. Bags				
L1 Plastic	b. Bottles				
	c. Food wrappers				
	d . Sheets (table covers, e.t.c.)				
	e. Hard plastic objects (crates, containers, tubes, ash-trays, lids, etc.) ()				
	f. Fishing nets				
	g. Fishing lines				
	h . Other fishing related (pots, floats, etc.) ()				
	i. Ropes/strapping bands				
	j others				
	a. Tyres				
L2 Rubber	b . Other (gloves, boots/shoes, olskins etc.) ()				
	a. Beverage cans				
	b. Other food cans/wrappers				
	c. Middle size containers (of paint, oil, chemicals)				
	d. Large metalic objects (barrels, pieces of machinery, electric appliances) ()				
L3 Metal	e. Cables				
	f . Fishing related (hooks, spears, etc.) ()				
	a. Bottles				
L4	b. Pieces of glass				
Glass / Ceramic	c . Ceramic jars				
	d. Large objects (specify)				
	a. Clothing (clothes, shoes)				
L5 Cloth (textil)/ natural fibres	b. Large pieces (carpets, mattresses, etc) (specify)				
	c. Natural ropes				
	 d. Sanitaries (diapers, cotton buds, etc.) 				
L6 Wood pro	ocessed (palettes, crates, etc.)				
L7 Paper an	d cardboard				
L8 Other (sp	ecify)				
L9 Unspecifi	ed				

Period of the Medits survey and schedule for 2016

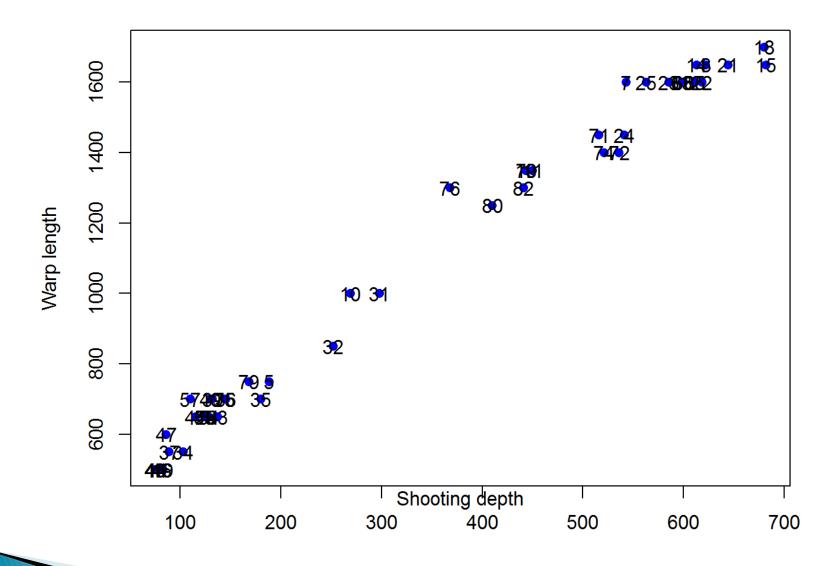
	January	February	March	April	May	June	July	August	September	October	November	December
1994												
1995												
1996												
1997												
1998												
1999												
2000												
2001												
2002												
2003												
2004												
2005												
2006												
2007												
2008												
2009												
2010												
2011												
2012												
2013												
2014												
2015												
2016							?	?				

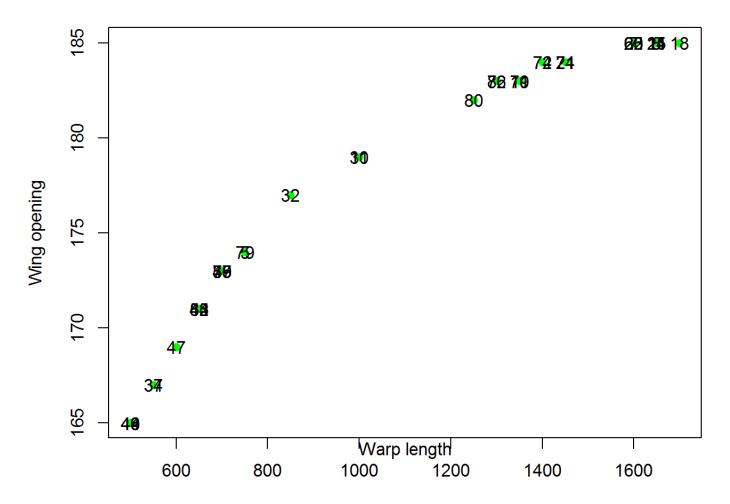

Review on achievement of the 2016 MEDITS survey in GSA15

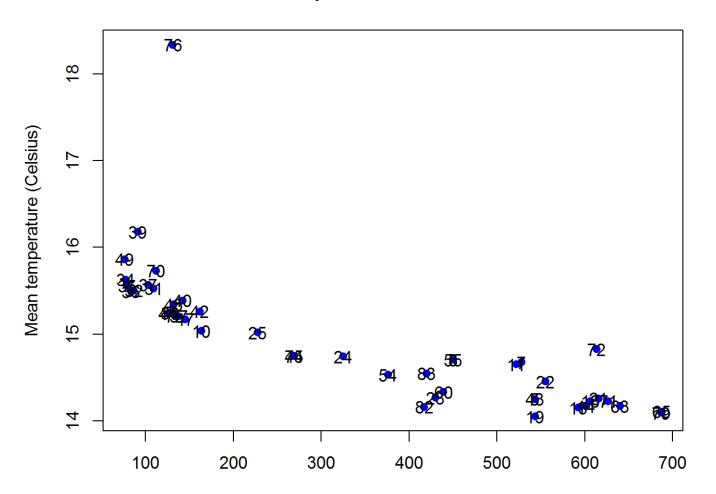
Reno Micallef

Medits 2016

Sampling period: 22/08/2016 to 04/09/2016 Sampling vessel: DEGRE

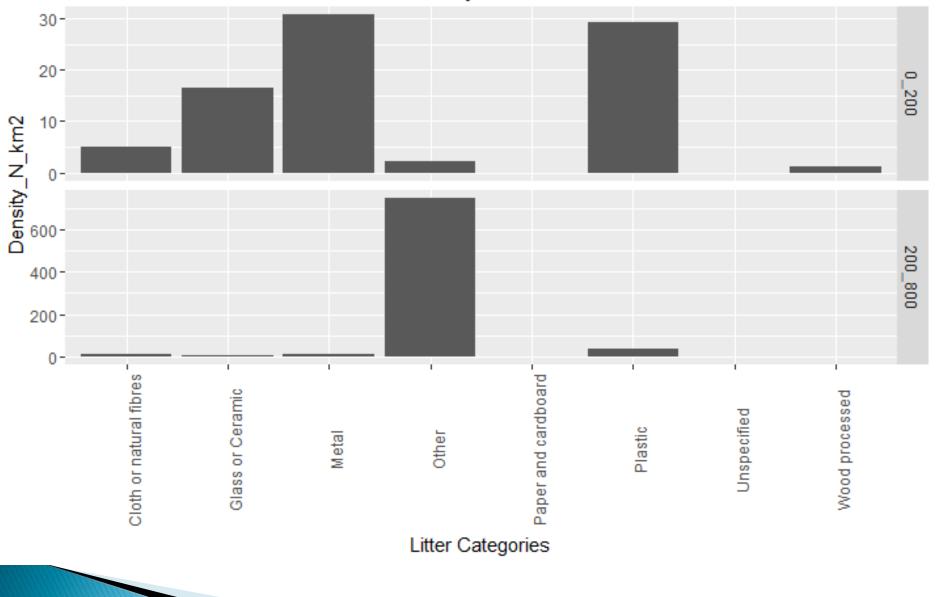


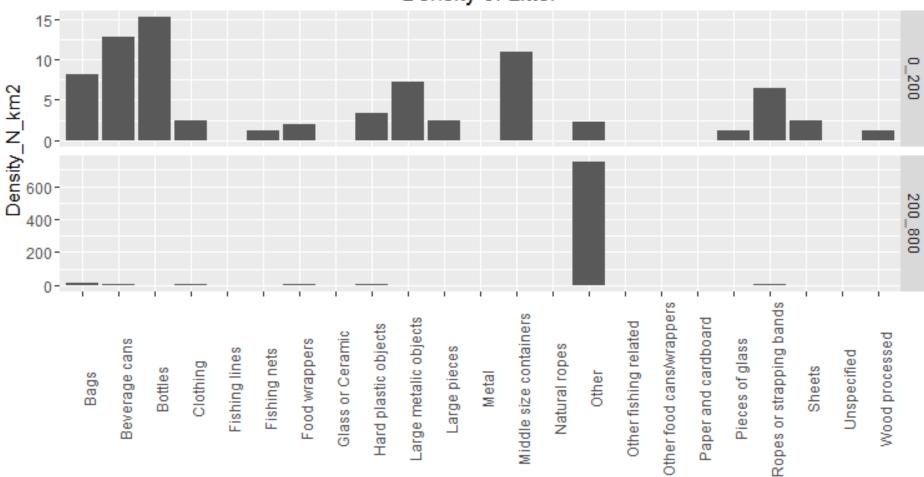

HO, VO and Temperature


- Since DFA (MSDEC) do not have these instruments, readings of HO and VO vs
 Depths are dependent on models
- Bottom sea temperature was measured at each haul using the SeaStar probe.

Shooting depth versus Warp length- 2016

Warp length versus Wing opening - 2016





Litter recording

- recorded in the form of photographs.
- A great part of marine litter consisted of limestone slabs from FADs fisheries.
- The only bias that can be present would be that more litter can be registered in areas that are less frequently trawled, leading to unrealistic conclusions.

Density of Litter

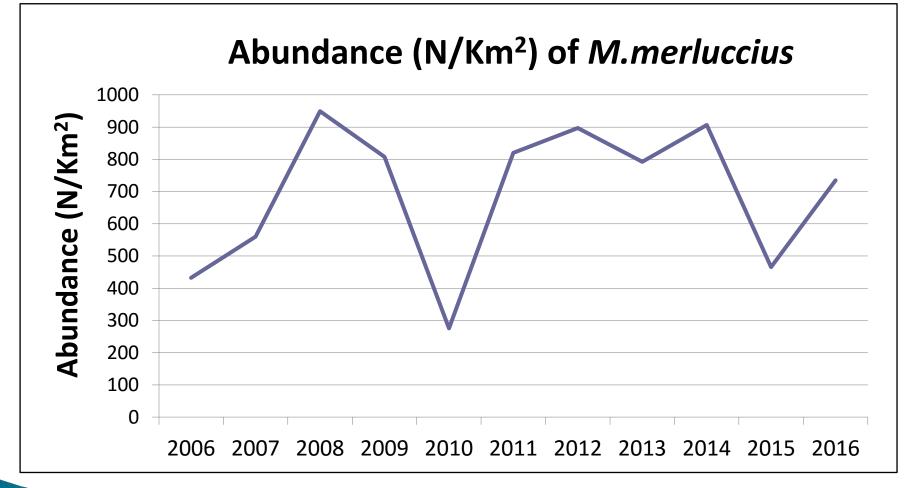
Litter Sub-Categories

Density of Litter

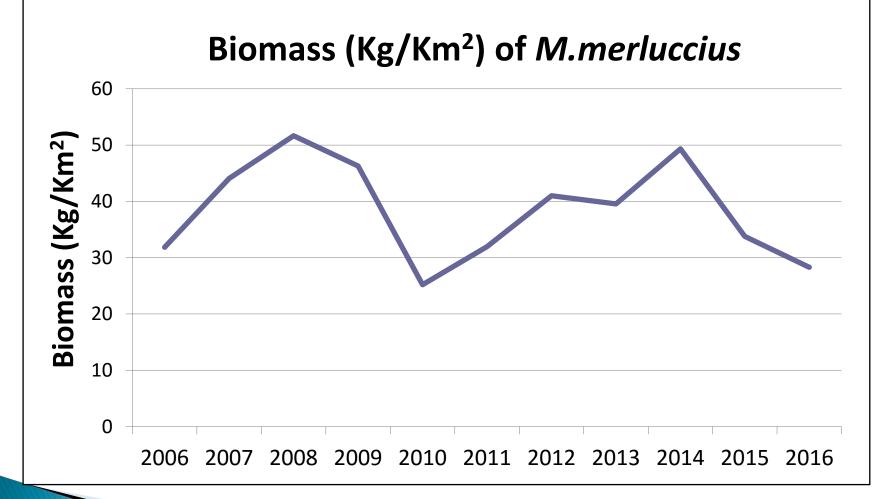
15-0 10-Density_N_km2 200 5-0 15 200_800 10-5-0 Т Other food cans/wrappers Ropes or strapping bands Middle size containers Large metalic objects Paper and cardboard Other fishing related Hard plastic objects Glass or Ceramic Wood processed Pieces of glass Beverage cans Food wrappers Natural ropes Large pieces Fishing lines Fishing nets Unspecified Clothing Sheets Bottles Metal Bags

Density of Litter

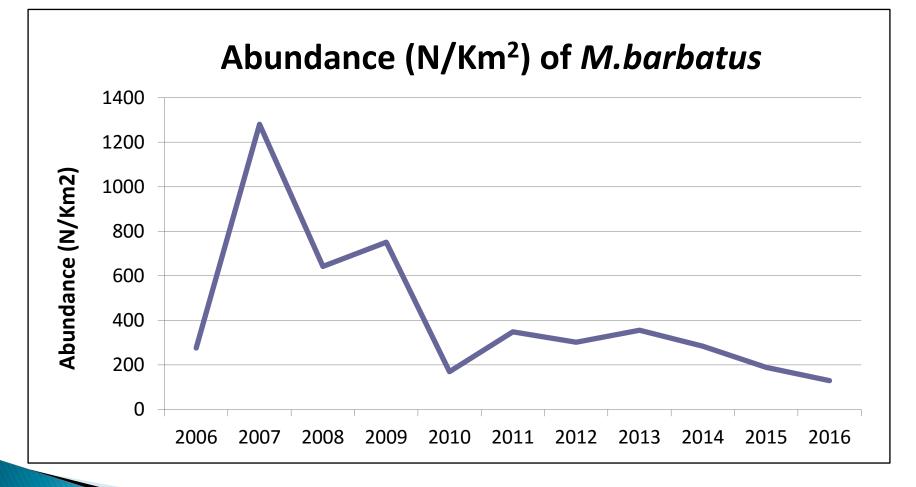
Litter Sub-Categories

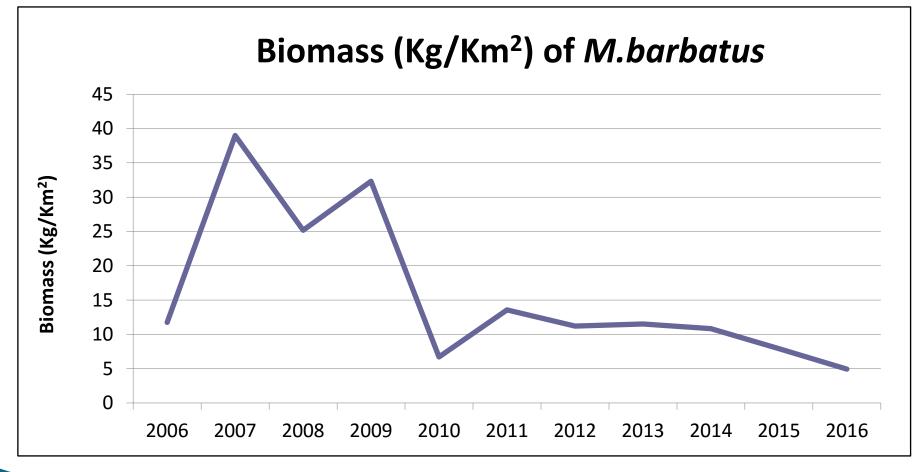

Biological sample

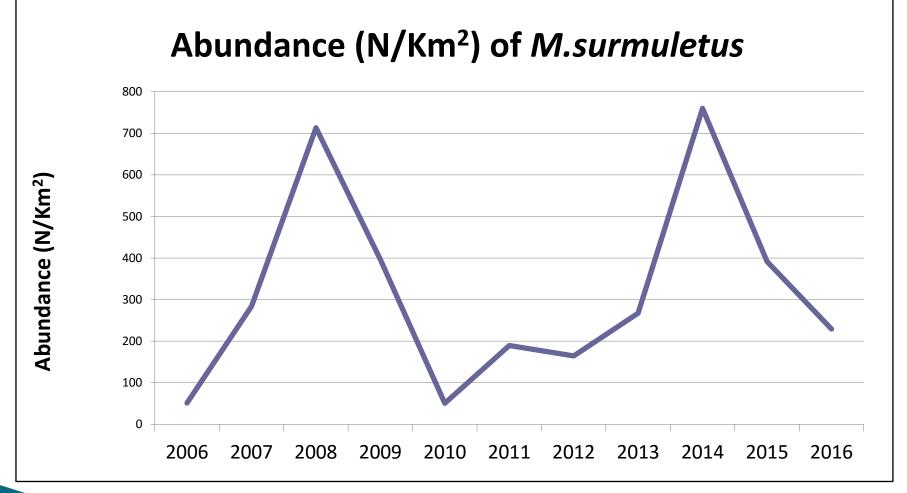
- Species identified: 135 (all present in FM list)
- Samples for length distribution: 11,294
- Samples for sex and maturity: 7,885

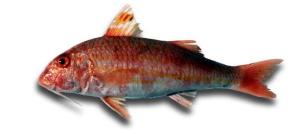

Data Checks

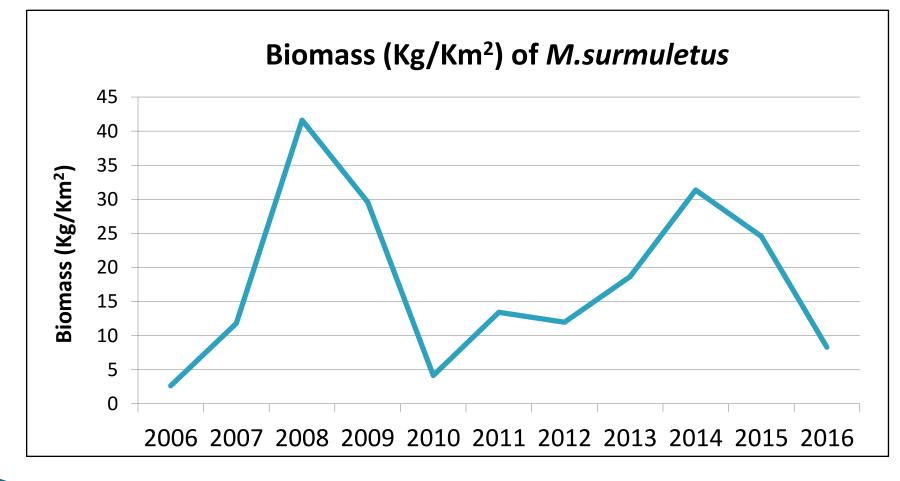
- Data was checked by means of the RoME data check programme.
- LitterR was used to analyse litter data.

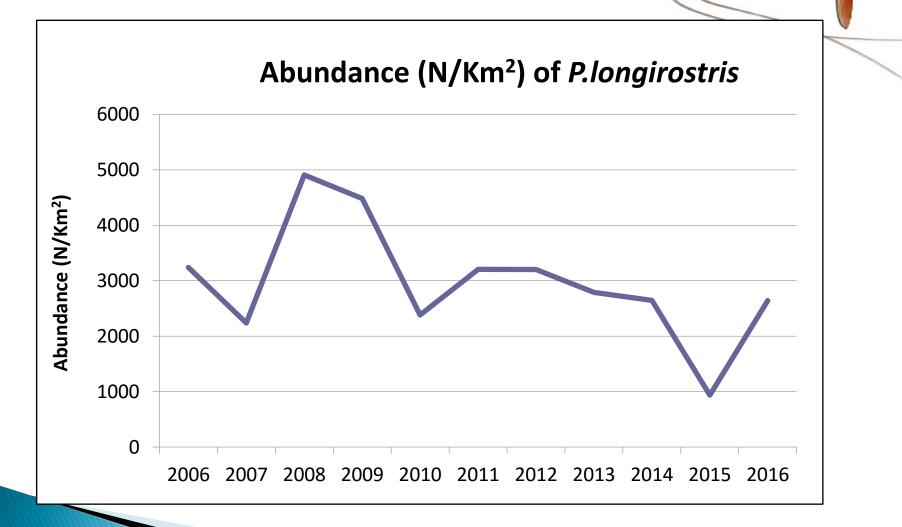


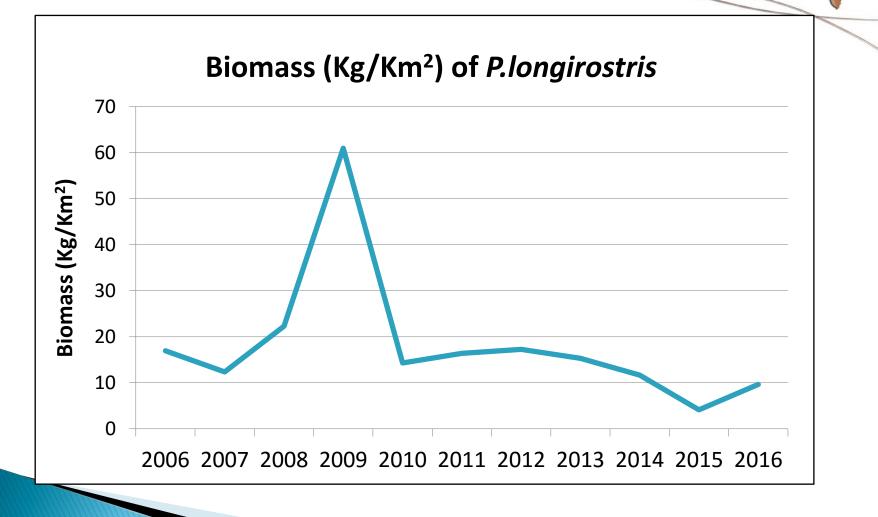


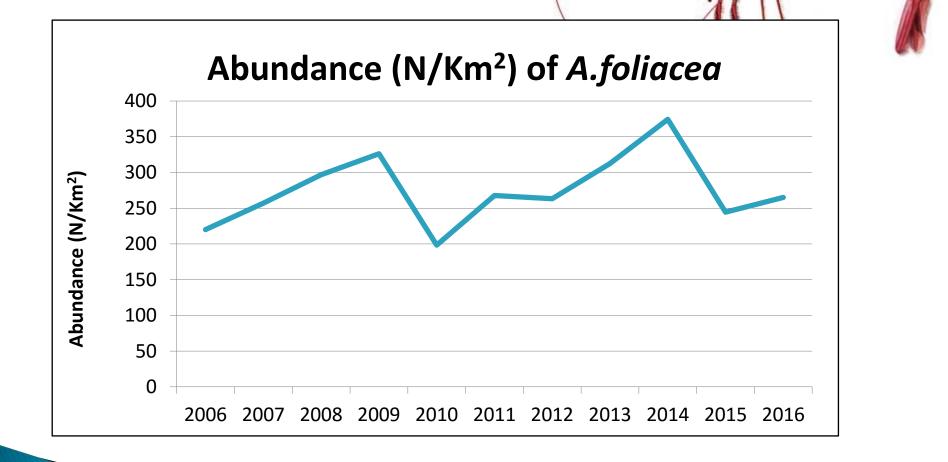


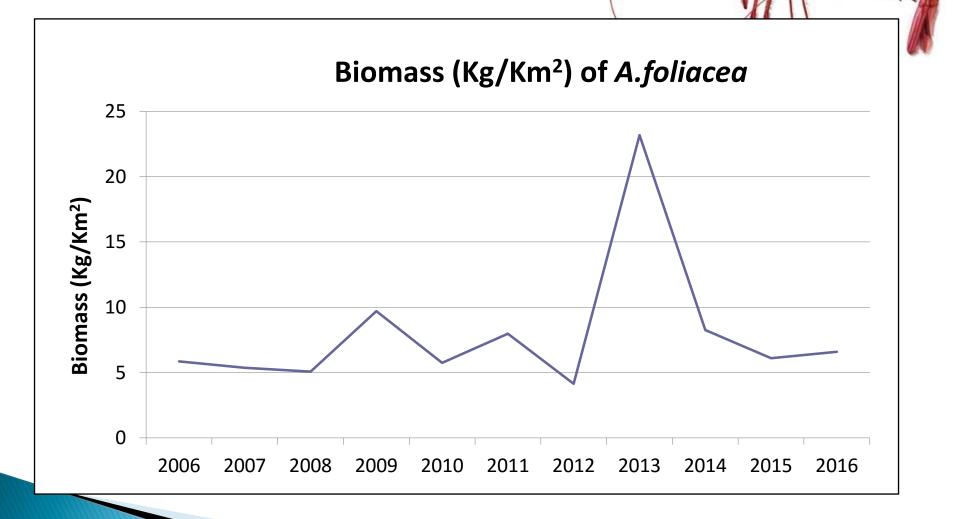











Historical trends

Historical trends

Historical trends

Age Reading

- All samples were collected.
- Samples from Medits 2012 2016 were read.

Future Plans

- A direct order was issued for the sampling vessel
- The sampling session for 2016 should be performed between August 2016.
- Work is being conducted to issue another tender for the otoliths extraction and age reading on 2017 samples.

Thanks for your attention

Food and Agriculture Organization of the United Nations

General Fisheries Commission for the Mediterranean Commission générale des pêches pour la Méditerranée

The implementation of demersal surveys in the context of the mid-term (2017-2020) strategy

> MEDITS Coordination Meeting Nicosia (Cyprus), 5-6 April 2017

> > GFCM Secretariat

The need for a strategy

This mid-term strategy is the fruit of the commitment of GFCM contracting parties, cooperating non-contracting parties and partner organizations to improve, by 2020, the sustainability of Mediterranean and Black Sea fisheries and ensure that the alarming trend in the status of commercially exploited stocks is reversed.

The need for a strategy

Why?

- <u>Stocks under pressure</u>, stagnant fisheries sector
- Need for regional response
- Countries require <u>support</u> to undertake actions and <u>comply with</u> <u>recommendations and</u> <u>international commitments</u>

When?

- Mid term vision (2017 2020): strategy should revert current negative trends and lay down the foundation towards sustainable fisheries
- Launching needs to start immediately

Who?

- Riparian States
- GFCM
- Other relevant actors with interest on various aspects related to fisheries: Integrative vision

How?

- Coordinated actions executed at various scales (national, subregional. regional)
- Supported by partners and tailored actions (Mediterranean & Black Sea)
- Dedicated funds: externals donors and contributors
- <u>National Commitment</u>

FAO Strategic Objective 2

Make agriculture, forestry and fisheries more productive and sustainable

GFCM mid-term strategy (2017–2020)

The mid-term strategy is based on 5 key actions identified by the GFCM subsidiary bodies and intends to capitalize on accomplishments in the region over recent years in the field of stock assessment and fisheries management, marine environment, control and capacity building......

The Mediterranean and Black Sea strategy: renewed commitment towards sustainability Outputs: 1.1 - Improved knowledge and expertise on **TARGET** 1 Mediterranean and Black Sea fisheries **Reverse the** 1.2 - Socio-economic information and declining trend analysis incorporated into scientific and Outputs: of fish stocks management advice 5.1 – Improved through 1.3 - Enhanced science-based GFCM national capacity strengthened regulations on fisheries management for the management scientific advice in of fisheries support of management resources by 2020, 5.2 – Strengthened **TARGET 2** Outputs: fisheries 2.1 – Robust and Support livelihoods governance in the **TARGET 5** the timely information on for coastal Black Sea the impact of small-Enhance communities 5.3 – Increased scale and sustaina capacity-building through cooperation with recreational and cooperation sustainable relevant actors fisheries on coastal small-scale bility of communities fisheries 2.2 – FAO **SSF Mediterra Guidelines tailored** to the specificities of the GFCM area of nean and **Outputs:** application 4.1 - Reduced bycatch Black rates in Mediterranean and Black Sea fisheries Outputs: Sea **FARGET** 4 4.2 – Healthier marine 3.1 - Regular quantification of IUU ecosystems and more fishing in the Mediterranean and the Minimize and **TARGET 3** productive fisheries sherie Black Sea mitigate 3.2 - Reinforced inspection unwanted **Curb IUU fishing** procedures in the framework of port interactions through a regional State control between fisheries plan of action 3.3 – Enhanced MCS at the regional and marine GFCM Res40/2016/1 ecosystems and level environment

The Mediterranean and Black Sea strategy: renewed commitment towards sustainability

TARGET 1

Reverse the declining trend of fish stocks through strengthened scientific advice in support of management

Implementation of Regional surveys at sea

acoustic pelagic survey

demersal trawl survey

Target 1

Regional surveys at sea: demersal trawl survey

Target 1

Rationale: The motivation for establishing pan Mediterranean and Black Sea survey lies in the fact that comprehensive biological studies of the biological status of most of the demersal fish stocks **in some Mediterranean areas** are still lacking. To target this issue, the GFCM wishes to promote such studies and one way of doing so is establish international surveys (**in not covered areas**) exploring the main demersal stocks.

Objectives

This proposal aim to conduct co-coordinated both a) demersal trawling and b) pelagic acoustic surveys in different Mediterranean and Black Sea areas and it will allow the possibility to formulate scientifically based advice for improved conservation of the stocks:

- to contribute to the characterization of demersal and pelagic fisheries resources in the Mediterranean & Black Sea in term of population distribution (relative abundance indices) as well as demographic structures (length distributions);
- to provide data for modelling the dynamic of the main target species per GFCM sub-region. In this scope, estimation of total mortality of the exploited species constitutes an important aim.

In additions....

 The use of a wide data sets in all Mediterranean and Black Sea regions should be harmonising in order to capture the most relevant biological events. This would permit more accurate estimates of life history parameters such as mortality and growth.

Target 1

- It would provide valuable records for the estimation of stock-recruitment relationships and contribute to the collection of ecosystem indicators.
- At the same time, data to better assess the spatial occupation of the different components of the stocks would be available (e.g. seasonal distribution, spatial segregation and community structure, reproduction and recruitment areas).
- The gain in accuracy would, in turn, make also more robust the evaluation of changes in the population indicators and of the input parameters for population and community modelling.

Methodologies

New demersal surveys should be carried out during the spring-summer period with homogeneous methodology and operational protocols among participants. A simplify version of the MEDITS-Handbook, 2016 will be used as reference (a discussion on it there will be during the incoming Coordination meeting Slovenia 15 May 2017). Overall:

- For each species the total weight and number of individual should be recorded.
- Furthermore, for a pool of selected and target species, collected information should include total length, weight, age, sex composition and also maturity. The list of target species as in the Medits manual will be checked and complemented with other species of regional/sub-regional interest (as in the GFCM-DCRF, 2016).
- Ecosystem data, discards and incidental catch of vulnerable species will be also monitored.

All data collected through existing surveys and the new one(s) **SoMFi** 2018 terranean and Sea Fisheries

<image><section-header>

Organization of the

Ad hoc meeting(s) for the analysis of data at subregional and/or regional level Ljubljana, Slovenia, 15 May 2017

DRAFT AGENDA AND TIMETABLE

MONDAY 15 MAY

Morning session, 9:30-13:00

Afternoon session, 14:30-17:00

1. Opening, arrangements of the meeting

- o Objectives of the meeting and adoption of the agenda
- o Introduction of the relevant activities under the GFCM mid-term strategy

2. Surveys implementation in the Mediterranean Sea

- o Overview by national experts
- o Regional programs in place (e.g. MEDITS, MEDIAS etc.)
- o General discussion

3. Definition of technical aspects for demersal and pelagic surveys

- o Identification of potential area(s) and availability of survey vessel(s)
 ✓ spatial and temporal coverage
- o Methodologies on board
- o Roadmap
 - ✓ sampling gear(s)
 - ✓ survey designs
 - ✓ scientific crew
- o Discussion on joint analysis and management of data
- 4. Role of the survey coordinator in each country
- 5. Analysis of capacity-building needs
- 6. Conclusions: roadmap for the implementation of surveys-at-sea

Next step.....

Thanks for your kind attention

GFCM Secretariat