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An advanced persistent threat (also known as APT) is a deliberately slow-moving cyber-

attack that is applied to quietly compromise interconnected information systems without

revealing itself. APTs often use a variety of attack methods to get unauthorized system

access initially and then gradually spread throughout the network. In contrast to tradi-

tional attacks, they are not used to interrupt services but primarily to steal intellectual

property, sensitive internal business and legal documents and other data. If an attack on a

system is successful, timely detection is of paramount importance to mitigate its impact

and prohibit APTs from further spreading. However, recent security incidents, such as

Operation Shady Rat, Operation Red October or the discovery of MiniDuke e just to name a

few e have impressively demonstrated that current security mechanisms are mostly

insufficient to prohibit targeted and customized attacks. This paper therefore proposes a

novel anomaly detection approach which is a promising basis for modern intrusion

detection systems. In contrast to other common approaches, which apply a kind of black-

list approach and consider only actions and behaviour that match to well-known attack

patterns and signatures of malware traces, our system works with a white-list approach.

Our anomaly detection technique keeps track of system events, their dependencies and

occurrences, and thus learns the normal system behaviour over time and reports all ac-

tions that differ from the created system model. In this work, we describe this system in

theory and show evaluation results from a pilot study under real-world conditions.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Global connectivity is the core principle of our information

age (O'Neill, 2014) and the vital backbone for our economy.

From an information provisioning point of view, distances

seem to shrink since information can be immediately

accessed from all over the world. We are used to, and highly

dependent on, information and communication services.

This dependency, however, is a considerable vulnerability
t, florian.skopik@gmx.at (

rved.
too, and increasingly motivates a certain criminal exploita-

tion (Barber, 2001). As ICT networks and their complexity

have evolved in recent years, so did the goals and technical

progress of attacks (Steer, 2014; Sood and Enbody, 2013).

Further, themotivation for attacks has changed from causing

immediate damage on abroad basis to more sophisticated

and targeted forms of attacks, where stealing proprietary

information or personal data is just one step in a multi-stage

attack (Kraemer-Mbula et al., 2013; Tankard, 2011; Kjaerland,

2006; Caldwell, 2013).
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Since the emergence of the first ICT networks significant

effort went into securing critical assets. Most companies have

numerous guidelines and processes in place to decrease the

chance of human failure. Additionally, one can choose from a

variety of security solutions that deal with different attack

schemes at different levels in the network: Firewalls that filter

traffic at network borders between sub-networks, malware

scanners that investigate binaries and executables for suspi-

cious behaviour or intrusion detection systems (IDSs) that

monitor events all over a network and verify them against

predefined rules for anomalies. While IDSs are a widely

accepted de-facto standard today, their common signature

based approach brings two major drawbacks (Garca-Teodoro

et al., 2009):

i Pre-defined rules are often insufficient to detect unique or

tailored attacks. Those rules are often commonly known

and, given enough effort is invested, can be circumvented.

However, producing custom rule sets is mostly not feasible

for most organizations.

ii For applications with low market share no sufficient

parsers and rule sets are available (e.g., for specific indus-

trial control components). As a consequence, the lack of

sufficient rule sets that verify application specific operation

sequences make common solutions inapplicable.

System architects and administrators need to tackle these

inadequacies in order to increase security. However, recent

attacks like Operation Aurora (McClure et al., 2010) or Opera-

tion Shady RAT (Alperovitch et al., 2011) demonstrate that the

current security mechanisms are insufficient to prevent

unique sophisticated and tailored attacks, also known as

Advanced Persistent Threats (APT). Furthermore, these

advanced attacks raise the question if it is even possible to

prevent intrusions with reasonable certainty (Alperovitch

et al., 2011; Thomson, 2011). Some new approaches even

deliberately accept successful first stages of attacks, and

instead focus on the timely detection to limit negative effects

on the longer run (Brewer, 2014).

Eventually, timely detection of intrusions is one major

challenge when securing complex critical systems. As current

security solutions are often not sufficient to deal with so-

phisticated and tailored attacks, novel approaches are

required. One interesting core concept of these novel ap-

proaches is the mining of typically unnoticed relationships

between different applications and components of a com-

puter network. While many experts today argue that these

disregarded relationships are the major weak spot abused by

attackers to compromise systems (Patcha and Park, 2007) (e.g.,

users that utilize the same passwords on multiple services

(Ives et al., 2004) or standard architectural patterns), we

emphasize disregarded (and often much more subtle) rela-

tionship as one of the major strength for future intrusion

detection systems.

This means, if we are able to detect these relations and

harness them by correlating events on multiple machines

across the entire network e and thus discovering unknown

dependencies e we are able to automatically generate a sys-

tem behaviour model that describes the common events and

their relations. For example, in a hosting environment a quite
obvious relation exists between incoming connections on a

firewall, followed by an http request on a Web server and

finally an issued SQL query on a database server. Conse-

quently, a single direct SQL query without a preceding Web

server request is an anomaly; moreover a firewall entry

without a succeeding Web server request might be the sign of

an intrusion too. The stronger these events coming from

machines, network devices, and high level services, are con-

nected, the harder it is for an attacker to exploit vulnerabilities

without violating some of these implications and thus being

detected. The actual art is to find these relations, model them,

and enforce them with minimal human intervention e and

with acceptable false positive rates.

The contributions of this article are as follows:

� APT Detection Approach. We explain why current security

solutions are often insufficient to counter APT attacks and

motivate the need for novel approaches.

� Anomaly Detection Model. We discuss the formal model

definition of a novel anomaly detection approach based on

log-line analysis (Skopik et al., 2014a; Skopik and Fiedler,

2013) that fulfils the motivated requirements.

� Real-World Evaluation. We perform a sophisticated evalua-

tion of a prototype implementation of the presented

approach, including an optimal configuration and the

performance when challenged with real anomalies in a

large-scale dataset.

The remainder of this paper is organized as follows: Sec-

tion 2 gives an overview about recent research in the field of

anomaly detection and intrusion detection systems. Sections

3 and 4 define the novel anomaly detection approach. Section

3 defines the general functionality; Section 4 describes how

the system model is generated and continuously refined.

Section 5 describes the test environments and the test data

generation for the evaluation of the prototype implementa-

tion. Section 6 discusses the results of the different evaluation

steps, and Section 7 concludes this article.
2. Related work

Nowadays various systems are in place in a corporate ICT

network to ensure the three properties confidentiality, avail-

ability and integrity known as the security triangle (von Solms

and van Niekerk, 2013). Any action attempting a violation of

any of those properties can be seen as an intrusion (Yu, 2012).

Intrusion Detection Systems (IDSs) (as originally proposed by

Denning (1987)) aim at detecting those intrusions to take ac-

tions from triggering warnings to actively preventing the

attacker from causing further harm. Literature as (Yu, 2012) or

Sabahi and Movaghar (2008) classifies IDSs by different

means. Differentiations can be made between host based,

network based and hybrid approaches (Yu, 2012; Sabahi and

Movaghar, 2008). While host based approaches focus on the

events on one single host to detect suspicious behaviour,

network based approaches look at parts of networks and

analyse the traffic and protocol data to detect intrusions.

Sabahi and Movaghar (2008)further classifies Hybrid ap-

proaches that use host and network data simultaneously as

http://dx.doi.org/10.1016/j.cose.2014.09.006
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well as network behaviour analysis approaches monitoring

traffic flows. Another way to classify IDSs is to look at the

types of intrusions they try to detect. We can differentiate

between misuse and anomaly intrusion detection (Axelsson,

2000). Misuse detection systems try to detect intrusions by

matching events in the monitored domain against defined

security policies. They can further be classified as signature

based, rule based or based on state transitions (Sabahi and

Movaghar, 2008). Anomaly intrusion detection detects de-

viations of the events in the monitored domain from an as

normal behaviour defined base line (Yu, 2012; Garca-Teodoro

et al., 2009). Here further differentiation can be taken be-

tween statistical based, distance based, rule based, profile

based andmodel basedmethods (Sabahi andMovaghar, 2008).

This way to differentiate intrusion detection systems also

leaves the possibility of hybrid approaches as proposed for

example by Kim et al. (2014). Yu (2012) has a different notion of

differentiation regarding anomaly intrusion systems. Here the

categories are statistical techniques, machine learning tech-

niques, neural network techniques, data mining techniques

and computer immunology techniques. Each category is

supported by various projects (Sommer and Paxson, 2010; Lee

et al., 1999; Zhang et al., 2009b). Intrusion detection systems

can also differ by their application domain. Mitchell and Chen

(2014) for example provides a comprehensive survey on cur-

rent IDS research in cyber-physical systems.

Anomaly detection is an actively researched field in many

domains. Chandola et al. (2009) identified the application do-

mains as intrusion detection, fraud detection, medical and

public health anomaly detection, image processing, anomaly

detection in text data and anomaly detection in sensor net-

works apart from other not so prominent domains. In each

domain we find different problems to solve, as well as

different sets of data. In order to detect anomalies, a system

has to use training data to define a ground truth about what is

to be considered normal behaviour of a system (Chandola

et al., 2009; Zhang et al., 2009a). The training data will be

analysed to establish a notion about normality further used to

mark patterns (also known as events or instances) in the data

as normal or abnormal. Furthermore, it is important to note

that systems evolve i.e., systems have to periodically recon-

struct their notion of normality to adapt to this changes

(Zhang et al., 2009a). Chandola et al. (2009) distinguishes three

kinds of anomalies: (i) Point Anomalies, if a single event can be

considered anomalous given the notion of normality we call it

point anomaly. (ii) Contextual Anomalies when an event can

be considered anomalous in respect to a given context. This

contextual evaluation has to be encoded in the formulation of

the problem. We can then deduce an anomaly given the

events' behavioural attributes in its context. The same attri-

butes might not be considered anomalous in another context.

(iii) Collective Anomalies, if a series of events is considered

anomalous we call it collective anomaly. Each event on its

own in some other place in the stream might not be consid-

ered an anomaly. But the collective relation between them

makes them anomalous.

Thottan and Ji (2003) describe two main categories of

anomalies in ICT networks. The first category describes

anomalies due to system failures. The second category con-

sists of security related problems resulting in anomalies.
Various classifications of anomaly detection approaches were

taken by (Chandola et al., 2009; Zhang et al., 2009a; Yu, 2012;

Thottan and Ji, 2003) just to name a few. The broadest classi-

fication by Chandola et al. (2009) distinguishes six classeswith

various subclasses from all of the before described domains:

Classification Based Anomaly Detection Techniques try to

classify every data instance as either normal or abnormal.

Given a labelled training data set it generates a classifier later

used to generate a label for every instance. Depending on the

provided labels we can distinguish between multi-class

(normal data has different labels) and one-class (either normal

or abnormal as label) techniques. The general assumption of

this approach says that it is possible to learn a classifier dis-

tinguishing between normal and abnormal data instances.

Following techniques fall in this category: (i) Neural Networks-

Based, (ii) Bayesian Networks-Based, (iii) Support Vector Machines-

Based and (iv) Rule-Based. Nearest Neighbour-Based Anomaly

Detection Techniques work on the general assumption that

“normal data instances occur in dense neighbourhoods, while

anomalies occur far from their closest neighbours” (Chandola

et al., 2009). A metric has to be found serving as distance or

similarity measure. This metric can then be used to generate

an anomaly score for each data instance by two different

means. First, when using Distance to kth Nearest Neighbour, the

anomaly score is the distance to its kth nearest neighbour.

Second, when using Relative Density, the density of an in-

stance's neighbourhood works as anomaly score where low

density means that the instance is more likely an anomaly.

Clustering-Based Anomaly Detection Techniques try to

generate clusters of similar data. The assumption here is that

anomalies do not belong to any cluster, are far from the centre

of the nearest cluster or occur only in a small cluster with low

density while normal instances are near to the centre of a

dense cluster. Then again an anomaly score can be used

together with a threshold to identify anomalies. Statistical

Anomaly Detection Techniques assume the input data fol-

lows a stochastic model. This model usually describes normal

behaviour. For each instance a statistical inference test de-

cides if the data instance belongs to the model, hence is

normal, or not. Two techniques can be observed. Parametric

Techniques generally assume to know the underlying distri-

bution and estimate its parameter from the training data.Non-

Parametric Techniques do not assume to know the underlying

distribution but try to learn it from the training data. Infor-

mation Theoretic Anomaly Detection Techniques assume

that anomalies can be detected because they result in irreg-

ularities in the information content of the data set. Therefore,

these techniques try to generate a model of normality about

the information in the data in order to detect inconsistencies.

Spectral Anomaly Detection Techniques try to map the data

space to a smaller subspace. They assume that there exists a

subspace where normal data and anomalies can easily be

identified and that there exists a transformation to get the

data into this subspace. Zhang et al. (2009a) and Thottan and Ji

(2003) distinguish anomaly detection approaches with focus

on ICT networks. They come up with subsets of the already

described approaches before with Zhang et al. (2009a) using

anomaly detection using statistics, anomaly detection using classi-

fier, anomaly detection using machine learning and anomaly

detection using finite state machines. Thottan and Ji (2003)

http://dx.doi.org/10.1016/j.cose.2014.09.006
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distinguishes between rule-based approaches, finite state ma-

chines, pattern matching and statistical analysis. Various chal-

lenges in anomaly detection are identified by Chandola et al.

(2009). The most prominent is of course to identify a com-

plete notion of normality. This is made even harder by the

fact, that there is only a fuzzy and changing border between

normal and abnormal behaviour. When anomaly detection is

used to detect malicious activity it has to be pointed out, that

an attacker disguises his actions bymaking them look normal.

In some cases it might be possible he tampers the testing data

or the system. Connected with the problem of getting a

complete notion of normality is also the problem of getting

representative, labelled training data and to differentiate

noise from actual anomalies (Barto�s and �Z�adnı́k, 2012). The

number of papers describing novel or optimised mechanisms

of anomaly detection in different contexts is far from count-

able and ever increasing. Li et al. (2012); Zhang et al. (2009b);

Zhao et al. (2010); Thottan and Ji (2003); Yin et al. (2004) are

just some examples to show the diversity in the approaches. A

good overview on anomaly detection in the domain of intru-

sion detection can be found in Yu (2012).

The approach proposed in this work is a hybrid IDS

approach that analyses host based data from various com-

ponents in a network in order to make assumptions about

relations between the components on the network level.

Therefore, the approach can be considered as an Information

Theoretic Anomaly Detection Technique. From the way the data

sources are analysed and evaluated it is also a Statistical

Anomaly Detection Technique with a parametric characteristic.
3. Anomaly detection through event
correlation

The proposed approach is designed to extend common secu-

rity mechanisms e especially ”packet-level” IDS systems e to

improve their results. It further integrates seamlessly into the

administrator's work-flow. Instead of replacing existing solu-

tions or establishing an additional security system, the

approach aims at acting as an additional source for alerts in

existing monitoring infrastructures. Similar to some existing

mechanisms the proposed approach exploits log files. How-

ever it does not rely on existing knowledge about the syntax

and the semantics of the lines. On the contrary, the approach

constructs a model while processing the input. This system

model M is built by the following items:

Search-Patterns (P): Patterns are random substrings of the

processed lines. Patterns are used to categorise informa-

tion contained in a log-line.

Event Classes (C): Event classes classify log-lines using the

set of known patterns. Each line can be classified by mul-

tiple event classes.

Hypothesis (H): Hypotheses describe possible implications1

between log-lines based on their classification.

Rules (R): A rule is a proven hypothesis. This proof is given

if the implication that is described by the hypothesis holds

in a significant time of evaluations. The system evaluates
1 Implication in a logical sense as A/B≡:A∨B.
rules continuously to detect anomalous behaviour in the

system.

This approach tackles both above mentioned shortcom-

ings; it also provides additional benefits:

i The model is generated following the real relationships of

components in the monitored environment. The detected

relationships involve expected relationships (e.g. firewall

rules being evaluated before a request is transmitted to a

secured server) but are not limited to those.

ii The rules in the model are automatically generated and

unique for each monitored environment. A potential

attacker cannot easily tailor an attack to prevent rules from

failing; the attack, after all, alters the system behaviour.

iii Syntax and semantics of the log lines are widely irrelevant,

since the model is tailored to the log input.

iv Sharing information about attacks with state actors, com-

petitors or other third parties is often forbidden by com-

panies, although information sharing is a requirement to

monitor critical infrastructures on a national level. The

reasons, to forbid information sharing, vary from legal

obligations (e.g. privacy issues) to fear of the loss of cus-

tomer's trust. Given the abstract form the algorithm

transfers processed log-lines to, information sharing is

possible without compromising privacy. Intrusion Detec-

tion Systems only fulfil monitoring tasks. Actions to emit

detected anomalies are not taken e humans still have to

interpret a detected anomaly. Manual intervention is also

required to determine the actions to take, in order to pre-

vent further harm to the monitored ICT system.

Fig. 1 provides a conceptional overview of the described

approach's functionality, as first published partly in Skopik

et al. (2014a). This visualisation splits the approach in two

dimensions: On a horizontal dimension, the Evaluation Stack

(visualised by the squared elements on the left side) is

distinguished from the Refinement Branches (pictured by the

elliptic elements on the right side). The Evaluation Stack de-

scribes the tasks performed to prepare and analyse the input

and to detect anomalies. The approach performs all
Fig. 1 e Conceptual overview.
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operations iteratively. The Refinement Branches on the other

hand, are triggered by the Evaluation Stack's tasks; they eval-

uate and optimise the system model continuously. Fig. 1

shows that refinement works in two steps. First, new knowl-

edge is extracted from the currently processed line. After-

wards, the refinement process evaluates the knowledge and

deletes deprecated or redundant information. The updated

information is then available in the next iteration of the

Evaluation Stack.

The system model M (see Eq. (1)) is defined as a tuple built

from the sets of: known search-patterns ℙ, known event

classes ℂ, known hypothesis ℍ and known rules ℝ.

M ¼ 〈ℙ;ℂ;ℍ;ℝ〉 (1)

Tasks in the Evaluation Stack are performed in sequential

order. The tasks describe the general functionality of the

system regarding input analyses and anomaly detection:
Fingerprinting Example

1 service-3.v3ls1316.d03.arc.local apache: 2227 169.254.0.3:80 “mantis-3.v3ls1316.d03.arc.local” “mantis-3.v3ls1316.

d03.arc.local” 169.254.0.2 - - [12/Feb/2014:13:30:16 þ 0000] “GET/mantis/login_page.php HTTP/1.1” 200 1343 “-”.

“Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.65 Safari/537.36”.

Listing 1: Apache log excerpt from test environment.

Table 1 e Example of a fingerprint. Consider the sample log-line in Lst. 1 from an Apache server running Mantis in our test

environment. This table shows an example set of patterns ℙ0 and how a fingerprint of the line in Lst. 1 would look like.

p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns ℙ0: GET POST [12/Feb/2014:13:30:15 þ 0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php mysql-n

Fingerprint: 1 0 1 1 1 0 1 1 0
3.1. Log-event extraction

A basic unit of logging information, e.g., one line for line-based

logging, one binary log data record or one XML-element, is

called a log-atom La; an La consists of a series of single symbols

s (Eq. (2)).

La ¼ s1…sn (2)

Further a log event Le (Eq. (3)) is the association of a log-

atom La with a timestamp t; Le describes when La has been

created.

Le ¼ 〈La; t〉 (3)

The first task collects the logging information from various

distributed sources in themonitored network and emits them,

one by one, to the next state in the Evaluation Stack. Assuming

a complete and correctly sorted stream, atoms are emitted

individually and timely sorted to the next task.
3.2. Fingerprint generation

The next task vectorises each log-atom using ℙ. A

search pattern P (Eq. (4)) is a substring (an n-gram) of a log-

atom La.

P ¼ s1þi…smþi; where 0 � i and mþ i � n (4)

The vectorisation process transforms a log-atom La into an

n-dimensional pattern vector e the so-called fingerprint F
!

(Eq. (5)). The information reported by La is encoded using the

set of currently existing search patterns ℙ. The occurrence of

each search pattern P, as a substring in La, is encodedwith a bit

pi∊{0,1} in F
!

(see Table 1 for an example).

F
!¼ p1…pn; where pi2f0;1g (5)

Fingerprinting La reduces the amount of data the next

steps need to process e and speeds up the overall

anomaly detection e significantly. F
!

can also be used to

transmit log-data for external analysis; privacy issues do

not require special consideration. Without ℙ there is no

way to extract sensitive data. Once La is vectorised,

further analysis is performed solely on F
!
. Information

encoded in La, that cannot be encoded by any combina-

tions of ℙ, is inevitably lost for further steps in the Eval-

uation Stack.
3.3. Log-atom classification

Once an La is vectorised and F
!

is generated the fingerprint

(and therefore the underlying La) gets classified. Log event

classification is the process that determines ℂLa e the set of all

event classes C a log-atom La belongs to (see Eq. (6)). One La can

belong to a multitude of classes, e.g., a log-atom might be an

‘incoming connection event’, an ‘ssh service event’ and an ‘IP-

zone X service event’ at the same time. Each event class, that

La belongs to, encodes a specific type of information that was

originally encoded in La. Notice that La is classified, not Le
because the categorization is timestamp-independent.

ℂLa ¼ fCjLa2Cg (6)

A log-atom might also belong to no class at all. In this case

La is discarded and not used for further evaluation. Informa-

tion encoded in La is lost, since it could not be mapped to any

existing event class C.

An event class C (Eq. (7)) is defined as the combination of a

mask C
!

m and a value C
!

v.

C ¼ 〈C
!

m; C
!

v〉 (7)

The eventmask C
!

m acts as a filter and decides, what search

patterns are considered relevant for the classification in the

respective class (see Eq. (8)). The value C
!

v decides for all

relevant search patterns, if they are enforced on F
!

or pro-

hibited from being part of F
!
, for La to be classified by C (see Eq.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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(9)). Note that C
!

v does only enforce or prohibit search patterns

that are considered relevant by C
!

m.

C
!

m ¼ p1…pn where pi ¼
�
1 if P at i is relevant
0 if P at i is irrelevant

(8)

C
!

v ¼ p1…pn where

pi ¼
�
1 if P at i is enforced

0 if P at i is prohibited or irrelevant

(9)
Fingerprint Classification Example

The idea of the log-atom classification is, to apply a basic concep

he scans each line andmakes implications on the line'smeaning

in Lst. 1 from an Apache server running Mantis in our test env

One can understand certain aspects of the log-line, without d

identifiable substring is apache: that tells us that this log was

timestamp with substring [12/Feb/2014:13:30:16 þ 0000] or, given

one of those. We are able to extract a considerable amount of i

and the semantics. We know the triggering application as well

Of course, the substrings used in this basic sample are chose

the system). But this simple sample is supposed to prove someth

POST) changes themeaning of the line fundamentally. This is th

e ”‘There was a GET-request on an apache server at time t”’ e is

apache:, [12/Feb/2014:13:30:16þ 0000] and GET can be found in th

are insufficient to fully cover the information encoded in the li

know what was requested, who requested it or from which ser

The translation of the example above, into the formal structu

encode the knowledge given by the three selected patterns from

and P7 ¼ apache:. C encodes the information carried by P1 and P

those two patterns as relevant and Cv has to enforce them. In am

be 1 and pi ¼ 0 for i ; {1,7}. C can also encode more informat

(formal: dpi ¼ 1 in C
!

m for i ; {1,7}). If pi is 1 in C
!

m but 0 in C
!

v

classify GET-requests on a specific page (see Table 3 for an exa

n_page.php) can be enforced on La, for La to be classified by C (se

carries less information than an enforced one.

Table 2 e Example of an event class that classifies the sample l

(i.e., they have to occur in La for it to be classified by C), italic patt

to be classified by C). Other patterns are considered irrelevant b

p1 p2 p3 p4

Patterns ℙ0: GET POST [12/Feb/2014:13:30:15 þ 0000] v3ls1

Fingerprint: 1 0 1 1

C
!

m 1 0 1 0

C
!

v 1 0 1 0

Table 3e Example of an event class that prohibits/mantis/login_p

C but all apache GET-requests on other pages are classified by

p1 p2 p3 p4

Patterns ℙ0: GET POST [12/Feb/2014:13:30:15 þ 0000] v3ls13

C
!

m 1 0 0 0

C
!

v 1 0 0 0

Table 4 e Example of an event class that enforces/mantis/login_

but only apache GET-requests on this pages are classified by C.

p1 p2 p3 p4

Patterns ℙ0: GET POST [12/Feb/2014:13:30:15 þ 0000] v3ls13

C
!

m 1 0 0 0

C
!

v 1 0 0 0
Each generated fingerprint F
!

is classified by C if the con-

dition in Eq. (10) holds.

C
!

v ¼ F
!
∧C
!

m (10)
t of human reasoning.When a human analyses log-lines s/

from the line's content. Consider again the sample log-line

ironment.

etailed knowledge about an Apache log-line’s syntax. One

printed by an Apache server. We can further identify a

some knowledge about HTTP commands, identify GET as

nformation without a lot of prior knowledge on the syntax

as the time and the request.

n intelligently and not completely random (as it is done by

ing different: Replacing one of the substrings (e.g.GETwith

e concept applied by classification. Themeaning of the line

inseparably connected with the fact, that the substrings

e respective line. On the other hand, those three substrings

ne. We know that something was requested. But we don't
ver it was requested from.

re of the approach, looks as follows: An event class C has to

above.Without loss of generality we can say, that P1 ¼ GET

7 if the following two conditions hold: Cm has to consider

ore formalway thatmeans: p1 and p7 in C
!

m and C
!

v have to

ion. Cm would have to consider more patterns as relevant

the represented patterns are prohibited. C might then not

mple). If pi is also 1 in C
!

v, a certain page (e.g./mantis/logi-

e Table 4 for an example). In general a prohibited pattern

og-line in Lst. 1. While the bold patterns are enforced by C

erns are prohibited by C (i.e., theymust not occur in La for La
y C.

p5 p6 p7 p8 p9

3 s1316.d0 ice-4.v3 apache: login_page.php mysql-n

1 0 1 1 0

0 1 1 0 0

0 0 1 0 0

age.php. The line in Lst. 1 is not classified by this event class

C.

p5 p6 p7 p8 p9

s1316.d0 ice-4.v3 apache: login_page.php mysql-n

0 1 1 1 0

0 0 1 0 0

page.php. The line in Lst. 1 is classified by this event class C

p5 p6 p7 p8 p9

s1316.d0 ice-4.v3 apache: login_page.php mysql-n

0 1 1 1 0

0 0 1 1 0

http://dx.doi.org/10.1016/j.cose.2014.09.006
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After classifying La the approach generates an event EC (Eq.

(11)) for every event class C2ℂLa . An event EC carries the infor-

mation that a log-event Le at time t got classified by C. These

eventsare further investigatedbytheanomalydetectionsystem.

EC ¼ 〈t;C〉 (11)

3.4. Rule evaluation

The last task of the Evaluation Stack changes the focus from

single log-events to the relations between them. A hypothesis

H (Eq. (12)) is a non-validated correlation rule between events

of two different event classes. A hypothesis is used to evaluate

the events that were triggered by the processed log-events.

One evaluation of a hypothesis is therefore written as the

test if ECcond/ECimpl holds in tw. The time window tw describes

the time span (relative to t at which Le that triggered ECcond

occurred), in which the implication has to hold. The system

automatically creates such correlation hypotheses, and sub-

sequently tests them, to learn about event dependencies.

Notice that tw>0 does not hold in general. Some hypothesis

make assumptions about events that have to have occurred

before other events. tw is fixed at generation time of H.

H ¼ 〈Ccond;Cimpl;/; tw〉 (12)

The system evaluates the stream of events against the hy-

potheses in ℍ continuously. This evaluation process foresees

one event queue Qi for every existing hypothesis Hi. All queues

Qi listen to events relevant to the respective hypothesis; they

add ECi

���
C¼Ccond∨C¼Cimpl

. A periodic evaluation process acts on the

entries in the respective Qi; its actions are described in Table 5.

The evaluation is performed until none of the described cases

hold. Then there are no more evaluations to be done in the

current state. The rule is completely evaluated e until a new

event is received by Qi.
Table 5 e Possible evaluation results of a hypothesis.

Occurrence Evaluation result

E1∧:E2 Given tw has passed the rule

evaluates to false and a negative

evaluation is stored. E1 will be

deleted.

E1∧E2 Given both events occurred within

tw the rule evaluates to true and a

positive evaluation is stored. E1 and

E2 will be deleted.

:E1 All occurrences of E2 that lack an E1

are deleted without an evaluation

result being returned.

2 p0 in this case relates to a hypothesis about the statistical
distribution of the sample and is not comparable to an implica-
tion hypothesis as defined in Eq. (12).

3 n, H0 and a are part of the initial configuration and will be
discussed in more detail in Section 6.1.

4 Note that this statistical hypothesis is not comparable to an
hypothesis H2ℍ. It describes the expected probability that the
next evaluation is positive and is tested by statistical means to
decide if the different evaluations still support this probability or
if a significant change is measured (i.e., an anomaly is detected).
The result of an evaluation of Qi e one evaluation e is

called e (see Eq. (13)). One evaluation stores the result res (true

or false) of the evaluation, the hypothesis Hi with respect to

which the evaluation was performed and the position pos that

e has in the stream of evaluations.

e ¼ 〈res;H; pos〉 (13)

Every hypothesis Hi stores evaluations in a stream SHi (see

Eq. (14)). The position of an evaluation is defined as its position

in this stream; pos is incremented for all evaluations in SHi ,
whenever a new evaluation is stored. The most recent evalu-

ation has always pos ¼ 0.

SHi ¼ fejH ¼ Hig (14)

A slot Sl is a filter, that can be applied on evaluation

streams. The operation size(Sl) returns a natural number,

specifying the size of the slot. Applying a slot on an evaluation

stream returns the newest size(Sl) evaluations in that stream

(see Eq. (15)). The system generates k slots at initialization

time with size(Sli) < size(Sli þ 1).

Sl
�
SH

� ¼ �
e
��e2SH∧pos< size

�
Sli

��
(15)

Consideringthepositionofevaluationsas timelyordered, the

evaluation's results produce a binary stream. The continuous

evaluation process can then be interpreted as a Bernoulli pro-

cess; a discrete-time stochastic process that takes only two

values. This Bernoulli process is used to decide about the sta-

bility of a hypothesis; a stable hypothesis is transferred into a

rule R. The stability function in Eq. (16) implements a left-sided

binomial test; isS table(H) analyses the current evaluation

stream against a pre-defined stochastic distribution that is

described by a statistical hypothesis p0.
2 A binomial test evalu-

ates, if a given sample supports a pre-defined distribution.

Bði��p0;nÞ returns the probability that i out of n evaluations are

positive, given that p0 is the assumed chance of an evaluation

being positive. A significance level a is the threshold below

which the testedsample (andwith it theevaluatedhypothesisH)

are refused.3 Let further be feHt g the set of evaluations belonging

to hypothesisHwith res¼ true. The sample of evaluations, used

for the stability evaluationofH, is Slk(S
H); thebiggest slot defined.

isStableðHÞ ¼
XjfeHt 2SlkðSHÞj

i¼0

Bðijp0; sizeðSlkÞ � a (16)

If isS table(H) evaluates to true the tested hypothesis H is

considered a stable rule R and becomes part of the set of rules

ℝ (see Eq. (17)). Note that ℝ3ℍ.

ℝ ¼ fHjisStableðHÞg (17)

Rules are considered currently accepted hypotheses; they

undergo the same periodical evaluations as all hypotheses.

Additionally, their evaluation stream is analysed for anoma-

lies. Testing a rule R2ℝ for anomalies uses the same left-sided

binomial test, as proving stability does. Only the parameters

change (see Eq. (19)). Let feRt 2SlkðSRÞg be the set of all positive

evaluations, of a given rule, passing the filter applied by Slk.

The test tries to verify a statistical hypothesis4 p0, that is now

given by the ratio of positive evaluations in Slk to total evalu-

ations in Slk (see Eq. (18)). An anomaly significance aa specifies

the threshold belowwhich a sample is considered anomalous.

The anomaly analysis is performed for all slots Sli with i<k.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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p0 ¼
���eRt 2SlkðSRÞ���

(18)

Distribution Function (CDF) based on the slots from the

last timeslot in Table 7. All possible values are calculated;

the bold values are the ones valid for the values in

Table 7.��feRt 2SlkðSRÞg
��: 0 1 2 3 4 5

Sl1 0.01 0.19 1

Sl2 1.0e�5 4.6e�4 8.56e�3 0.08146 0.40951 1
sizeðSlkÞ

isAnomalousðRÞ ¼ ∨
k�1

j¼0

0
@ XjfeRt 2Sljgj

i¼0

B
�
i
��p0; size

�
sj
�� � aa

1
A (19)

An anomaly A (see Eq. (20)) is a highly significant

deviation of the sample of evaluations that is given by

applying slot Slj on the stream of evaluations SR (i.e., Slj(S
R)),

with respect to the expected distribution given by the

evaluations in Slk(S
H). A consists of a probability

p ¼ 1�PjfeRt 2Sljgj
i¼0 Bði��p0; sizeðSljÞÞ, a rule R, on which the

anomaly was detected, and a time t, at which the anomaly

was detected.

A ¼ 〈p;R; t〉 (20)
Rule Evaluation Example

Example: Consider the event class described in Table 4 as

C1 and the event class described in Table 3 as C2. We can

now construct a hypothesis as in Eq. (21). This hypothesis

would state that after an apache GET-request was issued

on login_page.php there is also an apache GET-request on

another pagewithin atmost 10 s Table 6 shows the status

ofQ1 at different timestamps. Table 7 showshowdifferent

evaluation results affect the evalution streamSH1 andhow

different slots access different evaluations.

H1 ¼ 〈C1;C2;þ10s〉 (21)

Taking into account the last snapshot of SH1 in Table 7,

we can calculate p0 by counting the number of positive

evaluations that are considered by Sl3 (
��feRt 2SlkðSRÞg�� ¼ 9).

The size of Sl3 is 10 and the resulting p0 is then calculated

based on Eq. (18) as 0.9. Table 8 describes all possible

values for Sl1 and Sl2 that can be calculated by Eq. (19).

Let's assume that aa ¼ 0.01. In this case:

isAnomalousðH1Þ ¼ 0:19 � 0:1∨0:08146 � 0:1 ¼ false

Table 6 e Sample status of the event queue Q1.

Time Q1

10:30:40 〈10 : 30 : 35;C1〉

10:30:42 〈10 : 30 : 41;C2〉 〈10 : 30 : 35;C1〉

10:30:50 〈10 : 30 : 45;C1〉

10:30:57 〈10 : 30 : 57;C2〉 〈10 : 30 : 45;C1〉

10:30:59

Table 7 e Sample development of the evaluation stream

SH1 . In this sample we assume three slots (k ¼ 3) with

size(Sl1) ¼ 2,size(Sl2) ¼ 5 and size(Sl3) ¼ 10.

Slot 3 Buffer Sl3

Slot 2 Sl2

Slot 1 Sl1

10:30:40 1 1 0 1 1 1 1 1 1 1 1 1

10:30:50 1 1 1 0 1 1 1 1 1 1 1 1

10:30:59 0 1 1 1 0 1 1 1 1 1 1 1

pos 1 2 3 4 5 6 7 8 9 10 11 12
4. System model management

The analysis of system behaviour, as described in Section. 3, is

highly dependent on knowledge, represented by the system

modelM. Since the proposed system does not rely on any pre-

defined knowledge, M has to be built while analysing the

input. A first step generates knowledge about processed input;

this generated knowledge builds M. The lack of information

about the meaning of good (meaningful) knowledge, justifies

the need to evaluate M and delete deprecated or redundant

information. The following section will go into more detail

about how knowledge is generated and refined for search

patterns ℙ, event classes ℂ, hypothesis ℍ and rules ℝ.
4.1. Search pattern refinement

Generation. Search patterns ℙ (see Eq. (4) for a single search

pattern) are created by the system based on currently pro-

cessed log-atoms La. Since search patterns are the only basis

for vectorisation of La, it is essential, that all log-atoms are

matched bymultiple search patterns. It is therefore important

to get a sufficient coverage of occurring log-eventswith search

patterns. To achieve this the system generates new patterns

with Alg. 1. Patterns are generated for:

i an uncovered La (e.g., when new log sources are being

connected).

ii a well-covered La (in order to refine the knowledge).

Generation of new search patterns P is balanced by gener-

ating new patterns more frequently for uncovered or weakly

covered log-atoms.5 The system applies a simple but effective

token bucket algorithm. Processing an Le increases the number

of tokens in a bucket. The system generates a new search

pattern, if there are enough tokens in the bucket. An important

configuration parameter is the cost of a new pattern t. It is

calculated by the configured base cost t0 plus a balancing cost t00

that depends on the coverage of Le. This algorithm is an easy

way to overcome the pattern balancing problem that deals with

the fact that rarely occurring log-atoms are not properly

indexed by the search patterns currently in ℙ, while frequently

occurring log lines are indexed (i.e., coveredwith patterns) very

well. But especially the rarely occurring log-atoms are themost

interesting ones; they represent exceptional events. To over-

come this problem, the generation of a searchpattern fromrare
5 Coverage in this sense means the number of already collected
search patterns matching an La.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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log-atoms is cheaper, i.e., less tokens are withdrawn from the

bucketwhenasearchpattern fora rare log-atomiscreated.This

allows the creation of several patterns for one rare La. Buying a

pattern for a well covered type of log atom on the other hand is

expensive, but still affordable fromtime to time.Thegeneration

of search patterns for well covered log-atoms is not prevented,

in order to be able to generate more restrictive event classes.

Too general event classes result in a highnumber of trivial rules

that cloud the systemmodel.
Balancing Example

Let's assume t0P ¼ 10 and La is the log-line from Lst. 1. Lets

further assume that ℙ0 is again given by the set of pat-

terns used in Table 1. Based on F
!

La the matchCount is 6

and the total cost t would be calculated as:

t ¼ 10þ26 ¼ 74. So if bucketSum� 74 a new pattern will be

generated on La. Otherwise no pattern gets generated.

6 This threshold is defined manually in the configuration file of
the system.

7 The substitution is considered valid if both search patterns
have the same merge candidate on the current Le as on all Le
before where they matched.
Merging. Each La can be classified bymultiple event classes and

can therefore trigger a multitude of events E. These events are

then used in hypotheses and rules to analyse implications

between event classes. Given the assumptions made in the

design of the system (namely no use of pre-defined knowledge

about the analysed dataset) it is not possible to formally decide

which search patterns should be generated or which search

patterns should be combined in a new event class. Instead the

decision process is completely random. To limit the risk of

redundant event classes the system approximates the exis-

tence of the case given in Eq. (22) between two search patterns.

iff P12La/P22La; cLa (22)

A merge candidate P0 is a new search pattern, that is

created by merging two existing search patterns. A merge is

considered possible, if (i) one pattern is a substring of another

pattern, (ii) two patterns overlap, (iii) two patterns can be

found next to each other in La or (iv) two patterns are only

separated by a space in La. If one condition holds, Eq. (22) gets

evaluated before the merge is actually performed. Merging
search patterns is a critical task. Existing search patterns are

often already relevant for event classes. Merging patterns can

have second level effects on event classes e effects on the

information encoded in an event class. Proving that the con-

dition in Eq. (22) holds would ensure that a merge has no ef-

fects on the information encoded in the event classes. But this

proof is not possible without complete knowledge about

syntax and semantics of the input data. The system has to

substitute this proof by approximation.ses the Pr Given a

specified threshold6 the systemevaluates the number of times

a substitution of P1 and P2 by their merge candidate P0 would

be valid.7 A merge is considered iff the condition in Eq. (23)

holds:

P12Le4P22Le; cLe with t now (23)

The system further has to ensure that the proposed merge

candidate is a valid substitution (i.e.: would be generated

again if the generation process was performed on the current

Le). If one of these conditions fails at any time during the

evaluation P1 and P2 will not get merged. After a merge one

pattern gets deleted while the other pattern is changed to the

merge candidate P0. This merge makes it necessary to update

all event classes. Table 9 shows the required changes on C
!

m

and C
!

v in each event class to mitigate second level effects.

Ageing. Search patterns represent the substrings of a line that

are known to the system as part of M. Because search pattern

generation happens completely random not all generated

search patterns carry useful information. Patterns can be

categorised into (i) periodically occurring patterns (e.g.: time-

stamps), (ii) rare patterns (e.g.: session ids, or measurement

values) and (iii) reoccurring patterns (e.g.: enumeration

values, usernames, …). Most information is carried by reoc-

curring patterns: Localisers can give information about source

and destination of a logged event. They can be used to identify

involved parties. Keys are used to set information carried in a

log-atom into a specific context (e.g., value ¼ …). Values

contain information about the action reported by a given log-

event. These values can be reoccurring (if they are part of an

enumeration or a well defined set of possible values) or

infrequent if they represent measurement results from a

sensor. Arbitrary sequences, unique measurement values,

punctuation marks or syntax dependent special characters

provide less useful search patterns. Changes to the monitored

system's architecture can also render certain search patterns

useless.

Ageing is a periodic process, that identifies and removes

search patterns from ℙ that have no use for classifying log

lines. This can have many reasons; two are tackled with

ageing:

i P reflects a unique substring from a previously processed

log-event Le (e.g. a session ID). It will not occur any more e

or is at least extraordinary rare e in future log-events. P is

therefore useless for classification.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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Table 9 e Changes performed on event classes after pattern merge.

p1 p2 p01 Description

C
!

m 1 1 1 Both patterns are enforced. Since the merged pattern covers both C has to

enforce p01 to classify the same log-atoms as before the merge.C
!

v 1 1 1

C
!

m 1 1 e This event class should get deleted. Since 22 holds:

eLa : :P12La∧P22La.C
!

v 0 1 e

C
!

m 0 1 1 P1 is ignored. Since Eq. (22) holds P1∊La has to hold anyway for La to be in C.

C
!

v 0 1 1

C
!

m 1 1 e This event class should get deleted since Eq. (22) holds:

eLa : P12La∧:P22La.C
!

v 1 0 e

C
!

m 1 1 1 Both search patterns are prohibited. The same has to be true for there

merged successor.C
!

v 0 0 0

C
!

m 0 1 1 One search pattern is ignored, so the other search pattern determines the

status of the merged one.C
!

v 0 0 0

C
!

m 1 0 1 One search pattern is ignored, so the other search pattern determines the

status of the merged one.C
!

v 1 0 1

C
!

m 1 0 1 One search pattern is ignored, so the other search pattern determines the

status of the merged one.C
!

v 0 0 0

C
!

m 0 0 0 Both search patterns are ignored. The same has to be true for the merged

search pattern.C
!

v 0 0 0

Pattern Merging Example

Table 10 e Example of the effects of a patternmerge on an event class. The patterns P3 and P4 can get merged, since they are

overlapping parts of the general network name that is part of every network address in our sample network. Before the

merge P4 is enforced by C while P3 is ignored. During the preparation phase it is ensured that C is not dependent on P4 any

more since it should get deleted. Instead P3 gets enforced and P4 is ignored. After the merge ℙ0 transcended into ℙ00 after the
old P4 was deleted. C

!
m and C

!
v are adapted accordingly.

p1 p2 p3 p4 p5 p6 p7

Patterns ℙ0: GET POST v3ls13 s1316.d0 ice-3.v3 apache: login_page.php

Old C
!

m 1 0 0 1 1 1 1

C
!

v 1 0 0 1 0 1 0

Prep C
!

m 1 0 1 0 1 1 1

C
!

v 1 0 1 0 0 1 0

Patterns ℙ
00
: GET POST v3ls1316.d0 ice-3.v3 apache: login_page.php

New C
!

m 1 0 1 1 1 1

C
!

v 1 0 1 0 1 0
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ii P reflects a substring that does not occur any more due to

changes in themonitored system (e.g. the network name of

a server that was shut down).

Again e as in previous refinement steps e the system

cannot prove behaviour of the input in the future. Knowing

that any search pattern fulfils (i) and (ii) is not possible and

approximations have to be applied.

The Monitored System Behaviour Period T is defined as the

smallest time window, in which every periodic task, in the

monitored system, occurs at least once.8 In a corporate envi-

ronmentTwill typicallybe set tooneweek.Given that thereare

daily and weekly backup processes, a period of one day would

be too short. Theweekly backup processwould not occur in all

periods. There can also be different workloads over the

weekends thanduringweekdays,making a one dayperiodnot
8 This definition considers normal behaviour in the monitored
system.
optimal.ASCADAset-upallowsamuchshorterperiod.Givena

24/7 operation mode and only non-periodic maintenance ac-

cess, a period of one day is probably a good choice.

Given a certain period T, with respect to the monitored

system, approximation is performed as follows: a search

pattern should age out (i.e. get deleted) iff Eq. (24) 9 and Eq. (25)

hold:

eLejðtnow � rP�T< tLe < tnowÞ∧P2Le (24)

eC
��C!mðiÞ ¼ 1 with Pi being the ageing candidate (25)

This approximation substitutes the proof, that a search

pattern P is not occurring any more in future log-events. In the

condition inEq. (24)T isused toensure that searchpatterns, that
9 rP is a global configuration parameter that specifies the
number of periods a search pattern P is kept in ℙ without occur-
ring in any Le.
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describe periodic log-events, do not get deleted during normal

system behaviour. Search patterns that get deleted because of

ageing, cannot be substituted by other search patterns, carrying

the same information. Second level effects on event classes,

from deleting a search pattern because of ageing can only be

eliminated by the condition in Eq. (25); it ensures that there are

no event classes considering P as relevant. The corresponding

position in C
!

m and C
!

v can be deleted without effects on C.

4.2. Event class refinement

Generation. The system defines event classes C automatically

using a similar token bucket algorithm10 as the one used when

generating search patterns. Each log-atom La is characterised by

its correspondingfingerprint F
!
. Balancingevent classgeneration

is importantbecauseany log-eventLe, that cannotbeclassifiedby

an event class C2ℂ, contains no information interpretable to

detect anomalies. The systemensures the following two cases in

order to balance event class generation:

i A new event class gets generated for every

F
!���

eC2ℂ classifying F
!

ii New event classes might be generated for every F
!
. Gen-

eration is less probable the more existing event classes

classify F
!
.

One property of event classes is generality. Event classes

carry information because they classify a subset of the log-

events described by the input. The entropy of an event EC, is

inverse proportional to the percentage of log-events in a finite

input set classifiable by C (see Eq. (26)).

EntropyðECÞ ¼ jfLegj
jfLejC classifies Legj � 1

(26)

Trivial event classes that classify all possible log-events,

carry no information about a specific log-event. Table 11 es-

tablishes three parameters used to ensure proper levels of

entropy on newly generated event classes.
Table 11 e Configuration parameters used to ensure
entropy on newly generated event classes.

me Enforced search patterns: This parameter defines a

minimum of enforced bits in a new event class.

fe Percentage of matching search patterns that will be

enforced: This parameter defines a percentage of the

search patterns matching Le. This is then the number

of search patterns that should be enforced by a new

event class.

fp Percentage of not matching search patterns that will

be prohibited: This parameter defines a percentage of

the search patterns not matching Le. This is then the

number of search patterns that should be prohibited

by a new event class.

10 Here, tokens (a kind of virtual credits) are generated over time
and put into a basket. If there are enough tokens in the bucket, a
new class is generated and the required amount of tokens
removed from the bucket.
Algorithm 2 shows the class creation process. Each event

class is generated based on the fingerprint F
!

of the currently

processed log-event. The method number-

OfClassifyingEventClasses ( F
!
) returns the number of

event classes C2ℂ that already classify F
!
. Once the algorithm

decided if a new event class can be generated based on F
!
, and

how many search patterns have to be considered, enforced

and prohibited, the methods enforceNRandomPatterns

(number_enforced_bits, C
!

m, C
!

v, F
!
) and prohib-

itNRandomPatterns (number_prohibited_bitsC
!

m, C
!

v, F
!
) set

the bits in C
!

m and C
!

v accordingly.
Ageing. Event classes store information about the composition

of log-atoms from search patterns P2ℙ. The set of known

event classes ℂ also represents the search space used for

creating new hypotheses in the search for rules. The moni-

tored system can dynamically change. Certain event classes

might not be classifying any log-events any more because of

intended changes in the monitored system. These never

triggered event classes increase the search space without

increasing the set of hypotheses. As described in Section 3,

hypotheses are generated based on the event classes classi-

fying the currently processed log-events. Event classes that do

not classify any log-events cannot be used to generate

meaningful hypotheses. The ageing of event classes is a pe-

riodic process on ℂ that identifies and removes unused ele-

ments C2ℂ.

An event class gets deleted if the conditions in Eq. (27) and

in Eq. (28) hold:

eLejðtnow � rC�T< tLe < tnowÞ∧C classifies Le (27)

eH2ℍjC relevant for H (28)

http://dx.doi.org/10.1016/j.cose.2014.09.006
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The concept is similar to the concept of the ageing process

on ℙ. Hypotheses depend on certain event classes. The con-

dition in Eq. (28) ensures that the ageing process only deletes

event classes without dependent hypotheses. Event classes

with dependent hypotheses, cannot be deleted without de-

leting the dependent hypotheses too. There is no way to find a

substitution for C without possibly altering the information

encoded in a hypothesis. Furthermore hypotheses model re-

lations between event classes. The lack of log-events being

classified by an event class C does not automatically mean

that C is deprecated. Anomalous behaviour would also result

in missing log-events. The ageing process therefore has to

take ℍ into account. Given that the condition in Eq. (28) holds,

the condition in Eq. (27) specifies the threshold for deleting an

event class. The system uses the already introduced period T

to ensure that periodic tasks occur at least once before de-

leting an event class. The constant configuration parameter rC
specifies the accuracy of the approximation.
Event Class Generation Example

Table 12e Example of a newly generated event class based on me¼ 2, phie¼ 0.5 and phip¼ 0.3 and the fingerprint fromTable 1.

p1 p2 p3 p4 p5 p6 p7 p8 p9

Patterns ℙ0: GET POST [12/Feb/2014:13:30:15 þ 0000] v3ls13 s1316.d0 ice-4.v3 apache: login_page.php Mysql-n

Fingerprint: 1 0 1 1 1 0 1 1 0

C
!

m 1 1 0 0 0 0 1 1 0

C
!

v 1 0 0 0 0 0 1 1 0
If both conditions hold, the system assumes that there will

not be a log-event in the future that can be classified by C and

C will be deleted. If this assumption was wrong the dynamic

generation process can potentially generate a new event class

C0 that classifies {LejC classifies Le}.

4.3. Hypothesis and rule refinement

Generation. The system generates hypotheses based on ℂLa (see

Eq. (6)) e the set of event classes that classify the currently

processed log-atom. The generation process applies the same

bucket algorithm as the one used for balancing the generation

of search patterns and the generation of event classes, for

balancing the generation of hypotheses. The algorithm in-

creases the bucket count for every processed log-atom and

ensures that the cost for a new hypothesis, calculated based

on the current log-event, can be served by the bucket. The

choice of the connected event classes and the time window tw
is random. The evaluation of hypotheses is the most time

consuming task performed by the system. The system is

therefore designed to prohibit the re-generation of: (i) hy-

potheses that are currently in ℍ, (ii) hypotheses that can be

substituted by a hypothesis that is currently in ℍ and (iii) hy-

potheses thatwere already discarded by the ageing process (as

well as substitutes of those).

Stability. The periodic generation process only generates hy-

potheses and cannot extend the set of rules directly. The set of
rules ℝ is a subset of the set of hypotheses ℍ. A hypothesis is

considered to be a rule if isS table(H) (see Eq. (16)) evaluates to

true. A Probability Density Function (PDF) states the proba-

bility for every number of positive elements in the sample; a

Cumulative Distribution Function (CDF) shows the probability

for every number of positive elements in the sample, that at

least that many elements are positive. The CDF is used to

determine the threshold of the hypothesis' stability. Eq. (29)
shows the formula to calculate a PDF; Eq. (30) shows the

calculation of a CDF.

PDFðxÞ ¼
�
n
x

	
pxð1� pÞn�x (29)

CDFðxÞ ¼
Xx

k¼0

��
n
k

	
pkð1� pÞn�k

	
(30)

Eq. (16) describes how stability of a hypothesis is evaluated.

But the evaluation of stability of a hypothesis is only per-
formed once a reliable number of evaluations e (see Eq. (13))

can be found in SH (see Eq. (14)). Some input has to be pro-

cessed before stability of a hypothesis can be decided. The

stability evaluation is performed on Slk(S
H) (see Eq. (15)). The

use of statistical means every time stability gets evaluated e

in contrast to just calculating a fixed threshold once, for a

sample set of size(Slk)emakes it possible to decide on stability,

even if jSHj< < sizeðSlkÞ. Therefore, the decision can be made

shorter after the generation of a new hypothesis.

Ageing. The ageing process for hypotheses is again a periodic

process, that checks that one of two conditions holds before

deleting a hypothesis. The condition described by Eq. (31)

states, that the ageing process deletes unstable hypotheses.

Hypotheses are also deleted if they cannot be evaluated over a

long time period. The lack of evaluations means, that the

processed input triggers no condition events. The behaviour

described by the rule is therefore not represented in the pro-

cessed log-files. The event class, that describes the condition

events, does not classify any log-atoms and should have been

deleted by the event class ageing process before H got gener-

ated (see Eq. (27)). But now that H2ℍ the condition in Eq. (28)

prohibits the deletion of the condition event class.H can never

be evaluated, and therefore it has to be deleted by the ageing

process. Eq. (32) describes this condition. The ageing process

again uses the period T as estimation and a constant param-

eter rH � 1 as a multiplier to ensure the occurrence of periodic

log-events before deletion. The function time(e) returns the

http://dx.doi.org/10.1016/j.cose.2014.09.006
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timestamp of a given evaluation e. As described in Eq. (14) e0 is

the newest evaluation in any SH.

isStableðHÞ ¼ false (31)

time
�
e02SH

�
<now� rH�T (32)

In contrast to the ageing processes for search patterns and

event classes, the ageing process of hypotheses is applied if

any of the before mentioned conditions holds. There are no

atoms inM that H depends on. Eq. (31) also shows, that ageing

can only be applied on hypotheses, never on rules since

feR2ℝjisStableðRÞ ¼ falseg.
Table 13 e Differences between recorded datasets.

2U8h 4U12h

Recorded Time 8 Hours 12 Hours 30 Minutes

Simulated Users 2 4

Mantis Instances 1 2
5. Test environment

The following evaluations in Section 6 use three datasets

that were generated with a semi-synthetic data generation

approach as described and evaluated by Skopik et al. (2014b);

a hybrid approach between synthetic data generation and

collection of productive log-data. A virtual ICT network is

stimulated by virtual users. These virtual users are imple-

mented by scripts and are executed on separated virtual

machines. They simulate realistic user behaviour in terms of

service interaction properties. The data for later evaluation

is recorded from real systems in the virtual setting. The

result is very similar to data generated by a similar pro-

ductive setting but without possible noise coming from

malicious users or users with erroneous behaviour. The

behaviour of virtual users is based on an analysis of user

behaviour in a productive system with a similar setup over 3

months.

For the following evaluation, two datasets were recorded

on a clean system. They will be used in the further evalu-

ations of system parameters and performance when

generating the system model M. Anomalies in these data-

sets would lead to biased results because the effects of

anomalies on the extracted figures cannot be calculated at

this evaluation stage. Additionally, a solid evaluation has to
Fig. 2 e Timeline of the Anomalous P
show that the analysed results are not over-fitting the

analysed dataset. The choice of two different datasets gives

the evaluator the means to prove consistent results over

various systems. Table 13 shows the differences between

the two datasets. One can see that dataset 4U12h is in all

aspects more complex than dataset 2U8h. Not only the

recording time, but also the number of simulated users and

the number of simulated Mantis instances (all operating on

one database server) is higher.

An additional dataset was recorded while anomalies were

injected in the monitored system at different time periods.

The configurations of the monitored systemwere equal to the

ones takenwhen recording dataset 4U12h. It contains 12 h and

30 min of log information. During that time 4 virtual users

used two different Mantis instances that operated on one

database server. The dataset consists of two main parts:

i Training Phase: The first 7 h of the dataset are recorded on

a clean system. In this first phase no anomalies are injec-

ted. The data are used by the algorithm to build a clean

system model M.

ii Attack Phase: After the Training Phase, two types of

anomalies are injected several times in different time slots.

One time slot is 30 min long and for each type of anomaly,

four different slots are generated. Fig. 2 shows a timeline of

the anomalous phase.

Two different types of anomalies are injected in this

dataset:
A1 At each injection point in a time slot A1 in Fig. 2 a ma-

licious script dumps all databases on the central database

server. This dump is not performed remotely but directly

on the host of the database server. After dumping the

database, the script uses the mail server to send the dump

files to an external network.

A2 At each injection point in a time slot A2 in Fig. 2, a

malicious script disables the logging facility on the central

database server, for a certain time period. This might be

done in order to hide the attacker's tracks while

tampering the database. In contrast to the first type of

anomalous time slots, the simulated attacker increases

the number of anomalies in the monitored system by

extending the time span the logging facility gets turned

off, rather than performing the attack more often. The

time periods, in which logging is turned off, range from

30 s to 4 min; each time slot doubles the anomalous time

span of the previous one.
hase in the anomalous dataset.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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The described injections are representative. Especially

when talking about advanced persistent threats, the attack is

often coming from inside the network. Sophisticated attacks

often happened beforehand to enumerate and footprint

various users. The actual harm is then done silently when

extracting further sensitive information. Disabling or

tampering logging facilities in order to cover up malicious

actions is also a common approach.
Table 14 e Basic configurations of relevant system
parameters.

Parameter Setting

Pattern Base Cost (t0P) 1

Event Class Base Cost (t0C) 1

Event Class Balancing Cost (t
00
C) 30

Hypothesis Base Cost (t0H) 30

Hypothesis Balancing Cost (t
00
H) 300

Prohibited Patterns (fp) 50%

Enforced Patterns (fe) 40%

11 This is the only metric that is not completely independent of
the execution time. A longer execution time would result in a
higher number of anomalous rules since the chance of false
positives increases if the analysed timespan increases. This fact
is not considered, since this metric describes a total number and
not a ratio depending on the time.
6. Evaluation

The following section discusses the evaluation of the approach,

performed on the dataset described in Section 5. An evaluation

of the configuration parameters in Section 6.1 precedes a

detailed evaluation of the anomaly detection capabilities in

Section 6.2. Additional evaluations were performed about the

quality of the systemmodel or the applicability of the approach

in the domain of SCADA systems.

6.1. Parameter evaluation

Asafirst step this sectionevaluates thedifferentparameters in

the prototype implementation. One goal is to define a stable

configuration of the system. Another goal is to get a practical

impression about the influences different parameters have on

the system model M and on the results produced by the sys-

tem. Prior to the detailed evaluation a Monitored System Behav-

iour Period T has to be defined (see Section 4). For the given

datasets, a period of 20 min is chosen. Although the datasets

are based on an ICT infrastructure, the recorded setting did not

contain any backup facilities or periodic tasks except the

simulated user input. Based on the evaluation of the data

generation approach (see Skopik et al. (2014b)), the actions of

the simulated users reach a request distribution, similar to a

productive setting after 15 min. Since the 2U8h dataset does

only recordavirtual systemthat is stimulatedby twousers, the

period is extended with a buffer of 5 min, to be sure that the

request distribution is comparable to the one in a real system.

The system parameters can be divided into three

categories:

i Utility parameters that do not influence the direct result of

the system. Examples are the parameters defining how the

system can access the database to persist execution

results.

ii Input independent parameters that have an optimal setting

which is not influenced by the structure and complexity of

the analysed dataset.

iii Input dependent parameters that have a different optimal

setting depending on the structure and size of the analysed

dataset.

Several qualitative and quantitative evaluation steps pre-

ceded the following categorization of parameters. Table 14

shows all parameters with an optimal setting that depends

on the analysed network. The following evaluation will focus

on the settings of dependent parameters. Starting with a base

configuration, each parameter is altered separately to analyse

its effects on the resulting system model. Table 14 states the
values of each parameter in the base configuration. This base

configuration was determined in preceding iterations of eval-

uations of the same type. We do not go into detail about earlier

iterations at this point. The results of the approach highly rely

on a reasonable setting for all parameters. In early iterations

several parameters were not chosen in a valid range which

resulted in biased evaluation results. It was only possible after

multiple iterations to get to a state where trends for each

parameter could be detected. Additionally listing or visualising

all iterations would exceed the scope of this section.

Starting from the described base configuration all parame-

ters in Table 14 get changed to various values separately. This

evaluation is performed on both clean datasets from Section 5

(namely 2U8h and 4U12h) in order to prohibit results that over-

fit one dataset. The figures extracted at the end of the execution

can be seen as one arbitrary state of the systemmodel during a

continuing analysis. Higher absolute numbers in the results

generatedwith the 4U12hdataset, compared to the 2U8hdataset

are a result of the increased complexity of the recorded infra-

structure rather than a result of a longer recording time. Each

evaluation run will be evaluated based on six metrics:
Number of Patterns: Describes the number of search pat-

terns in M (also: jℙj), at the end of the execution.

Number of Event Classes: Describes the number of event

classes in M (also: jℂj), at the end of the execution.

Number of Rules: Describes the number of rules in M (also:

jℝj), at the end of the execution.

% of Rules in ℍ: Describes the ratio between stable rules ℝ

and undecidable hypotheses ℍyℝ in M (also jℝj
jðℍyℝÞj).

Number of Anomalous Rules: The number of rules ℝ that

detected any anomaly during the execution.11

False Positive Rate: Every rule is evaluated multiple times,

during the runtime of the algorithm. Since we know that

we are operating on a clean dataset, we expect no anom-

alies to be detected. We define a false positive as an eval-

uation of a rule that results: (i) in the rule entering an

anomalous state, or (ii) in extending the anomalous state a

rule is currently in. Thus not every negative evaluation of a

rule is considered a false positive. This would be wrong

since the system is designed to accept unique negative

http://dx.doi.org/10.1016/j.cose.2014.09.006
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evaluations as accepted input. At the same time it would be

wrong to consider every detected anomaly as a false posi-

tive. The problem here lies in the definition of true nega-

tives. The only way to define true negatives is as: Every

evaluation of a rule, that did not trigger an anomaly. This leads

to the above definition of false positives.

Based on these metrics the effects of each parameter on

the system are analysed. In the following graphs the red line

always describes the results produced by using the base

configuration; the other lines describe results produced by

altering the parameter under evaluation. The possible values

for the various cost-parameters are not randomly chosen but

set as a fraction of the period T. The lowest possible value is 1

which is considered independent of T. The other values are

T * 1E�3 and T * 1E�2.

6.1.1. Combined parameter evaluation
After evaluating each parameter separately, an optimal

setting can be generated. Therefore, the combined configu-

ration contains deviations from the base configuration

regarding four different parameters:

i The base cost for event classes is increased from 1 to 30.

The expectation is to see a decrease in the False Positive

Ratio and in the Number of Anomalous Rules.

ii The base cost of hypotheses is decreased from 30 to 1. The

expectation is an increase in the Number of Rules that is not

caused by multiple rules describing the same relationships

(whichwould be the result if the hypotheses balancing cost

would be adapted instead).

iii The percentage of enforced patterns is increased from 50%

to 60%. The expectation is that more specific event classes

are generated and that this results in a higherNumber of

Event Classes. Additionally we expect a lower False Positive

Rate as well as a lower Number of Anomalous Rules.

iv The percentage of the prohibited patterns is decreased

from 40% to 30%. The expectation is that a lower Number of

Anomalous Rules, as well as a lower False Positive Rate, is

generated. Additionally we expect that the Number of Event

Classes does not decrease significantly.
Fig. 3 e Comparison of the combined configuration
Fig. 3 shows the evaluated parameters, that fulfil most of

the expectations we had from the combined configuration file.

Statistical outliers, in configurations where only one param-

eter was adapted, can be removed by the combination of

different changes. Fig. 4 compares the combined configuration

to the base configuration. The trend towards a lowerNumber of

Anomalous Rules can be shown as well as the trend towards a

lower False Positive Rate. Additionally the system model does

not lose any quality. Further evaluations will now use this

combined setting.
6.2. Anomaly detection in common ICT networks

This section covers the evaluation of the anomaly detection

capabilities of the prototype implementation, based on the

anomalous dataset described in Section 5. After a short

introduction into the used metrics, the evaluation will be split

into two parts; one for each type of anomaly that was injected.

6.2.1. Metrics
False Positive Rate. The false positive rate describes the ratio

between the number of events that were considered positives

(in our case the number of detected anomalies) out of the

number of events that should have been negatives (in our case

events where no anomaly is expected). The denominator of

Eq. (33) is therefore the sum of false positives and true nega-

tives (i.e., the number of events correctly considered normal).

FPR ¼ FP
FPþ TN

(33)

In order to calculate this rate a definition of false positives

and true negatives regarding the system under evaluation is

required. We define them as follows:

False Positive: Every evaluation of a rule that either: (i) re-

sults in an anomaly being detected by the rule, or (ii) ex-

tends the anomalous state of the rule, if the rule should not

be anomalous, is considered a false positive.

TrueNegative: Every evaluation of a rule that does not fulfil

the conditions of a false positive, given that the system is in
with the different single parameter adaptions.

http://dx.doi.org/10.1016/j.cose.2014.09.006
http://dx.doi.org/10.1016/j.cose.2014.09.006


Fig. 4 e Comparison of the combined configuration with the base configuration.

c om p u t e r s & s e c u r i t y 4 8 ( 2 0 1 5 ) 3 5e5 750
a normal state at the time of the evaluation, is considered a

true negative.

A definition of false positives as the number of anomalies

that were detected incorrectly would seem better suited at

first sight. But whenwe use this definition, the calculation of a

false positive rate is not possible any more, due to the lack of

an equivalent definition for true negatives. Therefore calcu-

lation of the false positive rate needs to be based on single

evaluations of rules.

For the proposed definitions, it is not possible to calculate

the false positive rate in an anomalous slot. Instead for every

anomalous time slot that is evaluated we calculate the false

positive rate in the same time slot but in the clean 4U12h

dataset. Since complexity, number of stimulating virtual users

and recording time are equal, the results are comparable.

Although the actions of the virtual users are highly random,

the evaluation does not rely on single actions of certain users

but on the random noise that is generated by their

interactions.

True Positive rate. The true positive rate is the ratio between the

number of events that were correctly classified as positives

and the number of events that should have been classified as

positives. Eq. (34) shows the ratio. The denominator is the sum

of the already described true positives and the false negatives

(i.e., events that should have been considered anomalous but

were not).

TPR ¼ TP
TPþ FN

(34)

Regarding the proposed system under evaluation true

positives and false negatives are defined as follows:

True Positive: Given a time range Dt in which a rule should

detect an anomaly, all evaluations of the rule in that time

range are considered true positives, if there is at least one

evaluation that either: (i) results in an anomaly being

detected by the rule, or (ii) extends the anomalous state of

the rule, and the cause of this state is related to the

anomaly in the monitored system.
False Negative: Given the same time range Dt in which a

rule should detect an anomaly, all evaluations of the rule

are considered false negatives, if they cannot be consid-

ered true positives by its definition.

6.2.2. Illegal database dump
The first anomaly type that gets injected, is an illegal dump of

all databases on the database server in the network. This

evaluation considers four different time slots of 30 min. Each

timeslot contains one more injected anomaly than the previ-

ous one (see also Section 5).

In order to calculate the TPR for every anomalous slot, we

identify a set of rules which should trigger anomalies due to

the injections. Two examples of these rules are analysed

below.

Rule 849. The following rule describes the relation between a

SHOW TABLES database command and a database connect

request. The time frame in which this implication has to hold

is �10 s. This means that at most 10 s before a SHOW TABLES

command is logged, a connection to the database has to has

happened. The last lines matched by the condition and the

implied event are the following:

Condition Event: database-0.v3ls1316.d03.arc.local mysql-

normal #011#01133179 Query#011SHOW TABLES

Implied Event: database-0.v3ls1316.d03.arc.local mysql-

normal #011#01133179 Connect#011mantis_user_4@service-

4.v3ls1316.d03.arc.local on

This rule has to be considered very relevant for detecting

the injected anomalies. During a database dump, the SHOW

TABLES command is executed multiple times. In contrast to

the regular system behaviour, all of these commands are only

preceded by a single connect statement. The Mantis instances

on the other hand, reconnect for every new user request. Thus

every database dump should trigger an anomaly in rule 849.

Fig. 5 shows the stability development of the rule's slots,

before and during injection A1.1. The orange line in the

smallest slot indicates the anomaly threshold. Only if the

http://dx.doi.org/10.1016/j.cose.2014.09.006
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certainty for an anomaly is above this threshold, an anomaly

gets triggered. The red area marks the duration of the injec-

tion; the time stamp, at which an anomaly is detected (exactly

2 s after the injection finished), is marked by the green line.

Fig. 5 shows that there were some false evaluations prior to

the injection, but they were not significant enough to be

considered an anomaly. The anomaly probability only ex-

ceeds the threshold right after the injection is finished and an

anomaly is detected. The anomaly is only detected by the

short-term slot. It is not significant enough to trigger an

anomaly in the middle- or long-term slot, but the effects on

the anomaly probability are clearly visible.

Rule 286. The following rule describes the fact that a database

event is always followed by a firewall entry within 10 s. This

rule is not optimal since it does not show a relation enforced

by the system behaviour. Instead the described relationship

is caused by the regular input from various users. It is not

enforced by the system that a firewall log-event follows a

database request. But it is normal in the monitored system

because virtual users act in bursts of actions. It is rarely the

case that a user only sends one single request. Instead mul-

tiple consecutive requests can be expected. There are also

time ranges where no users interact with the system. The

behaviour that the database server answers requests while,

in the same time range, no user acts is considered abnormal.

But exactly this system behaviour is triggered by the injected

database dump if it occurs in a time window of low user ac-

tivity. The last linesmatched by the condition event class and

the implied event class were as follows:

Condition Event: database-0.v3ls1316.d03.arc.local mysql-

normal#011#01133179Query#011UPDATEmantis_user_table
Implied Event: v3ls1316.d03.arc.local kernel:

[165361.740449] iptables:ACCEPT-INFO IN¼lo OUT¼ MAC¼
00:00:00:00:00:00:00:00:00:00:00:00:08:00 SRC¼169.254.0.4

DST¼169.254.1.0 LEN¼60 TOS¼0x00 PREC¼0x00 TTL¼64

ID¼19898 DF PROTO¼TCP SPT¼52372 DPT¼3306

SEQ¼1271940985 ACK¼0 WINDOW¼43690 RES¼0x00 SYN

URGP¼0 OPT (0204FFD70402080A02760AC30000000001030

306)

Fig. 6 shows the stability development of the rule's slots,

before and during injection slot A1.1.

As expected the rule possesses limited stability.We can see

that various failed evaluations prior to the injection set the

middle-term slot into a somewhat anomalous stage, but the

evaluations are not considered anomalous enough to be an

anomaly. The anomaly probability in the short-term slot only

exceeds the threshold at 9:30:25 (exactly 2 s after the injection

is finished) and triggers an anomaly.

Overall performance. After we decided on the set of rules that

are considered relevant for detecting the injected anomalies,

the FPR and the TPR for each anomalous time slot in the

dataset can be calculated. Fig. 7 shows the results in a scatter

diagram. The metrics were calculated with the combined

configuration and with the base configuration, to evaluate the

effects that the performed parameter changes have on the

results.

The injected anomalies are detected in every timeslot, but

the detection rates of different rules are not very constant.

Only about 40% of the rules in the identified rule set detected

the anomaly timely with the combined configuration. But the

approach did not perform constantly with either configura-

tion. With each configuration it had difficulties to detect the

http://dx.doi.org/10.1016/j.cose.2014.09.006
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anomalies in one of the anomalous slots. Overall, the base

configuration had a higher detection rate (i.e., true positive

rate) on average. But it has to be noted that the combined

configuration was designed to reduce the false positive rate of

the system. This tendency can be seen in the results and it is

one reason for the lower true positive rate. The results in

detecting the injected anomalies are not optimal but show

that every anomaly was detected by at least one of the ex-

pected rules.
Fig. 7 e ROC scatter for the time slots containing injected

database dumps calculated with the base configuration as

well as the combined configuration.
6.2.3. Database logging disabled
The second type of anomaly that is injected in the anomalous

dataset is a time period where the logging functionality of the

database server gets disabled. Four anomalous time slots get

evaluated. The duration of each slot is 30min and the duration

of the injection differs. The injection times are: 30 s, 1 min,

2 min and 4 min. As in the previous case, a set of rules is

selected which are expected to detect the injected anomaly.

Two examples are given below.

Rule 708. This rule describes the fact that a firewall log-event is

followed by a database connect event. This is a highly relevant

rule that describes a very stable system behaviour: Every user

request is handled by the firewall before it is passed on to the

web-server. The web-server on the other hand queries the

requested data from the database. If something turns off the

logging facilities on the database server, an anomaly should be

immediately detected by this rule. The last classified lines by

the condition event class and the implied event class are as

follows:

Condition Event: v3ls1316.d03.arc.local kernel:

[165361.682603] iptables:ACCEPT-INFO IN¼eth0 OUT¼
MAC¼00:50:56:9c:25:67:02:01:f4:01:00:30:08:00 SRC¼172.20.

120.49 DST¼169.254.0.2 LEN¼60 TOS¼0x00 PREC¼0x20

TTL¼59 ID¼26264 DF PROTO¼TCP SPT¼57999 DPT¼80

SEQ¼1135473877 ACK¼0 WINDOW¼14600 RES¼0x00 SYN

http://dx.doi.org/10.1016/j.cose.2014.09.006
http://dx.doi.org/10.1016/j.cose.2014.09.006
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URGP¼0 OPT (020405B40402080A012C924D000000000103

0306)

Implied Event: database-0.v3ls1316.d03.arc.local mysql-

normal #011#01133179 Connect#011mantis_user_4@service-

4.v3ls1316.d03.arc.local on

Fig. 8 shows the stability development of the rule's slots,

before and during the injection of anomalies of the second

type.

The rule and its slots behave exactly as expected. The time

before the injection starts is completely regular. Only the long-

term slot measured some disturbances which seem to be late

effects of the anomalies injected in slot A1.4. But the rule is on

a good way to a completely stable status. Exactly when the

first anomaly starts, all three slots exceed the anomaly

threshold. Already the first anomaly is significant enough for

the long-term slot to turn anomalous. It further cannot get

stable again until the next injection hits. The anomaly prob-

abilities in the short-term and in the middle-term slots show,

how the size of the different slots affect their sensibility to-

wards anomalies. Since the long-term slot does not get into a

normal state anymore, no new anomalies can be triggered for

the second, third and fourth injection. Anyway, the effects in

the short- and middle-term slots confirm that every single

injection would have been discovered by the rule.

Rule 804. This rule describes that every web-server request (it

does not matter if it is recorded by the firewall or by the web-

server directly) is followed by a database query. The
Fig. 8 e Overview of the slot stabilities in rule 708 during
motivation to put this rule into the rule set is similar to the

motivation for rule 708. The last lines classified by the con-

dition event class and the implied event class are as follows:

Condition Event: v3ls1316.d03.arc.local kernel:

[165361.682603] iptables:ACCEPT-INFO IN¼eth0 OUT¼
MAC¼00:50:56:9c:25:67:02:01:f4:01:00:30:08:00 SRC¼172.20.

120.49 DST¼169.254.0.2 LEN¼60 TOS¼0x00 PREC¼0x20

TTL¼59 ID¼26264 DF PROTO¼TCP SPT¼57999 DPT¼80

SEQ¼1135473877 ACK¼0 WINDOW¼14600 RES¼0x00 SYN

URGP¼0 OPT (020405B40402080A012C924D0000000001030

306)

Implied Event: database-0.v3ls1316.d03.arc.local mysql-

normal #011#01133179 Query#011UPDATE mantis_user_

table

Fig. 9 shows the stability development of the rule's slots,

before and during the injections of anomalies of the second

type.

This rule proves even more stable than rule 708. Even

the negative evaluations that where considered a false

positive in rule 708 at 13:00:01 are not significant enough

and the short-term slot probability does not exceed the

threshold. The other results are similar to the results of rule

708. A stable detection rate can be derived from the

collected data.

Overall performance. After the selection of a set of rules that has

to detect the injected anomaly, we calculate the false positive
all four injection slots of the second anomaly type.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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rate and the true positive rate of the evaluated time slots.

Fig. 10 shows the familiar ROC scatter. It shows that the pro-

totype implementation performs much better on the second

anomaly type. There is a stable true positive rate above 80%

with a reasonable false positive rate of around 3% using the

combined dataset. Not all rules in ℝ that we identified as rules

that should detect the anomalies were constantly able to do

so, but about 80% were. In the analysed slots the combined
Fig. 10 e ROC scatter for the time slots containing time

slots with disabled database logging. The values are

calculated with the base configuration as well as the

combined configuration.
configuration also shows more stable results than the base

configuration. The trend towards the lower false positive rate

is again supported by the extracted data.

6.2.4. Conclusion
The detection capability of the prototype implementation

regarding two types of anomalies was analysed in different

time slots with different injection rates. The prototype

detected all inserted anomalies but injected database dumps

were not detected consequently by a single rule. Given the

defined set of rules, every injected dump is detected by about

40% of the rules in the set. This guarantees detection of the

injected anomalies, but a relatively high false positive rate of

3% clouds the results.

Tampering with logging capabilities on the other hand,

was detected at a very stable rate. It was possible to prove the

detection of every injected anomaly by one single rule. Also

the results of the ROC metric looked very promising.

The discussed results support the assumption that the

proposed anomaly detection approach can be used to detect

the effects of abnormal requests in a system or network. Not

all of these abnormal requests have to be caused by an

advanced persistent threat but it was shown that typical

anomalies can be detected timely, based on a stable system

model. All injected anomalies where detected while the

anomalous behaviour was still ongoing.

http://dx.doi.org/10.1016/j.cose.2014.09.006
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6.3. Anomaly detection in SCADA networks

This section covers the evaluation of the anomaly detection

capabilities in a real world SCADA network. The used dataset

was recorded during 1 h on a branch of a real network infra-

structure from an Austrian utility provider's SCADA system

that is coupled to the corporate LAN. Three different data-

sources were monitored: a Firewall that recorded and filtered

incoming connections, a Switch that forwarded traffic to and

from the SCADA system and the actual SCADA system that

issued switching commands and provided measurement

values on request.

The events triggered in a SCADA system are highly struc-

tured and well defined. Therefore the limitations of the pro-

posed anomaly detection approach carry less weight while its

strengths are more prominent (namely syntax-independent

applicability without high configuration effort). On the other

hand the monitored systems create a very limited number of

log-events while they are in a normal state. The number of

log-lines in the recorded dataset is not sufficient for an eval-

uation. In order to achieve a reasonable number of lines, the

existing hour is duplicated and the log-file is extended to

represent recordings of 10 h of recorded data. This duplication

results in a highly periodic dataset. But given the very stable

nature of the log-lines this way to extend the dataset is

applicable.

The injected anomaly consists of two lines that indicate

connection attempts from the corporate LAN that were

accepted by the firewall. In a time range of about 10 s after the

connections were accepted, no measurement values are sent
by the SCADA system. This anomaly can either describe a

malicious component in the corporate LAN that tampers with

the SCADA system in an unexpected way. But it could also

mean that the SCADA system is not responsive. An analysis of

the systemmodel results in a set of rules that state that every

accepted database connection is followed by the transmission

of measurement values back to the requester. Since the re-

sults of all rules in this set are very similar, the results for one

rule are considered sufficient as an example (see Fig. 11). The

events are considered completely normal up to the injection

of the anomalous connections. The anomaly is considered

very significant. Even the middle-term slot reaches an

abnormal state.

This evaluation showed that the prototype implementa-

tion was able to detect all injected anomalies with all rules

that were expected to detect the injections. At this point we do

not show a ROC scatter diagram. The true positive rate in this

dataset is 1 while the false positive rate is nearly 0. We can

conclude that the suggested approach performs very well in

the limited SCADA dataset. The limitations of the evaluated

dataset prohibit a more formal conclusion but the results

show that the suggested approach is able to analyse data from

a real-world setting in a sample domain.
7. Conclusion

In this work a novel anomaly detection approach that utilizes

log-lines produced by various systems and components in

ICT networks has been presented. After reviewing the

http://dx.doi.org/10.1016/j.cose.2014.09.006
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current state of the art, we concluded that preventive secu-

rity mechanisms and signature-based detection methods are

insufficient to handle novel, targeted and persistent threats.

The novel approach was first defined formally. This defini-

tion started by positioning the approach in common security

settings before we split the actual approach into two parts.

First, the definition of the core functionality was given and

we stated how different parts of the automatically generated

system model are used to detect anomalies. The second part

defined how the system model is built. Three types of atoms

were defined that build the system model: search patterns,

event classes and hypotheses. Using a semi-synthetic test-

data generation approach, two clean datasets were gener-

ated. We started with an evaluation of the system's
parameters before different types of anomalies were injected

into one dataset and the detection capabilities of the proto-

type were evaluated. Additionally the approach was tested

using a real-world dataset provided from an Austrian utility

provider that shows the approach's applicability to non-

artificial input data.

Based on the conducted evaluations we can split the re-

sults into two parts. First, we can conclude that the proposed

approach is able to extract a system model from the combi-

nation of log-information that is collected from distributed

systems and nodes in a network without prior knowledge of

syntax and semantics of the log-lines. The extracted system

model can be used to detect and distinguish different mean-

ingful subsets of log-lines (by the means of event classes), and

further contains complex information about implications (so-

called rules) between different log-events. Single rules often

describe implications between events from different compo-

nents or systems in the network. The set of rules is therefore

sufficient to describe the most important relations between

different components in the network. Using this automati-

cally generated and continuously evolving system model, the

proposed approach is able to detect anomalies that are the

consequence of realistic APT attacks (e.g., direct access to

database servers, copying large amounts of data). The detec-

tion rate of different types of anomalies varies depending on

the complexity of the dataset as well as on the effects of the

anomalies on the generated log-lines. In complex networks, a

reoccurring anomalymight not be detected consequently by a

single rule. Only by combiningmultiple rules in themodel, the

approach is able to detect the evaluated anomaly reliably.

Although this behaviour is sufficient to detect most anoma-

lies, it causes a high workload on the administrator when

performing a root-cause analysis.

Future work deals with a more intelligent approach for the

generation of event classes. The lack of information about

similarities of event classes results in redundant hypotheses

that might overload the system model. However, a more

intelligent approach for the generation of hypotheses is not

possible without knowledge about relations or a hierarchy

between event classes. Given an event class hierarchy, an

improved algorithm for the generation of hypotheses should

be developed. One approach would be an algorithm that

generates all possible rules in a limited subtree of similar

event classes and only allows the most meaningful or most

stable hypothesis to become a rule.
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