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Abstract. Log data is a well-known source for anomaly detection in
cyber security. Accordingly, a large number of approaches based on
self-learning algorithms have been proposed in the past. Most of these
approaches focus on numeric features extracted from logs, since these
variables are convenient to use with commonly known machine learning
techniques. However, system log data frequently involves multiple cate-
gorical features that provide further insights into the state of a computer
system and thus have the potential to improve detection accuracy. Unfor-
tunately, it is non-trivial to derive useful correlation rules from the vast
number of possible values of all available categorical variables. There-
fore, we propose the Variable Correlation Detector (VCD) that employs
a sequence of selection constraints to efficiently disclose pairs of variables
with correlating values. The approach also comprises of an online mode
that continuously updates the identified variable correlations to account
for system evolution and applies statistical tests on conditional occur-
rence probabilities for anomaly detection. Our evaluations show that the
VCD is well adjustable to fit properties of the data at hand and discloses
associated variables with high accuracy. Our experiments with real log
data indicate that the VCD is capable of detecting attacks such as scans
and brute-force intrusions with higher accuracy than existing detectors.

1 Introduction

Modern computer systems are permanently exposed to cyber threats, such
as intrusions or denial-of-service attacks. Consequently, cyber security experts
develop intrusion detection systems that monitor system behavior through anal-
ysis of continuously generated log events and autonomously disclose any mali-
cious activity. Thereby, anomaly detection is particularly interesting, because it
employs self-learning techniques that are capable of recognizing unknown attacks
without the need for pre-existing or manually coded knowledge [4].

Log data is a suitable source for such techniques as it keeps track of almost all
events and thus provides detailed insights into the state of a computer system.
Most existing analysis techniques thereby focus on network traffic, because it
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contains numeric features such as packet count or duration that fit well-known
machine learning methods, e.g., support vector machines or neural networks.
Few approaches use categorical variables, because they lack intuitive distance
metrics and comprise of immense amounts of possible combinations [5,19].

However, categorical variables are common in system logs and complement
the detection of anomalous events. In particular, variables such as user identi-
fiers, IP addresses, service names, system operations, or program states, occur
in regular patterns that are expected to persist over time as long as the sys-
tem behavior remains steady. For example, services utilize specific subsets of
all available system operations and execute them with particular relative fre-
quencies. Unexpected deviations from such conditional occurrence distributions
indicate a change of system behavior and should therefore be reported to the
system operators as anomalies. Unfortunately, the selection of variables suitable
for such a detection mechanism is non-trivial, because it usually relies on expert
knowledge about the system at hand and is difficult to automatize.

We propose the Variable Correlation Detector (VCD) as a solution to afore-
mentioned issues. The approach comprises of a sequence of selection constraints
to reduce the search space and identify interesting correlations between cate-
gorical variables. In addition, the VCD reuses conditional distributions of value
occurrences computed in the selection phase for the disclosure of deviations in a
subsequent detection phase. Our approach has several advantages over state-of-
the-art methods. First, it identifies interesting correlations independent from the
total occurrences of the involved values, which is different to approaches based
on frequent itemset mining [19]. This is especially important for the detection of
stealthy attacks that only produce infrequent values. Second, our approach does
not generate strict rules for value co-occurrences, but instead involves fuzzy rules
that do not always have to be fulfilled by employing statistical tests on chunks
of events. Third, our approach is designed for online detection in streams of log
data, which is essential for application in real-world scenarios.

This paper presents the correlation selection and anomaly detection mecha-
nisms of the VCD. An implementation is available online as part of our log-based
anomaly detection system [21]. We summarize our contributions as follows:

e An iterative method for selecting useful correlations of categorical variables.
e An online anomaly detection technique based on identified correlations.
e An evaluation of our open-source implementation of the proposed concepts.

The remainder of this paper is structured as follows. Section 2 reviews the
state-of-the-art of correlation analysis in categorical log data. In Sect. 3, we out-
line the concept of the VCD. We then provide details of our proposed correlation
selection constraints in Sect.4. We present the evaluation of our algorithm in
Sect. 5 and discuss the results in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Related Work

Research on association mining between categorical variables in database trans-
actions has been ongoing for many years. One of the main issues prevalent in this
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field is the immense search space arising from the many possible combinations
of variables and values [19]. Accordingly, approaches such as the well-known
Apriori algorithm [1] are usually designed for efficient searching and pruning.

To enable outlier or anomaly detection in categorical data, it is usually neces-
sary to adjust or extend association mining algorithms. For example, Narita and
Kitagawa [15] propose techniques to detect records that fail to occur in expected
associations and to compute outlier scores that are also suitable for speeding up
the search. Khalili and Sami [12] show that the Apriori algorithm is suitable
to be used for intrusion detection, in particular, by identifying critical states
of industrial systems with sensor outputs as variables. One of the downsides of
algorithms based on frequent itemset mining is that they require multiple passes
over the data, which prevents online processing. Djenouri et al. [7] therefore pro-
pose a single-pass technique with improved parameter selection and use pruning
to limit the search space to itemsets that cover the largest amount of events.

The problem with such approaches based on frequent itemset mining is that
they omit infrequent values, because they are not interesting for the associations.
Anomalies are then considered as infrequent combinations of otherwise frequent
values [19]. However, infrequent values are important for anomaly detection, as
long as they occur consistently with their associated values. Accordingly, Das
and Schneider [6] replace rare values with placeholders and use conditional prob-
abilities to disclose associations. While our approach also employs conditional
probability distributions, we propose a sequence of selection steps rather than
value replacement to reduce complexity without loosing precision.

Distance-based techniques are commonly used for anomaly detection in
numeric data, however, it is non-trivial to compute distances between categorical
values. Eiras-Franco et al. [8] solve this problem by encoding categories as binary
vectors to apply maximum likelihood analysis. Similarly, one-hot encoding is also
used by Moustafa and Slay [14], who measure the association strength between
variables using the Pearson correlation coefficient as well as Information Gain.
Ren et al. [18] support anomaly detection on data streams by computing cluster
references on chunks of data, where a distance function based on value equality
is used. Our approach also analyzes chunks of data rather than individual lines,
but employs statistical tests on conditional probability distributions.

A different strategy to tackle the lack of a distance metric and large event
space is pursued by Chen et al. [5], who embed the data in a latent space and mine
associations between pairs of variables, which include user IDs, IP addresses,
and URLs. Similarly, Pande and Ahuja [16] use an embedding method based on
word2vec for anomaly classification in HTTP logs. Alternatively, Ienco et al. [11]
measure the similarity between value co-occurrences by applying distance metrics
on their conditional occurrence probabilities. The advantage of this method is
that it enables anomaly score computation for ranking. Conditional probabilities
are also used by Tuor et al. [20], who show that neural networks are suitable for
anomaly detection in categorical user data. We argue that the downside of these
approaches is that they suffer from lower explainability than frequent itemset
methods, where variable associations are more intuitive.
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Table 1. Value co-occurrences of syscall types and items in Audit logs.

Syscall type
Ttems | 0 1 |2 20 |42 [49]59/90|105|%

0 6097 | 860 0/189| 34|14 0|0 |1 |7195
1 0 012592 0/104) 0| 0|5 |0 2701
2 0/ 0/ 9| 0/ 0| 0/14/0 |0 104

Most aforementioned approaches rely on the assumption that their data
involves only categorical variables or that these variables have been manually
pre-selected. However, log files involve various data types, including discrete,
continuous, static, and unique variables. Gupta and Kulariya [9] therefore use a
Chi-squared test to select variables with sufficiently distinct value co-occurrences
before comparing regression, support vector machines, naive bayes, and decision
trees for anomaly detection. Our approach employs a sequence of constraints to
limit the search space and then makes use of statistical tests to disclose anoma-
lies. In the following section, we outline an overview of this procedure.

3 Concept

This section outlines the concept of the Variable Correlation Detector (VCD).
First, we explain important aspects of correlations of variables. Then, we state
definitions relevant for this paper and outline the overall procedure of the VCD.

3.1 Correlations of Variables

Log data are chronological sequences of events. Most log data sets comprise of a
certain number of different event types, where each type defines the syntax of the
corresponding log lines. Accordingly, simple log data such as comma-separated-
values only consist of a single event. In any way, each event type specifies a
sequence of variables or features. For example, the syscall event in Audit logs
consists of a sequence of key-value pairs, such as “syscall=2" that specifies the
syscall type or “items=1" that specifies the number of associated path records.
Some variables are strongly correlated, meaning that the occurrence of a value
in one variable indicates the occurrence of a specific value in another variable.
Given a sufficiently large time frame, these conditional probabilities should be
more or less constant on a system with stable behavior. Any changes to these
occurrence patterns indicate potentially malicious activities, i.e., anomalies.
Table 1 shows the number of occurrences of syscall types and items extracted
from 10000 Audit logs that are also used in the evaluation in Sect.5.1. With
7195 total occurrences, the majority of these events involve “items = 0” (sum of
first row). However, it is visible that syscall type 2 (“open”) mostly occurs with
“items=1" (2592 occurrences) and sometimes “items = 2” (90 occurrences), but
never with “items = 0”. Since other value pairs exhibit similar dependencies, it
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Table 2. Definitions of symbols used in this paper.

Symbol Definition

E Log event type from the set of all event types &, i.e., E € £.

Vi Variable of log event type E, with Vp,...,V,, € E.

Vi Set of distinct values attained by V.

Vi, j Value j of variable V;, ie., V; = {U“i,la m,viymi}A

P (vi,;5) Probability that value j occurs in Vj.

P (vi,j | ’Uk,,l) Probability that value j occurs in V; given that value | occurs in V.

Vi~ Vi Correlation between variables V; and V.

Vi, j v VgL Correlation between values of variables, i.e., occurrence of value j in V;
correlates with value I of Vj,.

0; Threshold parameter for correlation selection.

N Size of the sample for computing correlations during initialization.

M Size of the sample for updating and testing in online mode

is reasonable to monitor the conditional probability distributions of the variable
“items” with respect to “syscall” for improved detection over monitoring the
occurrences of “items” alone. The same reasoning applies for the other direction,
i.e., monitoring the occurrences of syscall types given the number of items.
Different to existing approaches, we do not only focus on the selection of
variables that are suitable for such correlations, but monitor the co-occurrences
of their values. Thereby, we are not solely interested in frequent values or value
combinations, but instead calculate the conditional probability distributions of
all values that are useful for anomaly detection. Consider syscall type 59 (“exec”)
as an example: Even though the value only occurs in 14 events, it always co-
occurs with “items = 2” and thus indicates a strong correlation. Due to the large
number of possible combinations of variables and distinct values, a brute-force
solution is computationally not feasible in practice, especially for high-volume
log data with diverse values. This paper therefore presents an iterative selection
strategy for interesting correlations that is presented in the following sections.

3.2 Definitions

As mentioned in the previous section, most log files comprise of several events &,
each containing a unique set of variables. For simplicity, we only consider a single
event E' € £ in the following and assume that the procedure is applicable to all
other events analogously. Moreover, we assume that event E involves n variables
Vi, .., Vi, each comprising of an arbitrary number of values v; 1, ..., v; s, from the
unique value set V;. We compute the estimated value occurrence probability as
P(v; ;) = {Vi =v;;}| /N in a sample of size N and the conditional probabil-
ities as P (v;j | vg1) = {Vi =vij AV = vii} / {Ve = vk, }|. Correlations are
denoted using the ~~ operator. Table 2 summarizes all symbol definitions.

3.3 Procedure

Our approach selects variable fields of log events and performs statistical tests on
value occurrences in these fields for the purpose of anomaly detection. To limit
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| (1) Variable Filtering | Vi, Vy, Vs, Vg |

c v 7 7 X
'% | (2) Variable Pairing | {V,Va}, (V1V}, (VoV} |
N 7 7 X
£ | (3) Correlation Generation |V1*W*Vs: V1,1%9V3,1, ey V1,2"V3 0, |
£ v X

L Ir>| (4) Correlation Validation |Vlwvz,vzmvl,vlmvg,wmvl, |

. v v X X
) |—>| (5) Correlation Updating | VigwV,, VywVy |
= v
o L rl (6) Correlation Testing | ViV, VoV |

Fig. 1. Procedure of the Variable Type Detector. Correlations between variables and
values are filtered iteratively.

the search space, we propose several sequential analysis steps that act as filters
for all possible variable and value combinations. Figure 1 shows these steps as a
state chart, with an in-depth description of each step following in Sects. 4.2-4.6.

For the initialization phase in steps (1)—(4), the VCD first collects a sample
of N log lines. We assume that all available variables of a log event are possible
choices for correlations and that there is no manual pre-selection. Step (1) Vari-
able Filtering sorts out variables that are unlikely to yield useful correlations,
such as variables with many unique or static values. This step is exemplarily
visualized in the figure by removing variable Vy for subsequent analyses steps.

Step (2) Variable Pairing then generates pairs of the remaining variables
V1, Vi, V3. This step removes pairs with dissimilar value probability distributions
or disjoint value sets. In the figure, the variable pair {Va, V3} is not considered
for correlation. Remaining pairs are transformed to correlation hypotheses in
step (3) Correlation Generation, where conditional occurrence probabilities of
all involved values are computed. Correlations between values denoted by ~ that
exhibit weak associations are omitted, e.g., values that occur in many combina-
tions or have similar conditional probabilities to other correlated values. In the
figure, value correlation vy 2 ~» v3; of variable correlation V; ~» V3 is removed.
Note that correlations are directed, i.e., V; ~~ V3 is different from V3 ~» V7.

Step (4) Correlation Validation then evaluates whether all resulting value cor-
relations indicate a sufficiently strong dependency between the correlated vari-
ables, in particular, whether the valid value correlations have independent proba-
bility distributions and involve sufficiently many occurring values. For example,
assuming that several value correlations such as vy 2 ~» v3; were removed in
step (3), the variable correlation V; ~~ V3 is removed. This marks the end of the
initialization phase, which is only executed once for every log event type.

For online anomaly detection, all correlation hypotheses that remain after
step (4) are transformed into rules, which are repeatedly evaluated using samples
of size M. For this, we perform statistical tests in step (5) Correlation Updating
and go back to step (3) to re-initialize the correlation rules if value distributions
change or new values appear, e.g., V1 is replaced by V7 in Fig. 1. Once correlation
rules are stable for a sufficiently long time period and should not be updated
anymore, they are tested in step (6) for the purpose of anomaly detection.
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Table 3. Sample data.

ID|Vi Vo V5 Vo ||ID | Vi | Vo V5| Vy |ID| Vi | Vo | Vs Vy

1 1 11 15 1 /1 3 1933 3]1

2 1 1216 222 21022 11

3 /11337 1 21 1 1122 1 3

4 01 201 18 2 3 21 121 1 |2 1
4 Approach

This section presents detailed explanations of all aforementioned steps of the
VCD procedure. We also provide examples for the various selection criteria.

4.1 Sample Data

We provide a small sample to make the equations in the following sections easier
to understand and to obtain a rough estimate for reasonable choices for threshold
parameters 6;. The data shown in Table3 comprises of one event with four
variables, i.e., E = {V;,V5,V5,V,}, and a sample size of N = 12. We point
out that this data is only for illustrative purposes and that the application
of the VCD in practice requires sufficiently large sample sizes for appropriate
probability estimation. Each variable involves three possible values, in particular,
Vi = Vs = V3 = {1,2,3}. The occurrence probabilities of the values of V; are
computed as P (vi,1) = 15, P (v12) = &5, P (v1,3) = 5. The data is set up so
that V3 and V5 correlate, i.e., the occurrence of any value in V; usually co-occurs
with the same value in V5. This is also reflected in the conditional probabilities,
e.g., P(ve1|vig) = %,P(’Ug,g | v1,2) = %. On the other hand, V3 and V; do not
show a strong correlation with any other variable. Accordingly, the following
examples usually set the thresholds 6; so that correlations involving V3 and Vj
are removed, but Vi ~» V5 and V5 ~» V] are selected as relevant for detection.

4.2 Variable Filtering

This section covers heuristics for variables. The first criterion targets variables
with many unique values and the second criterion addresses dominating values.

Diversity of Values. Correlation analysis as it is done by the VCD requires
categorical variables to reasonably calculate occurrence probabilities from the
sample. Accordingly, we assume that there is a finite number of different values
attained by each variable and that the sample size is large enough to obtain
an estimate on their occurrence probabilities, i.e., |[V;| < N. Variables with a
large number of unique values are likely discrete rather than categorical, e.g.,
event IDs or timestamps, and do not yield stable correlations as described in
Sect. 3.1. The reason for this is that they result in a high number of infrequent



764 M. Landauer et al.

value co-occurrences that do not represent any actual correlation between the
variables, e.g., an event ID is usually a random value. Equation1 thus defines
an upper limit for the number of unique values in V;, where 6; € [0, 1]. From all
available variables, we select all V; that fulfill Eq. 1, and omit all others.

Vil <6, -N (1)

The small sample size of the data in Table3 requires #; > 0.25 to retain the
variables, e.g., #; = 0.25 yields a critical value of 3 and |V;| < 3 is fulfilled.

Distribution Probabilities. In some variables, one or few values are occurring
more often than others and are thus dominating the value probability distribu-
tion. These variables usually have weaker correlation with other variables, since
most correlated values co-occur with the same dominating value. An extreme
case of this situation are static variables, where the same value occurs in every
log line and is thus trivially useless for correlation. We therefore use Eq.2 to
select only variables V; where no occurrence probability of v; ; exceeds a certain
limit. To allow more unique values 6, € [0, 1] should be selected closer to 1.

1— 06,
Vil

P(’Uz‘,j) <O+ (2)
We point out that this heuristic causes that variables with similarly dominated
value probability distributions that may have a strong association between the
values are omitted. Since this heuristic is mainly used to efficiently limit the
search space, it is possible to set 6 to a sufficiently large value to include these
variables and use subsequent analysis steps to omit incorrect variable pairings.

The data from Table 3 involves value v4,; which dominates V. Setting 6 =
0.6 excludes only this variable, since P (vs4,1) = 0.75 exceeds 0.6 + =26 = 0.73.

4.3 Variable Pairing

This section describes criteria for selecting pairs of variables suitable for correla-
tion. The first criterion matches variables with similar probability distributions
and the second criterion addresses common value spaces.

Similarity of Distributions. As pointed out in the previous section, variables
with similar value probability distributions are more likely to exhibit associations
between their values than other variable pairs. The reason for this is that similar
distributions imply that for each value in V; there exists another value in Vj, that
occurs roughly the same amount of times and may thus have a direct relationship
with the former value. On the other hand, comparing the value occurrences of
one dominated distribution and another evenly distributed distribution, there is
necessarily at least one value in one variable that co-occurs with more than one
value in another variable, which indicates a weaker association.

We therefore generate variable pair {V;, V;} if the occurrence probabilities
P (v; ;) of all values in V; do not differ from P (vg,;) in Vi, where each value is
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only used once. Equation 3 describes this rule formally, where 03 € [0,00) and
p = 1,...,min(|Vi|,|Vk|) is the index of the order statistic so that v; (1) is the
most occurring value of V;, v; (2y is the second most occurring value of V;, etc.

03
[P (vi0) = P (oe) | < oo (3)

Setting 03 = 0.6 yields a critical value of % = 0.2. In this case,
variables Vi and V5 from Table3 are correctly paired, since all probabil-
ity differences |P (v1,1) — P (v21)] = 0.16, |P(v12) — P (v22)| = 0.08, and
|P (vi3) — P (v23)| = 0.08 are lower than 0.2, where values are compared in
decreasing order of their occurrences. Assuming that Vj is not removed in the
variable filtering phase, the pair {Va, V4} is omitted since |P (ve1) — P (v41)| =
0.33 which exceeds 0.2.

Common Values. Another heuristic is that variables sharing common values
are likely related in some way. For example, log lines that involve separate vari-
ables for source and destination IP addresses often have the same value space,
since data is sent and received from the same IP addresses. This also applies to
state transitions in logs, such as network logs that contain messages like “inac-
tive —> scanning”, “scanning —> authenticating”, etc. As an alternative in case
that Eq. 3 is not fulfilled, we select pairs {V;, Vi } where both variables share a
certain fraction of common values. This corresponds to selecting variable pairs
that fulfill Eq. 4, where 64 € [0, 1]. For the sample data displayed in Table 3, this
constraint is trivially fulfilled since all variables have the same value space.

Vi N Vi| = 04 - min(|Vi|, [Vil) )

4.4 Correlation Generation

This section outlines the generation of correlation hypotheses for values of vari-
able pairs. Note that each pair {V;,Vj} is considered as the two hypotheses
Vi ~ Vi, and Vi ~» V; that are analyzed separately.

Diversity of Correlations. For optimal variable correlation, each value of one
variable only occurs with a particular value of another variable and vice versa.
Conversely, values that co-occur with many different values from the correlated
variable indicate weak or random associations as pointed out in Sect.4.2 and
should not be considered for correlation hypotheses. We therefore select only
value correlations v; ; ~» vy, for hypothesis V; ~» Vj, if the relative amount of
co-occurring values of v; ; does not exceed 65 € [0, 1], i.e., if Eq.5 is fulfilled.

vkt : P (v | vig) > 0}
[Vi|

Selecting 05 = 0.7 for the data from Table3 yields that vy 1 ~ va; of Vi ~» Vj
are fulfilled for all [, since vy,; only occurs with vy 1, v and % < #5. Similarly,
V1,2 ~ Vg yield % and vy,3 ~ vy yield %, thus all possible value correlations
from Vi ~» V5 are selected. On the other hand, all v1; ~ v3; of Vi ~» V3 are
omitted since vy,; co-occurs with three values in V3 and % exceeds 05.

< 05 (5)
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Skewness of Distributions. If Eq.5 from the previous section is not fulfilled,
we use an alternative selection constraint to avoid that useful correlations are
omitted too easily. In particular, we check the shape of the conditional distri-
butions to identify dependencies between values, i.e., if one of the values in V
occurs with relatively high frequency given that v; ; occurs, we add v; j ~ vy 1, VI
to the hypothesis V; ~» V. Equation 7 shows that this constraint is realized by
subtracting the highest from the lowest of all conditional probabilities given v; ;
(cf. Eq.6), where 0g € [0,00). The idea behind this is that the difference is
large for skewed distributions where some values co-occur frequently and others
only rarely, and small for evenly distributed values. Note that this does not take
into consideration that dominating values in Vj, could incorrectly cause that the
constraint is fulfilled, which is addressed in the following section.

Pi,j,k = {P ('Uk,l | ’Ui’j) : P(Uk,l | ’Ui’j) > O,Vl} (6)

06
> 7
{ons = P (o [ 025) > 0] @)

We use 0 = 0.8 as a sample for the data in Table 3 and assume that v o ~» va, VI
was omitted by the constraint from Eq.5. Then P (va1 | v1,1) — P (v2,2 | v1,1) =
0.42 and P (vaz2 | v1,2) — P(v2,3 | v1,2) = 0.5 both exceed the critical value of
08 — (.4. However, v11 ~ U3y, VI is not fulfilled, because P (vs1|v11) —
P(v33|v11) = 0.14 does not exceed the critical value of % = 0.27 and is
therefore correctly omitted from hypothesis V; ~~ V3.

max (P; j k) — min (P; j 1)

4.5 Validation of Correlations

This section presents hypothesis validation constraints that omit correlations
without sufficiently strong dependencies between values or few correlating values.

Dependencies of Distributions. As pointed out in Sect. 4.4, a valid correla-
tion V; ~» V4, should imply that the conditional value probabilities P (vj; | v; ;)
differ from each other depending on the value v;; attained by V;. Otherwise,
the values in V}, are independent from the attained values in V;, which means
that the correlation hypothesis should be discarded. We address this by mea-
suring the variances of all conditional distributions in Vj, with respect to the
overall distribution of Vj. Equation 8 shows that the variances are added for all
value correlations selected by one of the constraints from Sect. 4.4. Since vari-
ances of more frequently occurring value correlations are more representative for
the variable and should therefore have a higher influence on the result, Eq.9
with 67 € [0, 00) weights all variances by the occurrence probabilities of v; ; and
checks whether their sum exceeds a threshold. In this case, the conditional dis-
tributions involved in the correlation hypothesis are sufficiently dependent and
thus selected, otherwise the correlation is omitted from further analysis.

Vi (vig) = ) {(P (k| vig) = P (0r0)? s 03 g~ ’Uk,l} (8)

l
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D AVE (i) - P (vig) :vig ~ vei} > 07 9)
J

We first consider correlation V; ~~ V5 from Table3 as an example and use
07 = 0.2 as a threshold. The variances Vg (v11) = 0.13, V3 (v12) = 0.29, and
V3 (v1,3) = 1.04 are weighted by probabilities P (v1,1) = 0.58, P (v1,2) = 0.33,
and P (v1,3) = 0.08 respectively to yield a total of 0.26 that exceeds 67 = 0.2.
Accordingly, the conditional value distributions in V5 sufficiently depend on the
attained values in V7, thus V] ~» V5 is selected as a valid correlation. On the other
hand, the weighted sum of variances for V3 ~~» V; yields 0.06, which does not
exceed the threshold and thus indicates that the correlation should be omitted.

Value Coverage. The second selection criterion for value correlations from
one of the constraints from Sect. 4.4 ensures that only variable correlations sup-
ported by sufficiently many correlating values are selected. In other words, a
correlation V; ~» Vj is omitted if only a small fraction of the values in V; have
corresponding correlations. Thereby, we use the occurrence probabilities of v; ;
to weight frequent values higher. According to Eq. 10, we only select V; ~» Vj if
the relative amount of correlating values exceeds a threshold 65 € [0, 1].

Z{P (Ui’j) DV v} > Os (10)

J

We use data from Table 3 and consider the variable correlation V; ~~ V3 with g =
0.5. We assume that all correlations from v; ; to values from V3 were removed
as outlined in the example in Sect. 4.4, but correlations from vy 2 and v; 3 to V3
exist. The sum of probabilities for these values is then P (v1,2)+P (v1,3) = 0.416.
Since this sum does not exceed the threshold of 0.5, correlation V; ~~» V3 is
omitted from further analysis. Assuming that all value correlations were selected
for Vi ~» V5 the constraint is trivially fulfilled since the sum of all occurrence
probabilities always equals 1 and thus exceeds the threshold.

4.6 Correlation Updating and Testing

The previous sections outlined the initialization phase of the VCD, where corre-
lations are selected by a sample of N log lines. Afterwards, the VCD switches to
online mode, where samples of M log lines are repeatedly collected and tested
with respect to the previously generated correlation rules. In the following, we
use P to denote occurrence probabilities of values from these test samples. We
use a two-sample Chi-squared test for homogeneity [3] to determine whether a
test sample corresponds to the rules. For this, we first compute a test statistic ¢
by comparing the conditional probabilities of the training and test samples with
the expected probability P. based on the mean as shown in Eq. 11 and Eq. 12.

_ NP (g [vig) + M- P (vp | i)

P
N+M

(11)
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_ (P (vr | viy) — P)? (P (vrg | viy) — P)?
1;2}(1\!- 3 + M- ) ) (12)

For a given v; ;, we then define an indicator function I;(v; ;) in Eq.13 that is
1 if the test statistic does not exceed a critical value given by the Chi-squared
distribution with confidence ay € [0,1], i.e., there is no significant difference
between the conditional distributions of the training and test samples, and is 0
otherwise. We then store these indicators for all v; ; € V; in a list 75 ;, so that

rffjfd), s rf? are the d most recent indicators after ¢ tests of v; ;, and compute
t (z)

another test statistic sij = i r;j on these values. The purpose of this is
to reduce the number of false positives, i.e., anomalies are only reported when
a certain number of Chi-squared tests fail. Since r is a binomial process, we use
Eq. 14 to compute a critical value A, where as € [0, 1] is the confidence of the
binomial test and oy is reused as the success probability of the Chi-squared test.
If s;j > A holds, there is no significant change of the conditional probabilities
of v;; ~ v, VI at test £, and vice versa. Note that the runtime can be reduced

by computing X a single time in advance when d, a1, and as remain constant.

1 if t<x?
To(vs :) = a1,|Ve|-1 1
(vis) {0 otherwise (13)
k .
) max d! d_k
/\:mm{km(m: — a1 -a) '>1—a2} (14)
|. —_ |
kZ:O K- (d—k)

The aforementioned computations are carried out for updating as well as testing
correlations. The main difference between both phases is that step (6) Correla-
tion Testing only reports anomalies when tests fail, i.e., s < A, meaning that all
changes of correlations are reported every time after processing the test samples
as long as they persist. On the other hand, step (5) Correlation Updating adjusts
the base line for comparison by updating distributions with newly observed val-
ues, removing correlations if the binomial test fails, and periodically repeating
steps (3)—(4) to identify new correlations. Accordingly, this phase is seen as an
extended training phase that is essential for online learning.

5 Evaluation

This section outlines the evaluation of our approach. We first compare variable
correlations selected from a real data set with two well-known correlation metrics.
We then showcase the detection capabilities of the VCD.

5.1 Comparison with Association Metrics

This section compares the selected correlations of the VCD with well-known
association metrics. We first describe the data and then show the results.
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Fig. 2. Comparison of VCD selection with association metrics.

Data. We use 10000 Audit logs of type syscall from the publicly available AIT-
LDSv1.1 [13] for this evaluation. We select Audit logs, because they are a com-
mon source for log analysis and are sufficiently complex to be representative for
all kinds of log data. In addition, they contain many categorical variables that
correlate with varying strength and have diverse value occurrence distributions.
Out of all 27 variables, we remove the timestamp as well as 6 static variables that
only attain one value, because it is not possible to generate useful correlations
with them. The VCD always omits these variables due to Eq. 1 and Eq. 2.

We use the remaining 20 variables to generate all 380 possible variable pairs
and measure their association strength. For this, we employ two association met-
rics for nominal values with arbitrary many categories, (i) the Uncertainty Coef-
ficient U [17] based on conditional entropy, and (ii) the Unbiased Tschuprow’s
T [2] based on the Pearson Chi-squared statistic. Both metrics are in the range
[0, 1], where 0 indicates no association between the variables, and 1 indicates
the highest possible dependency. However, while T is symmetrical, U is non-
symmetrical and measures how well the dependent variable is predictable by the
given variable. For example, the data in Table 1 yields T'({syscall, items}) = 0.53
as well as U (syscall | items) = 0.58 and U (items | syscall) = 0.93.

Results. We run the sequential selection steps of the VCD on the raw event logs
and analyze the variable correlations that remain after the initialization phase. In
Figs. 2a and 2b, these remaining correlations are marked “yes” (blue triangles),
while all variable pairs that are omitted by one of the selection constraints are
marked “no” (red circles). Each point in the scatter plots represents one of the
380 variable pairs displayed by their respective U and T, i.e., points closer to the
top right corner of the plot indicate stronger association between the two involved
variables, while points closer to the bottom left indicate weaker association.
The VCD was used with default settings (cf. Appendix A.1) to classify the
variable pairs in Fig. 2a. From all variable pairs, 222 were selected as interesting
after the initialization phase and 158 were omitted. Since all of the omitted
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pairs received a relatively low association score by at least one of the metrics,
we conclude that the VCD achieved to correctly omit irrelevant correlations.
For example, among the omitted correlations is “syscall” ~» “pid”, which is
reasonable as the process id “pid” is mostly random and independent from syscall
types.

It is possible to further narrow down the set of tracked variable correlations
by adjusting the thresholds. In particular, some of the variables involve large
numbers of distinct values, which means that the number of monitored value
correlations for pairs of these variables is immense. The default value 6; = 0.3
allows 3.000 unique values in each variable, which is limited to 100 by setting
61 = 0.01. This causes that the number of remaining correlations drops from 222
to 126, where most of the rejected pairs are located close to the top left corner
of the plot. Closer examination of these rejected pairs shows that they involve
variables with many distinct values on the left side of the correlation and thus
achieve a high U score, e.g., syscall arguments such as “al” ~~» “items” with
around 1000 unique “al” values. Since their prediction strengths merely emerge
from the large value space, adjusting 6, successfully omits these correlations.

In addition to adjusting 61, we increase 67 from 0.05 to 0.2 in Fig.2b so
that only variable pairs with strong dependency remain. This further reduces
the amount of monitored correlations to 97 and omits correlations involving
IDs such as “ppid” ~~ “exe”, while more interesting correlations such as the
sample correlation between “syscall” and “items” from Table 1 remains in both
directions. We conclude that these experiments show the VCD is capable of
selecting useful and strong correlations based on user-defined thresholds.

5.2 Anomaly Detection

This part of the evaluation validates the anomaly detection capabilities of the
VCD. We first provide information on the log data and then present the results.

Data. We use Apache access logs from the AIT-LDSv1.1 [13] for this part of
the evaluation. These logs are relevant, because they involve several categori-
cal variables, including TP addresses, request methods (e.g., “GET”, “POST”),
resource names, status codes, etc. In addition, web-based attacks frequently man-
ifest themselves as changes of multiple sequential values in these variables. In
particular, we select (i) a brute-force login attack using Hydra® that repeatedly
requests the login web page with arbitrary user data, and (ii) a Nikto vulner-
ability scan? that requests non-available resources and thereby causes multiple
redirects that correspond to status code 302. To evaluate detection accuracy
with respect to different attack executions, we simulate varying intensities by
injecting only a certain amount of events at particular times. Precisely, we inject
batches of 5, 10, 20, 50, and 200 events for each attack in intervals of 10000 lines
(around 12 h). We label log line samples containing these batches as anomalous
to measure the detection accuracy of the VCD in the following.

! https://tools.kali.org/password-attacks/hydra, accessed: 2021-04-21.

2 https://cirt.net /Nikto2, accessed: 2021-04-21.
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Fig. 3. Anomaly detection ROC plots for two attack scenarios.

Results. For both attack cases, we configure the VCD to use the first N = 10000
lines of the Apache Access log files for initialization of the correlations. Thereby,
we set 3 = 0.7 and 07 = 0.005 since the involved variables usually have differ-
ent distributions and are relatively independent. All other parameters are used
with default values (cf. Appendix A.1). After initialization, we use a test sam-
ple size of M = 1000 to update the correlations on the remaining lines of the
first day (20000 lines) using empirically determined confidences «; = 0.001 and
ag = 0.05, and an indicator list size d = 30. This phase omits correlations that
appear interesting during initialization, but are too unstable for anomaly detec-
tion. With the beginning of the second day, we switch the VCD from updating to
testing mode, i.e., correlations that fail tests are no longer changed or omitted.
We experiment with different values for oy in the test phase and count true pos-
itives (T'P) as detected samples containing injected lines, false positives (F'P) as
detected normal samples, false negatives (F'N) as undetected samples containing
injected lines, and true negatives (T'N) as undetected normal samples.

For comparison, we select Principal Component Analysis (PCA) as a baseline,
because it allows to handle categorical data through one-hot encoding of values.
Similar to the VCD, we use samples of 1000 lines to generate value count vectors
and use the first 30000 lines for model building. In the subsequent detection
phase, we measure the squared prediction error of test samples and mark them
as anomalies if the error exceeds threshold Q.,, where confidence « is varied [10].

Figure 3a shows the trade-off between true positive rate (T PR = %)

and false positive rate (FPR = FPFJF%) of VCD and PCA in the first attack
scenario. The results indicate that the VCD successfully detects the attack and
yields TPR = 60% (corresponding to the detection of the samples containing
20, 50, and 200 injected lines) at only FPR = 10%. Closer inspection of the
anomalies shows that involved variables are mainly “request” and “referer”. In
the training phase, the request to the login page “/login.php” occurs in 1.2%
of all lines, half of these times with referer “http://mail.insect.com/login.php”
and with “~” otherwise. However, requests to the login page made by the Hydra
attack always have referer “—” and thus distort this distribution within the test
sample, which is detected by the VCD. On the other hand, the PCA ROC curve
indicates that it is only slightly better than random guessing. The reason for
this is that the one-hot encoded data becomes very high-dimensional and PCA
is thus unable to detect slight changes of single values in such complex models.
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For the second attack scenario, relevant variables include the request method,
where values “GET”, “POST”, and “OPTIONS” occur with 74%, 21%, and
5% in the training data respectively, as well as the status code, where 200
occurs in 96% and 302 in 4% of these lines. The Nikto scan generates lines
with request method “GET” and status code “302”, a combination that only
occurs in 0.5% of all lines. Since the VCD is better suited to detect changes of
occurrences conditioned by infrequent values such as “302”~»“GET” of correla-
tion “status”~-“method”, it performs better than PCA as visible in Fig. 3b.

6 Discussion

The evaluation in the previous section ascertains that the VCD selects appro-
priate variables for correlation analysis and detects anomalies by monitoring
co-occurrences of correlated values over time. Thereby, the VCD makes use of
a sequence of filtering steps that are separately configured by thresholds. We
recognize that such a large number of parameters usually complicates practical
application [19], however, we argue that this is not the case for the VCD since
the thresholds are set relatively independent and specific to certain properties
of the data (cf. Appendix A.1). In addition, it is possible to omit single selection
steps and iteratively refine the limits of the search space as we show in Sect. 5.1.

This paper focuses on the correlation between pairs of variables rather than
correlations where more than two variables are involved, e.g., Vi ~» {V5,V3} or
{V1,Va} ~ V3. However, we argue that this is trivial to achieve, since our selec-
tion criteria work analogously with combined occurrences of values. In fact, our
implementation [21] supports correlation analysis of specific subsets of variables.

Finally, we suggest to develop selection strategies similar to the one presented
in this paper, but with a focus on mixes of categorical and continuous variables,
i.e., categorical values indicate that values of another variable origin from a
particular continuous distribution. For example, logged measurement data such
as memory usage could follow a normal distribution with mean and variance
depending on an active user. We leave this task for future research.

7 Conclusion

This paper presents the Variable Correlation Detector (VCD), a novel approach
for anomaly detection based on value co-occurrences in categorical variables of
log events. The VCD comprises two modes. First, an initialization mode where
variable and value correlations are iteratively selected by multiple factors, such
as skewness, similarity, and dependency of value occurrence probabilities as well
as diversity and coverage of values. Second, an online learning and detection
mode that continuously updates the identified correlations and reports anoma-
lies based on deviations of the conditional occurrences. Other than state-of-the-
art approaches, the VCD also analyzes infrequent values and recognizes system
behavior changes that occur over long time spans. We foresee several extensions
for future work, including an anomaly score and automatic threshold selection.
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A Appendix

Al Threshold Parameter Selection

The filtering steps for correlations between variables and values presented in
Sect. 4 make use of threshold parameters 61-6g to narrow down the search space
and select only those correlations that are likely to positively contribute to the
detection of anomalies. This section investigates the influence of these thresh-
old parameters on the resulting correlations and thereby supports the manual
parameter selection process, in particular, by relating each parameter to specific
properties of the data at hand. In the following, we first explain the generation
of synthetic data for this evaluation and then describe our experiments.

Data. To measure the influence of thresholds on the correlation selection, it
is necessary to control properties of the input data. Therefore, we generate
synthetic data for our experiments. We use three variables Vi, V5, and V3, of
which only V; and V5 correlate with varying strength, and monitor the cor-
relations found by the VCD for different threshold settings. We use values
V; ={0,1,...,2},2 € N for each variable and compute their occurrence probabil-
ities as normalized geometric series. Equation 15 shows how the probabilities for
values in V; and V3 are computed, where p; = 1 means that all values are equally
likely to occur, and lower values mean that one or more values are dominating
the probability distribution. Equation 16 shows how the conditional probabilities
of values in V5 given values from V; are computed. Thereby, p specifies the cor-
relation strength, i.e., larger values for p indicate that the same values co-occur
more frequently with each other, and ( is a damping factor that reduces the cor-
relation strength for larger v; j, i.e., higher values for ¢ cause more co-occurrences
between different values.

!
P('Ui,j) = % (15)
lefiopg
_ il [|Vi]—]
1 +
Plon | vig) = —r 2 _*¢ (16)

Vel (1= )= clivil =il
Figure 4 shows the co-occurrences of values from V; and V5 for a sample config-
uration of z = 9, p; = 0.7, p = 0.9, and ¢ = 0.4. Due to the relatively strong
correlation factor, most values in V4 occur with the same value of V5. The figure
also shows that higher values of V; co-occur with more values of V5 due to the
damping factor, e.g., while v; ; only occurs with four different values of V5, v 9
occurs with each value of V5 at least once.

To evaluate the accuracy of the correlation selection procedure, we generate
a ground truth of expected value correlations that contains all vy ; ~» vy; and
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Fig. 4. Value co-occurrences of damped correlation.
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Fig. 5. Influence of thresholds on accuracy of correlation selection.

v ~ v1,; that occur at least once in the data. We count correlations selected
by the VCD and present in the ground truth as true positives (TP), correlations
not present in the ground truth as false positives (FP), correlations missed by
the VCD as false negatives (FN), and all other correlations as true negatives
(TN). We use the F-score Fy = TP/ (TP+0.5-(FP + FN)) to measure the
accuracy in the next section.

Results. We first experiment with 67, which is essential for selecting correlations
that represent actual dependencies between the values and do not spuriously
emerge from skewed value probability distributions. To analyze the relationship
between 6; and the correlation strength, we increase 67 in steps of 0.05 and
p in steps of 0.1 in the range [0,1] while leaving p; = 0.7,p3 = 0.7, = 04
constant, generate 10 data samples with 10000 events respectively as outlined in
the previous section, and then compute the average F-score of these simulation
runs. The results visualized in Fig. 5a show that weaker correlation strengths
require 07 to be sufficiently low to select all correct correlations and achieve
the highest possible F-score of 1. However, setting 67 to 0 causes a decrease of
the F-score independent of the correlation strength. The reason for this is that
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Table 4. Dependencies and default values of thresholds.

Thresh. | Infl. by | Default || Thresh. | Infl. by | Default
0 V|,N 03 05 0,C 0.5

02 D 0.4 Os p,C 1

03 D, p 0.5 0 p 0.05

04 1% 0 Os 05,66 0.7

correlations involving V3 are not checked for dependency and are thus incorrectly
selected, which increases the number of FP. We therefore conclude that 67 should
be set to a low, but non-zero value, e.g., 0.05. Note that the selection of 67 is
not affected by (, since additional value co-occurrences only have little influence
on the sum of variances as long as they are not dominating the distribution.

Threshold 05 on the other hand relies on the total number of co-occurrences
for a given value and is thus influenced by ¢ in addition to p. Figure 5b shows the
F-score for various combinations of 05 and ¢, while p = 1 is fixed. As expected,
increasing values for ( yield lower F-scores for a given 65, because the number
of distinct co-occurring values for any given value increases quickly (cf. Fig. 4).
Accordingly, it is necessary to set 5 > 1 for ¢ > 0.5 to select any correlations.
For ¢ < 0.5, 05 effectively steers the allowed number of distinct co-occurrences,
e.g., for 05 = 0.5 at most 5 co-occurring values are allowed since |V;| = 10, Vi.

We argue that the influence of other thresholds is trivial and therefore omit
the plots for brevity. Table4 shows a summary of all thresholds and the data
properties with the highest influence on their selection. Note that fg is most
influenced by 05 and 6 rather than a property of the input data, because these
thresholds regulate the generation of value correlations that affect the selection
criterion involving fg. The table also provides default values that we identified
as useful during our experiments and are used in the evaluations in Sect. 5.

These results indicate that the large number of parameters does not impede
practical application of the VCD, since the thresholds are mostly independent
from each other and allow to configure the correlation selection constraints specif-
ically to counteract otherwise problematic properties of the data. For example,
a high number of correlations involving many distinct values (i.e., |V| is large) or
weakly correlated variables (i.e., p is low) should be addressed by adjusting 6;
and 6 accordingly to reduce the total number of correlations that are considered
for anomaly detection as shown in Sect.5.1.
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