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Logs are incrementally produced textual data that reflect events and their impact on technical systems. 
Their efficient analysis is key for operational cybersecurity. We investigate approaches beyond applying 
simple regular expressions and provide insights into novel machine learning mechanisms for parsing and 
analyzing log data for online anomaly detection.

L og files capture information about almost all events 
that take place in a system. Historic logs enable foren-

sic analysis of past events and give system administrators 
a means to trace the roots of observed problems. More-
over, logs may help to recover to a nonfaulty state, reset 
incorrect transactions, restore data, and replicate scenar-
ios that lead to erroneous states. Storing logs is typically 
inexpensive since the files can be effectively compressed. 
However, a major issue with forensic log analysis is that 
problems are detected only in hindsight; thus, modern 
approaches in cybersecurity shift from purely forensic to 
proactive analysis.1 This enables timely responses and, in 
turn, reduces costs caused by incidents and cyberattacks.

When considering large enterprise systems, it is not 
uncommon that the number of daily produced log lines is 
in the millions. Clearly, this makes manual analysis impos-
sible, and it thus stands to reason to employ machine 
learning algorithms that automatically process the lines 
and recognize interesting patterns that are then pre-
sented to system operators in condensed form. Liter-
ally hundreds of different machine learning approaches 
have been proposed during the past decades. However, 
when it comes to processing log data online (i.e., when 
the information is generated), it becomes quite tricky to 

pick (and possibly adapt) them to the specific require-
ments of this application area. The reasons for that are 
manifold, as in the following:

■ Single log lines cannot easily be categorized as good 
or bad, and their classification often relies on the sur-
rounding context.

■ Most machine learning approaches were designed for 
numerical information, e.g., sensor readings, not com-
plex text-based data.

■ Log data possess unknown grammar, which means 
their style, format, and meaning is usually not fully 
documented and understood by those analyzing them.

■ For intrusion detection, near real-time use is preferred. 
This means methods must be able to process data 
online, i.e., when the information is produced. As a con-
sequence, approaches need to work in a “single-pass” 
manner and process data in streams in an efficient way.

■ Since a monitored environment may rapidly change, 
the usually separated training and detection phases of 
machine learning approaches may overlap and disturb 
one another. It is not acceptable that a single change 
triggers a need to learn a complex model from scratch; 
rather, models should be adaptable.

Bearing these challenges in mind, in this article, 
we present the concept of a log data analysis pipeline, 

Digital Object Identifier 10.1109/MSEC.2021.3113275
Date of current version: 7 October 2021



www.computer.org/security� 81

map  existing approaches to the functional blocks of 
this pipeline, highlight specific challenges, and discuss 
adaptations and recommendations to improve applica-
bility for online log data analysis. The open source soft-
ware AMiner (https://github.com/ait-aecid/) implements 
these concepts. We take a closer look into challenges 
of log data analysis for security purposes, examine rel-
evant approaches, and provide insights into their appli-
cation through some practical examples. The main goal 
of this article is to make important work accessible to 
a large audience.

Log Data Analysis for Security Purposes
Blocklisting approaches can be effective in several use 
cases. For instance, detecting access attempts out-
side business hours is a standard case that every well- 
configured intrusion detection system can handle. Never-
theless, using blocklisting only, security personnel must 
think upfront of all potential attack cases and how they 
could manifest in a network. This is not only a tedious 
task but also extremely error prone. In contrast, the 
application of anomaly-based approaches that discover 
deviations from a defined system’s state seems prom-
ising: one needs to describe the “normal and desired 
system behavior” (this means creating an allow list of 
what is known to be good), and everything else is 
classified as potentially hostile. The effort is com-
paratively lower and demonstrates the advantages of 
an anomaly-based technique.2 However, these advan-
tages come with a price. While signature-based meth-
ods tend to generate false negatives, i.e., undetected 
attacks, anomaly-based approaches are usually prone 
to high false positive rates. Complex behavior mod-
els and potentially error-prone training phases are just 
some of the drawbacks to consider.

To keep false positive rates at acceptable levels, it 
is important to carefully design an anomaly detection 
procedure. We identify four major building blocks that 
are necessary to establish a log processing pipeline for 
anomaly detection. Figure 1 provides an overview. The 
first step involves clustering log data, with the purpose 

of generating groups of similar events. Clustering is 
fully unsupervised; i.e., it is not necessary to manu-
ally code any knowledge about the log structures and 
assign labels to single lines. Instead, approaches based 
on string similarity and n-gram analysis assign lines to 
groups of similar events. There are two main outcomes 
of this step. First, outliers are identified as lines that end 
up in small clusters. These lines are the most basic form 
of anomalies, as they indicate rare events. Second, the 
resulting groups of lines are suitable to be transformed 
into templates, i.e., patterns that are descriptive for all 
lines in a specific group. This task is addressed in the 
second step of the pipeline.

Generating such cluster templates from groups with 
similar events is a nontrivial task since artifacts in the 
logs are diverse. For example, events with different 
numbers and orders of tokens and lengths of these 
tokens may appear in the same cluster. Sequence align-
ment is a commonly used method for template genera-
tion, but it is mostly applied to pairs of strings rather 
than groups. It is therefore necessary to continuously 
merge such templates to figure out which characters in 
the logs are static or variable. Eventually, the generated 
templates are utilized by a parser generation module in 
the third step. Log parsers leverage tree-like structures 
rather than lists of patterns, such as regular expressions, 
to ensure that parsing takes place with the highest pos-
sible efficiency. Accordingly, log templates are split into 
tokens by a set of delimiters and then transformed into a 
single parsing tree. Thereby, tokens that are different in 
most lines are replaced by variables, while static tokens 
differentiate event types. Parsers are essential for all sub-
sequent analyses because they map all tokens to seman-
tically meaningful attributes.

Parsed log data are analyzed by anomaly detection 
techniques as described in the fourth step. Available 
detection methods are diverse and usually address spe-
cific characteristics of artifacts that are commonly sub-
ject to change when malicious behavior manifests in the 
logs. For example, time series analysis detects events 
that occur with higher or lower frequency than usual, 

Figure 1. The log data analysis pipeline consisting of four major building blocks that are sequentially executed.
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correlation analysis detects events that typically occur 
together and fail to do so, and sequence analysis detects 
workflow changes; i.e., known events appear in a new 
order. All these methods have in common that they are 
based on a model of normal behavior that is learned on 
training data and continuously adapted through time, 
where anomalies may be detected in a semisupervised 
manner during learning and in a separate detection 
phase. Deploying, configuring, and effectively operat-
ing an anomaly detection system that ingests log data 
is a complicated task. We employ the setting described 
in the following as a guiding scenario for the stepwise 
introduction of our log data analysis solution.

Scenario
An internal web server hosts numerous services and 
sensitive resources. Legitimate users may retrieve these 
resources and modify them via web-based forms. Security 
operators collect access logs, using client Internet Proto-
col (IP) addresses, user agent, requested resource name, 
and request methods to build a system model, consisting 
of expected event types and values employed as a baseline 
for anomaly detection. The log data look as follows:

[…]

10.0.0.130 - - [04/Mar/2021:06:55:35] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://doc 
.acme.com/projX/” “Mozilla/5.0”

10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/ 
projX/doc2 HTTP/1.1” 200 2845 “http://doc 
.acme.com/projX/” “Mozilla/5.0”

10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/ 
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.121 - - [04/Mar/2021:06:55:47] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.1.0.137 - - [04/Mar/2021:06:55:48] “GET/ 
projY/xls7 HTTP/1.1” 200 3574 “http://
doc.acme.com/projY/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:54] 
“POST/edit/doc2 HTTP/1.1” 200 3243 
“http://doc.acme.com/projX/edit.php? 
page=doc2” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/ 
projX/doc2 HTTP/1.1” 200 3243 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/ 
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:56] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:34] 
“POST/edit/doc1 HTTP/1.1” 200 4341 
“http://doc.acme.com/projX/edit.php? 
page=doc1” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:36] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[…].

Looking into this rather simplified snippet, we can 
already observe several properties feasible for model build-
ing. For instance, we see different client IPs accessing 
various types of web resources, although not all IPs access 
the same ones. We can find similarities in paths (there 
are project X and project Y), and we can see that only the 
user 10.0.0.130 edits documents (using HTTP POST 
requests), while the others mainly retrieve data (using 
GET). We learn that all users employ the same user agent, 
presumably the browser of the company’s software stan-
dard. Looking closer, we observe even certain sequences 
per IP address. For instance, whenever there is a POST 
request, the same client retrieves a changed document 
again via a consecutive GET request. Furthermore, doc2 
consists of two parts, which are always retrieved together; 
assuming doc2 includes doc2p1, the browser automati-
cally fetches both in two consecutive requests. These are 
all behavioral properties of using web-based systems that 
can be observed and captured using machine learning.

Step 1: Incremental Character-Based 
Event Clustering

Purpose
Clustering is an efficient method for grouping similar 
events and recognizing rare ones. Thus, it 1) supports 
reducing the number of events when analyzing large 
data sets, 2) enables outlier detection, and 3) facilitates 
time series analysis when observing cluster properties 
through time, e.g., using evolutions to correlate clusters 
in different time windows.

Main Challenges
Many clustering approaches, such as distance-based 
techniques, do not facilitate processing huge data sets 
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because they store large distance matrices, consum-
ing significant amounts of memory. Additionally, many 
clustering algorithms do not implement single-pass pro-
cedures, which makes them inapplicable for online log 
analysis. Almost all existing log clustering solutions 
implement token-based approaches and split log lines 
only when a “space” occurs. Thus, they often do not yield 
exact results, due to long tokens and because they recog-
nize highly similar but not equal tokens as entirely differ-
ent, such as terms and words with different encodings, 
e.g., “can’t open file” versus “can\’t open file,” and simi-
lar uniform resource locators (URLs) and related paths, 
e.g., “/home/alice/test.txt” versus “~/test.txt.” Then 
again, character-based clustering suffers from highly 
complex string metrics and therefore poor runtime. 
Ultimately, log clustering requires high-performance, 
incremental, character-based approaches that employ 
smart filters to optimize runtime.

Relevant Works
The simple logfile clustering tool (SLCT)3 was one of 
the first clustering algorithms specifically developed for 
log data. It implements a density-based approach and 
analyzes token frequencies. Iterative partitioning log 
mining (IPLoM)4 applies iterative partitioning, where 
groups of log lines are recursively split into subgroups 
according to particular token positions. The type-casted 
pattern and rule miner (CAPRI)5 uses a density-based 
method for clustering and additionally applies sta-
tistical analysis to identify contextual relationships 
among clusters. While SLCT and IPLoM do not imple-
ment single-pass procedures and are capable only of 
processing static, i.e., fixed, data sets, CAPRI enables 
stream-based analysis after a training phase, although 
the system model is static. Additionally, none of the 
tools implements a character-based method.

Our Recommended Approach
The mentioned challenges motivated our research on 
character-based matching algorithms with runtime per-
formance comparable to token-based matching. Our 
incremental clustering approach6 that implements den-
sity and character-based clustering applies a single-pass 
clustering algorithm that processes data in streams 
as well as line by line instead of batches. This enables 
online anomaly detection; i.e., log lines are processed at 
the time they are generated. Clustering approaches that 
are applied for online anomaly detection have to fulfill 
some essential requirements: 1) rapidly process data, 
i.e., when they are generated; 2) promptly adopt the 
cluster map (note that cluster map refers to the structure 
of the clustering, i.e., the clusters and their identifiers, 
which can be, for example, a template or representative 
for each cluster); and 3) deal with large amounts of data.

Nevertheless, existing clustering approaches that 
usually process all data at once, such as SLCT3 and 
IPLoM,4 suffer from the following three major draw-
backs, which make them unsuitable for online anomaly 
detection in log data:

1.	 Static cluster maps: Adapting/updating a cluster map 
is time-consuming and computationally expensive. 
If new data points occur that account for new clus-
ters, a whole cluster map has to be recalculated, as 
with CAPRI.5

2.	 Expensive memory: Distance-based clustering 
approaches are limited by available memory because 
large distance matrices have to be stored: depend-
ing on the applied distance, this amounts to n2 or 
n2/2 elements.

3.	 Computational expense: Log data are stored as text. 
Therefore, string metrics are applied to calculate 
the distance (similarity) between log lines. Their 
computation is usually costly and slow.

We introduced a novel incremental clustering approach6 
with the following features that sequentially processes 
log data in streams for online anomaly detection:

■■ The processing time of incremental clustering grows 
linearly with the rate of input log lines, and there is 
no required rearrangement of the cluster map. The 
distances between log lines do not need to be stored.

■■ Fast filters reduce the number of distance com-
putations that have to be carried out. A semisu-
pervised approach based on self-learning reduces 
the configuration and maintenance effort for sys-
tem administrators.

■■ The modularity of our approach facilitates the appli-
cation of different metrics to build the cluster map 
and carry out anomaly detection.

■■ Our method enables the detection of point anoma-
lies, i.e., single anomalous log lines, by outlier detec-
tion. Collective anomalies, i.e., anomalous numbers 
of occurrences of normal log lines that represent a 
change in system behavior, are detected through time 
series analysis.

Example
Applying the introduced incremental clustering to the 
previously outlined log data, the following clusters 
emerge (assuming we blind out the time stamp from the 
similarity calculations). Naturally, the two POST requests 
are different from all the GET requests. Furthermore, the 
two requests for doc2p1 are longer and look a bit differ-
ent than the others. Also, the request to/projY varies from 
all the others in at least two spots, and the IP address dif-
fers, too, from all the others. In this simple example, the 
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advantage of character-level templates already becomes 
visible: we can account for similarities in paths and IP 
addresses (e.g., distinguish IP address from different sub-
nets without the need to specify the same):

[Cluster 1]
10.0.0.130 - - [04/Mar/2021:06:55:35] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/ 
projX/doc2 HTTP/1.1” 200 2845 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.121 - - [04/Mar/2021:06:55:47] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/ 
projX/doc2 HTTP/1.1” 200 3243 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:56] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:36] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[Cluster 2]
10.1.0.137 - - [04/Mar/2021:06:55:48] “GET/ 
projY/xls7 HTTP/1.1” 200 3574 “http://
doc.acme.com/projY/” “Mozilla/5.0”

[Cluster 3]
10.0.0.139 - - [04/Mar/2021:06:55:45] “GET/ 
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:55:55] “GET/ 
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[Cluster 4]
10.0.0.130 - - [04/Mar/2021:06:55:54] 
“POST/edit/doc2 HTTP/1.1” 200 3243 
“http://doc.acme.com/projX/edit.php? 
page=doc2” “Mozilla/5.0”

10.0.0.130 - - [04/Mar/2021:06:56:34] 
“POST/edit/doc1 HTTP/1.1” 200 4341 
“http://doc.acme.com/projX/edit.php? 
page=doc1” “Mozilla/5.0”.

Step 2: Creating Cluster Templates

Purpose
Combining template generation with clustering offers 
plenty of application possibilities: 1) templates can 
be transformed into allow list rules, 2) templates pro-
vide an accurate description of the content of log lines 
assigned to the same cluster, and 3) they facilitate parser 
generation and log line classification, i.e., assigning 
event types to log lines. The latter enables the applica-
tion of a large variety of anomaly detection algorithms 
based on frequency and sequence analysis and thus, for 
example, employ event count matrices.

Main Challenges
Since clustering and template generation are closely 
related and clustering algorithms often provide some 
sort of template, template generation inherits most of 
its challenges from log line clustering. Again, there exist 
token- and character-based approaches. While token- 
based methods benefit from superior performance, 
character-based templates are much more accurate and 
handle similar but not equal tokens much better and 
recognize variable parts more precisely. However, calcu-
lating character-based templates is complex and impos-
sible in the time frames required by online analysis. 
Thus, robust heuristics are required that optimize per-
formance and effectively reduce runtime.

Relevant Works
The parallel log parser (POP)7 applies the longest 
common subsequence (LCS) and implements an itera-
tive partitioning approach similar to IPLoM,4 where 
templates are iteratively updated by identifying partic-
ular token positions in which the log lines differ. Log-
Hound8 applies the density-based approach of SLCT 
as well as frequent item set mining to generate tem-
plates. LogSig9 implements some sort of LCS by find-
ing common word, i.e., token, pairs in similar log lines 
to build representative templates. All the approaches 
generate meaningful token-based templates but neglect 
character-based algorithms.

Our Recommended Approach
We developed template generators (six that create 
meaningful cluster descriptions), a prerequisite for the 
feature selection used by machine learning solutions as 
well as generating log parsers. Furthermore, templates 
can be applied for log classification in general, such as 
with LogSig,9 for log reduction through filtering and 
event counting. A template is basically a string that con-
sists of substrings that occur in every log line of a cluster 
in a similar location. Those substrings are referred to as 
static parts of the log lines of the cluster. They are separated 
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by wild cards, which represent variable parts of the log 
lines, such as user names, IP addresses, and identifiers. 
Furthermore, a template matches all log lines of the cor-
responding cluster.

The cornerstone of cluster template generation 
on a character level is an efficient means to determine 
the degree of similarity of two log lines, i.e., strings. A 
sequence alignment is the result of an algorithm that 
arranges two strings so that the smallest number of 
operations (i.e., insertions, deletions, and replacements 
of characters) is required to transform one string into 
the other one; i.e., it assumes the highest possible simi-
larity. We solved the problem of generating a sequence 
alignment for more than two log lines on a charac-
ter level,6 i.e., generating a multiline alignment.10 In 
contrast to token-based template generators, such as 
POP7 and LogHound,8 character-based approaches do 
not rely on predefined building blocks in the form of 
tokens. They recognize static and variable parts of log 
lines independently from predefined delimiters.

There exist many efficient algorithms and string 
metrics, such as the Levenshtein distance and the 
Needleman–Wunsch algorithm, to achieve an align-
ment for two character sequences. Furthermore, there 
are algorithms for genetic and biologic sequences to 
calculate pairwise and multiline alignments; however, 
they require knowledge about the evolution of nucle-
otides and are therefore not suitable for log data.10 
Algorithms to align multiple sequences of any char-
acters with no genetic context are challenging. The 
main reason is the difficulty of overcoming the high 
computational complexity of this problem, which is 
at least O(nm), where n is the length of the shortest 
log line and m is the number of lines in a cluster. We 
proposed a character-based cluster template generator 
that incrementally processes the lines of a log line clus-
ter and reduces the computational complexity O(nm) 
to O(mn2). The algorithm processes log lines sequen-
tially and thus follows an incremental approach, which 
must handle each line only once. The resulting tem-
plate has a high similarity to the optimal template on 
preclustered data.6

Example
Based on the four clusters created previously, our tem-
plate generation approach would come up with the fol-
lowing four templates. Notice that we use only a very 
limited number of log lines to demonstrate the tech-
nique. In a typical setting, we would record access logs 
across several days, if not weeks, and create the tem-
plates from a much larger number of log lines, resulting 
in many more generic templates. We further skipped the 
processing of the time stamp and manually set it to be 
variable, reflected by an asterisk:

[Cluster 1]: 10.0.0.1* - - [*] “GET/
projX/doc* HTTP/1.1” 200 * “http://doc 
.acme.com/projX/” “Mozilla/5.0”

[Cluster 2]: 10.1.0.137 - - [*] “GET/
projY/xls7 HTTP/1.1” 200 3574 “http://
doc.acme.com/projY/” “Mozilla/5.0”

[Cluster 3] 10.0.0.13* - - [*] “GET/
projX/doc2p1 HTTP/1.1” 200 849 “http://
doc.acme.com/projX/” “Mozilla/5.0”

[Cluster 4] 10.0.0.130 - - [*] “POST/
edit/doc* HTTP/1.1” 200 * “http://
doc.acme.com/projX/edit.php?page=doc*” 
“Mozilla/5.0”.

We now have a method to dissect single log lines, ana-
lyze their content in a characterwise manner, and iden-
tify regions of similarities. These are all prerequisites to 
learn data structures and automatically create parsers.

Step 3: Parser Generation

Purpose
Parsers match logs to the syntaxes of known events 
and map all values to specific referenceable attributes. 
This enables a semantic interpretation of the contents 
of log lines and a subsequent application of detection 
techniques on the data. Generating parsers manually, 
however, is a time-consuming task that requires exten-
sive domain knowledge about the numerous distinct 
log events that can occur. Parser-generating algorithms 
therefore analyze samples of log data and automatically 
create log event templates by determining which parts 
of the logs are variable or static.

Main Challenges
Regular expressions facilitate defining sequences of 
variables and fixed tokens and thus appear as a logical 
choice for log parsers. However, they suffer from slow 
runtime performance in comparison to tree-based pars-
ers that leverage the fact that many log events have simi-
lar tokens. Unfortunately, creating dynamically adjusting 
parser trees when new events appear or the syntax of 
existing events changes, is nontrivial. Parser generators 
further rely on many parameters, such as delimiters for 
tokens and thresholds that balance over- and underfit-
ting, which are difficult to configure in practice.

Relevant Works
Drain1 uses token similarity to build an event tree. 
However, its approach assumes that the number of 
tokens is fixed for each event and thus cannot be 
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applied to logs with optional tokens. The Scalable 
Handler for Incremental System log (SHISO)11 also 
harnesses similarity to find and merge event tem-
plates. While both methods are incremental, they 
do not address the fact that templates tend to over-
generalize through time. Spell,12 on the other hand, 
searches for common sequences in log events to 
determine static parts.

Our Recommended Approach
Advanced data analysis does much more than cluster-
ing and outlier detection. To enable further analysis of, 
e.g., trends, correlations, and value distributions, a first 
step is to make the single parts of a log line (i.e., the 
features of log data) easily accessible and then iden-
tify which ones carry important information (i.e., they 
help us characterize the type of event and its unique 
parameters). Effective log parsers enable us to do that. 
A tree-based parser approach6 aims at reducing the 
complexity of parsing and therefore increasing the 
performance. Since there are no commonly accepted 
standards that dictate the syntax of logs, developers 
may freely choose the structure of log lines produced 
by their services and applications. For example, the 
syslog standard states that each log line has to start 
with a time stamp followed by the host name. How-
ever, the remainder of the syntax can be chosen with-
out restrictions.

Applying standards, such as syslog, causes log lines 
produced by the same service or application to be simi-
lar in the beginning but differ more toward the end of 
the lines. Consequently, modeling a parser as a tree 
leads to a parser tree that includes a common trunk 
and branches toward the leaves. A parser tree repre-
sents a graph theoretical rooted out-tree. This means 
that during parsing, it processes log lines tokenwise 
from left to right, and only parts of the parser tree that 
are relevant to the log line at hand are reached. Hence, 
this type of parser avoids parsing across the same log 
line more than once as would be done when applying 

distinct regular expressions. As a result, the complexity 
for parsing reduces from O(n) to O(log(n)). Eventu-
ally, each log line relates to one path (branch) of the 
parser tree.

Figure 2 depicts a part of a parser tree for web server 
access logs. This example demonstrates that a tree-based 
parser consists of three main building blocks. The nodes 
with bold lines represent tokens with static text patterns. 
This means that in all corresponding log lines, a token 
with this text pattern has to occur at the position of the 
node in the tree. Nodes depicted as ovals enable vari-
able text until the next separator or static pattern along 
the path in the tree occurs. Variables are inserted based 
on token frequency rather than overall log similarity.11 
Optional nodes are used to define tokens that do not 
necessarily have to occur.1 The third building block is a 
branch element. When the parser tree branches are in a 
certain position, only a small number of different tokens 
with static text occurs.

Applying a tree-like parser model provides the fol-
lowing advantages in terms of performance and log 
analysis quality:

■■ In contrast to distinct regular expressions, a tree-based 
parser avoids parsing across a data entity more than 
once because it follows, for each log line, one path of 
the parser tree in the graph-theoretical tree that repre-
sents the parser, and leaves out irrelevant model parts.

■■ Therefore, the computational complexity for log line 
parsing is closer to O(log(n)) than O(n) when han-
dling data with separate regular expressions.

■■ The tree-like structure facilitates referencing all the sin-
gle tokens with an exact path; e.g., “/accesslog/hostip” 
enables access to the requesting client’s IP address. 
Thus, parsed log line parts are quickly accessible so that 
rule checks can pick out only the data they need with-
out searching the tree again. Furthermore, the structure 
facilitates quick applications of anomaly detection algo-
rithms to different tokens and correlating information 
of different tokens within a single line and across lines.

Figure 2. A log line parser tree.
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Example
Using the preceding templates, we steer the creation of 
a tree-like parser by applying the described parser gen-
eration methodology. Notice that the resulting tree (see 
Figure 2) may differ depending on the selected con-
figuration parameters that influence whether different 
values result in a variable node or branching point. For 
instance, the request size would naturally be considered 
a variable value; however, if only a few different sizes 
are recorded in the log data, it could also be modeled 
as parallel branches, each consisting of a static but dif-
ferent value. Eventually, we gain a tree structure where 
each node is referenced by a unique path to retrieve its 
value. Further generalizing this view, e.g., introducing 
variable nodes for the response code, URL path, and 
user agent, the model becomes generally applicable. 
Table 1 shows the first log line of our example, dis-
sected according to the generalized parser model. In the 
analysis phase, the different tokens are referenced with 
the paths given there:

10.0.0.130 - - [04/Mar/2021:06:55:35] “GET/ 
projX/doc1 HTTP/1.1” 200 3844 “http://
doc.acme.com/projX/” “Mozilla/5.0”.

With the tree-like parser, we have the means to 
match incoming log lines to observed structures, and, 
thus, we can categorize events. Furthermore, we are 
able to distinguish between static and variable parts, 
which is an important means of feature selection for 
the machine learning algorithms applied on top of log 
data. Regardless of whether domain-specific and cus-
tomized algorithms or general-purpose algorithms are 
employed (such as neural networks, principal compo-
nent analysis, and long short-term memory), feature 
selection is a mandatory prerequisite for analysis and 
anomaly detection.

Step 4: System Behavior Modeling 
and Machine Learning-Based 
Anomaly Detection

Purpose
Log analysis frameworks keep track of all system and 
user behavior in high detail, enabling precise reasoning 
about what happened when. Unfortunately, this also 
means that immense volumes of log data are produced 
nonstop. While humans are able to dive into specific 
passages of these logs and interpret recorded activities, 
the sheer amount of data renders manual monitoring 
impossible. Therefore, anomaly detection recognizes 
unusual events and alerts analysts to relevant logs that 
possibly relate to attacks that were not discovered by 
rule-based monitors.

Main Challenges
Log data are generated and analyzed in streams, 
meaning that learning and detection take place con-
tinuously and in parallel. This prevents applications 
of machine learning methods that require multiple 
passes through data. Moreover, log data often contain 
traces of erratic user behavior that is difficult to distin-
guish from malicious intentions and causes high false 
alarm rates. Finally, logs usually have to be interpreted 
within their context of occurrence, e.g., the time of day 
and related events.

Relevant Works
He et al.13 use event count vectors for frequency-based 
detection with clustering and principal component anal-
ysis. Furthermore, they detect new event sequences 
with automatically mined invariants. However, these 
approaches do not adequately address the fact that val-
ues also have to be taken into account when detecting 
anomalies. Deeplog,14 too, detects anomalies in event 
sequences but by using neural networks. LogRobust 
employs semantic word vectors as input to a neural net-
work. Unfortunately, neural networks often suffer from 
low explainability and are unsuitable for online learning.

Our Recommended Approach
Most machine learning approaches suffer from several 
drawbacks when applied to online anomaly detection on 
log data, as discussed previously. Specifically, complex 
“monolithic” models are of limited use in an environ-
ment that undergoes frequent changes, such as updates 
in computer systems. Fine/granular, explainable models 
that may be adapted to new situations are required.14,15 

Table 1. Token paths and values.

Node (parser path) Token value

/accesslog/hostip 10.0.0.130

/accesslog/time_model 04/Mar/2021:06:55:35

/accesslog/time_model/time 1614837335

/accesslog/time_model/timezone 0

/accesslog/method GET

/accesslog/request /projX/doc1

/accesslog/protocol HTTP

/accesslog/version 1.1

/accesslog/status 200

/accesslog/size 3844

/accesslog/referrer http://doc.acme.com/projX/

/accesslog/useragent Mozilla/5.0
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In the following, we provide insights into the abilities of 
some machine learning approaches that are particularly 
useful for online log data analysis. Other than existing 
works,13 we design detectors for the analysis of events 
and values occurring in log data. With these few meth-
ods, it already becomes rather hard for a hacker to mount 
a successful attack unnoticed. For more details about the 
concrete algorithms, we refer the reader to Skopik et al.6

Attack Scenario
The attacker Mallory has gained remote access to local 
client 10.0.0.130 and tries to collect as many resources 
as possible from the web server for later exfiltration.

Simple Detectors
Detection of new values. Mallory simply uses Wget 
to crawl (parts of) the web server and leaves traces in 
logs similar to the one in the following. Here, specifi-
cally, the user agent can easily be detected as the new 
value “Wget/1.20.3 (linux-gnu)” in the path “/access-
log/useragent” because, until analyzing this event, the 
only observed user agent was “Mozilla/5.0”:

10.0.0.130 - - [14/May/2021:06:06:18] “GET/ 
projX/doc1 HTTP/1.1” 200 4569 “-” “Wget/ 
1.20.3 (linux-gnu)”.

Detection of new value combinations. Mal-
lory changes the user agent to the legitimate standard 
user agent “Mozilla/5.0” and thus evades detection at 
first. She, however, attempts to access a resource from 
a directory that was never retrieved by the client she 
owns, e.g., “GET/projY/xls7.” Since, to this point, the 
IP “10.0.0.130” occurred only with resources “/projX/
doc1,” “/edit/doc2,” “/projX/doc2,” “/projX/doc2p1,” 
and “/edit/doc1,” this triggers a new combination of 
values at paths “/accesslog/hostip” and “/accesslog/
request” that was never observed. Notice that the advan-
tage of character-based templates comes into play. If a 
huge number of documents resides within “/projX/,” we 
could generally consider accesses to documents therein 
as normal, but we may still alert on access to documents 
in “/projY/.” In addition, it would be possible to use 
even more paths to increase the granularity of the value 
combination analysis. Specifically, adding the request 
method at path “/accesslog/method” to the aforemen-
tioned paths enables us to analyze which resources are 
accessed by which users as well as how they are retrieved. 
Be aware that training the models takes considerably 
longer for more complex detector configurations.

Time Series Analysis
Improved attack. Having learned from previous expe-
riences, Mallory accesses only legitimate resources with 

a valid user agent string. But, since she is in a hurry, 
she does it in bursts; i.e., she downloads numerous 
resources in short time intervals.

Detection of frequency anomalies. The seasonal 
autoregressive integrated moving average (SARIMA)6 
model predicts how many events of a specific type and 
source are considered normal based on a history of obser-
vations, and it enables alerting on any significant devia-
tion. If, let us say, 10–20 document requests per hour 
have been perceived in the past few observation cycles for 
user 10.0.0.130, Mallory’s attempt to retrieve documents 
in bulk (say, 100 requests in 1 h) will be detected.

Correlation Analysis
Advanced attack. Mallory again changes her behavior 
and carries out a much slower moving attack; e.g., she 
downloads only a couple of resources per hour to evade 
SARIMA detection.

Detection of divergent correlations. Going back to 
what we consider normal behavior, the log data listing 
shows that 10.0.0.130 triggered seven HTTP requests, 
specifically, five GET and two POST. After observing 
requests for a longer duration, a certain ratio of GET/
POST requests will emerge depending on the user’s 
typical activities. If Mallory polls the web server for 
new documents, through time, she will issue many GET 
requests, but no POST requests, and therefore disturb 
this ratio. A variable correlation detector aims to estab-
lish a baseline (i.e., an expected value that is considered 
normal) and alert on significant deviations from it. For 
example, using aforementioned data, the learned model 
could detect that a reasonably sized sample of events 
with IP “10.0.0.130” occurs with a GET request in 70% 
and a POST request in 30% of cases, while for all other 
IP addresses, the ratio is around 95% and 5%. Deviations 
reported by statistical tests on sufficiently large sections 
of the data (e.g., GET requests made by “10.0.0.130” 
increase to 90%) are reported as anomalies.

Sequence Detection
Stealthy attack. Mallory expands her remote access to 
several internal clients, not just 10.0.0.130, and is now 
able to collect only small portions of the resources from 
each client she owns. As a consequence, there are no 
request bursts from single IPs, nor does the correlation of 
client IPs to request methods change significantly. This 
way, Mallory hopes to evade detection once and for all.

Detection of breaking sequences. Usually, a GET 
request to a single HTML site triggers a set of subre-
quests to fetch linked content (we assume that caching 
is disabled on the client side to make this example eas-
ier). Whenever doc2 is fetched, doc2p1 is, too. Thus, 
the detector learns the sequence “/projX/doc2” fol-
lowed by “/projX/doc2p1” as normal behavior. Since 
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Mallory attempts to crawl a page with a command line 
tool and not a browser, she fetches linked content only 
once and leaves out, e.g., linked images, such as a site 
logo that is embedded on every page. This breaks previ-
ously observed and learned sequences, which is easily 
detected. Note that detection complexity here mainly 
depends on the lengths of the analyzed sequences; i.e., 
a sequence length of two, as in the preceding example, 
enables efficient learning but has less model granularity 
than larger sequence lengths that require long training 
phases and tend to overfit the data more easily.

L og data analysis and anomaly detection in com-
puter networks need to cope with some significant 

challenges, such as frequent changes to observed sys-
tems (which is not the case for other machine learning 
domains), a certain degree of learned model adaptability 
(which is not the case for most classic machine learning 
approaches), and a large amount of complex data that 
need to be processed in streams (in contrast to offline 
multipass analysis). A multitude of approaches are 
available, from rather simple detectors to much more 
complex analysis solutions that account for the interde-
pendencies of log events, including sequence and time 
series analysis.

Keep in mind, the more complex detectors we apply, 
the more likely we are to discover malicious behavior. 
However, the disadvantages of using complex detec-
tors are 1) they are much more complex to configure 
and maintain, 2) it takes longer for them to learn, and 
3) they are prone to high false positive rates. The art is 
to find the sweet spot between detecting enough anom-
alies to act in time and not drowning in false alerts. 
AMiner extends any existing security solution, such as a 
Security Information and Event Management solution 
(SIEM) and Elastic Stack (https://www.elastic.co), 
for event monitoring. Therefore, it provides in-depth, 
high-performance online log analysis and anomaly 
detection, employing various smart and sophisticated 
detectors far beyond event search and signature-based 
detection. For a more comprehensive review of the 
material in this article, please refer to Skopik et al.6 
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