Towards Detecting Anomalies in Log-Event Sequences with Deep
Learning: Open Research Challenges

Patrick Himler, Max Landauer, Florian Skopik, Markus Wurzenberger
Austrian Institute of Technology, Center for Digital Safety and Security
Giefinggasse 4, 1210 Vienna, Austria
firstname.lastname@ait.ac.at

ABSTRACT

Anomaly Detection (AD) is an important area to reliably detect
malicious behavior and attacks on computer systems. Log data is
a rich source of information about systems and thus provides a
suitable input for AD. With the sheer amount of log data available
today, Machine Learning (ML) and its further development Deep
Learning (DL) have been applied for years to create models for AD.
Especially when processing complex log data, DL is often able to
achieve better performance than ML. To detect anomalous patterns
that span over multiple log lines, it is necessary to group these log
lines into log-event sequences. This work uses a Long Short-Term
Memory (LSTM) model for AD which is one of the most impor-
tant approaches to represent long-range temporal dependencies in
log-event sequences of arbitrary length. This means that we use
past information to predict whether future events are normal or
anomalous. For the LSTM model we adapt a state of the art open
source implementation called LogDeep. For the evaluation, we use
a Hadoop Distributed File System (HDFS) data set, which is well
studied in current research, and an open source Audit data set pro-
vided by the Austrian Institute of Technology (AIT). In this paper
we show that without padding, a common preprocessing step used
that strongly influences the AD process and artificially improves
detection results and thus accuracy in lab testing, it is not possible
to achieve the same high quality of results shown in literature. Fur-
thermore, we analyze limitations of DL approaches applied for AD
and list future research priorities and design challenges.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and mal-
ware mitigation.

KEYWORDS

log event sequences, anomaly detection, deep learning, Istm

ACM Reference Format:

Patrick Himler, Max Landauer, Florian Skopik, Markus Wurzenberger. 2023.
Towards Detecting Anomalies in Log-Event Sequences with Deep Learning:
Open Research Challenges. In European Interdisciplinary Cybersecurity Con-
ference (EICC 2023), June 14-15, 2023, Stavanger, Norway. ACM, Stavanger,
Norway, 7 pages. https://doi.org/10.1145/3590777.3590789

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EICC 2023, June 14-15, 2023, Stavanger, Norway

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9829-9/23/06.

https://doi.org/10.1145/3590777.3590789

1 INTRODUCTION

AD has been an actively researched field for decades in various do-
mains [4]. The goal of AD is to find events and event sequences that
deviate from normal behavior as efficiently and timely as possible
[3]. In this paper, we investigate the detection of anomalies in the
cyber security domain using log data analysis. In recent years, cyber
attacks have become more sophisticated and the attack surface has
tremendously increased because of nowadays complex computer
systems and networks. AD is used in Instrusion Detection Systems
(IDS) to automatically detect and classify intrusions, attacks, or vi-
olations of security policies in infrastructures at network-level and
host-level [23]. Conventional signature-based IDS, using patterns
of already known attacks and malicious behavior, have become
insufficient and the need for more adaptability, to enable detection
of unknown attacks such as zero-day exploits, is immanent. As a
result, we see a shift towards anomaly based IDS, which use various
data sources like textual log data and network traffic data to reliably
discover deviations from a desired system behavior.AD supports
reaching the goals of minimal maintenance, human interaction, and
delay in response time [25].

Currently, especially DL, a branch of highly performant ML al-
gorithms, is a hot spot in AD research. DL aims to discover the
essential differences between normal and abnormal data with high
accuracy [16]. DL supports security experts to react quickly and
effectively to known and unknown attacks, and to gain a broad
overview of the threat landscape. It is also useful to utilize log data
for training DL models. Log data provide more detailed insights for
behavioural understanding of a system than network traffic data.
Contrarily to many available state of the art AD systems, which
process network traffic data, a paradigm shift towards log data
should be considered, because log data is generally available in
unencrypted form and contains low-level traces of system activities
[25]. Most of the time, working with log data requires preprocessing
steps, where the textual log data are parsed into numeric formats.
After parsing, a DL model can process log data and classify them
into normal and anomalous log events [11]. If we want to detect not
only individual anomalous log lines, i.e. point anomalies, but also
contextual anomalies, several log lines are combined into log-event
sequences. If parts of the data set are anomalies only in a certain
context but not isolated from that context, we speak of contextual
anomalies. To detect contextual anomalies, we need to consider
both contextual attributes, like passed time between data instances
and behavioral attributes such as occurrences of specific data in-
stances [21]. The predestined DL algorithm here is LSTM because it
uses past information to predict whether future events are normal

https://doi.org/10.1145/3590777.3590789
https://doi.org/10.1145/3590777.3590789

EICC 2023, June 14-15, 2023, Stavanger, Norway

or anomalous.

Our contributions focus on in pointing out limitations when work-
ing with log-event sequences and DL of currently used approaches
and future research directions. The contributions are as follows:

e A critical discussion of state of the art approaches.

o An approach for detecting anomalies in HDFS- and Audit
log-event sequences using DL.

o A discussion of current limitations and outlook for future
research topics in this area.

The remainder is structured as follows: Section 2 gives an overview
of state of the art approaches for log-based AD using DL models.
Next, Sect. 3 introduces our chosen approach describing all neces-
sary steps from raw log data to AD. Section 4 evaluates our approach
and compares it with state of the art solution [8]. Important lim-
itations are critically discussed and open research challenges are
listed in Sect. 5. Finally, Sect. 6 concludes this paper.

2 BACKGROUND AND RELATED WORK

LSTM models can be classified among others into supervised, semi-
supervised and unsupervised based on the need for data labels
during training. Labels indicate whether a respective data instance
is normal or anomalous. The differences between the individual
approaches are as follows [13][4][22]:

o Supervised: A fully labeled training set containing both nor-
mal and anomalous data is required. A common approach is
to build a predictive model for both data classes. Then un-
seen data instances are tested with the model to determine
which class they belong to. At first glance, it is easy to create
a model like this, but it has two major disadvantages: First,
usually data sets contain fewer anomalies than normal data
which leads to an imbalanced class distribution. Second, it is
not trivial and thus challenging to label the anomaly class.

e Semi-supervised: The prerequisite is that the training set
only contains normal data. After training with a portion of
normal data, the resulting model is corresponding to normal
expected behaviour and can then be used to identify anom-
alies in the test data set. This technique assumes availability
of normal training data sets which can be challenging in
some application domains.

o Unsupervised: The system learns independently to distin-
guish between normal and anomalous data without the pre-
requisite of a labeled training set. This approach makes use
of the intrinsic properties of data instances. In principle, it is
often the case that investigated data sets have fewer anom-
alies than normal data. The trained model should be robust
against those few anomalies. If this assumption does not
apply, it will lead to a high false alarm rate.

We have chosen to look into semi-supervised approaches for this
paper, because they reflect a realistic scenario with regard to real
world applications to first learn a model in an anomaly-free area
with normal data and then switch to live operation. This is also
reflected in the assumption that anomalies are predominantly rare
and sometimes difficult to capture as opposed to normal data [22].

Himler et al.

In recent years, many DL models to analyze log data and detect
anomalies have been proposed [27][9][18]. An in-depth research
was performed. To narrow down the results, we filtered by the
number of citations, the year of publication and the data sets used.
After filtering, the three approaches described in the following
sections stood out.

2.1 DeepLog

The authors of [8] have developed an approach called DeepLog that
uses an LSTM as DL model that processes log lines in sequences.
The model thereby learns log patterns during normal execution
and detects anomalies when log patterns deviate from the trained
model. Even though this approach was published in 2017, it still has
great significance to this day. As a starting point of development,
the authors describe that log entries in most cases have fixed pat-
terns and also follow grammar rules. But they also state that it is
still difficult to make a generalization about interesting features for
different data sets. To evaluate their implementation the authors
use the HDFS data set [26] and the OpenStack data set [8]. The
HDFS data set consists of log lines from a primary data storage
system. The OpenStack data set contains administrative logs of
virtual machine instances. DeepLog works in a semi-supervised
way. Therefore only anomaly-free sequences are used for training
the LSTM model. First, the Spell [7] parser extracts so-called log
keys (=constant part) and parameter values (=variable part) from
each log line. This way two separate AD systems can be set up. First,
DeepLog verifies if the log key to be examined is a known one. In
case it is, it can then check if parameter values indicate anomalies.
The sequence in which log keys occur can be used to detect so-called
execution path anomalies. This type of anomalies corresponds to
the contextual anomalies explained above. The LSTM model uses a
set of log keys with a fixed size, called window size, and uses the
gathered knowledge to predict which log key should follow. After
training the LSTM model, DeepLog outputs possible candidates
that were predicted with their respective probabilities. In contrast
to this, parameter values are used to find irregularities in log lines
with the same log keys. A matrix is built up where each column
corresponds to a log key and the corresponding parameter values
are entered in the rows. For the evaluation of the matrix, an LSTM
model can also be used. The individual parameter values are used
as input in the order in which they occur and an attempt is made
to generate a prediction for the following parameter value based
on this existing history. The structure of the DeepLog architecture
described here is shown in Fig. 1.

L 2| . |Li]""’9“"5 Logseeg;:;g:-"alv
P1,1|P21| .. [Pi1
Parser
» P12 (bP22| .. [Pi2 value|

values for,
each
Logkey

Anomaly
Detection

P1,i | P2, Pi,i

Figure 1: DeepLog architecture based on [8].

The two most important input parameters DeepLog needs are
length of the window under consideration and number of top can-
didates for prediction. The choice of these parameters depends on

Towards Detecting Anomalies in Log-Event Sequences with Deep Learning

the problem at hand. For example, if we choose the window size too
large, we get a wide view in the past and a better overall picture,
but we also have to expect performance losses resulting in long
training time. The choice for the number of candidates results in a
trade off between AD rate and false alarm rate.

2.2 LogAnomaly

LogAnomaly follows a similar approach as DeepLog. The authors
of [17] claim that if we just look at log keys rigidly, one receives
many false alarms, because log line structures and dependencies
can be highly complex. Therefore they analyze not only log keys
but also semantics of the logs. For this, they use a method they call
template2vec. This method extracts semantics including synonyms
and antonyms. They use LSTM as DL model to predict consecutive
logs and HDFS as data set for evaluation. In addition, they also
consider the Blue Gene/L (BGL) data set [19], which consists of
logs from a supercomputer and was manually labeled. The authors
designate LogAnomaly as an unsupervised approach, but they use
labels of the data sets as groundtruth for evaluation. According
to the experiments performed, LogAnomaly performs better than
DeepLog based on the evaluation metrics for the data sets inves-
tigated. However, a described case study in this paper shows that
DeepLog triggered an alarm faster than LogAnomaly in a single
anomaly case scenario.

2.3 LogRobust

Zhang et al. [28] draw attention to instability of log data. Insta-
bility is caused by the evolution of the logging process itself and
of processing noise in log data. Evolution is based on constant
development of software and associated changes in source code
and logging statements. The introduction of noise already happens
during data collection. But logs can also be misinterpreted dur-
ing parsing, which both reduces the accuracy of an AD system.
To counteract these adverse influences, the authors of LogRobust
rely on semantic vectors. Like LogAnomaly, semantic properties
of log lines are extracted, but in contrast to previously discussed
approaches, LogRobust can also process new log lines if they are
similar to known ones. To test this, slightly modified log lines are
inserted in the HDFS data set to be examined. It is important to
note that training of the model is still performed with unmodified
log lines, i.e., the original HDEFS training data set. LogRobust also
uses log-event sequences as input for a LSTM, but it is a supervised
approach and uses 6000 normal log-event sequences and 6000 ma-
licious log-event sequences which are chosen randomly from the
HDFS data set to train the model. As expected due to the super-
vised approach metrics after training are better, for testing without
modified log lines, than for the other two approaches shown above.
Further evaluation shows that LogRobust still achieves good met-
rics even with high injection rates of modified log lines in the test
data. The authors have not published the source code for their work,
but re-implementations are available.

3 APPROACH FOR ANOMALY DETECTION
WITH LOG-EVENT SEQUENCES

In this section we present our approach for AD analyzing log-event
sequences. Our approach has been tested with the HDFS data set

EICC 2023, June 14-15, 2023, Stavanger, Norway

[26] and also an Audit data set [15]. To use the Audit data set some
preprocessing steps are necessary which we will explain in this
section.

3.1 HDFS Data set

The HDFS is a file system designed for storing large files, batch
processing, and to run on commodity hardware. The data set was
generated 2009, in a private cloud environment (Amazon’s Elastic
Compute Cloud) using benchmark workloads and is described in
detail in [26]. It consists of 11.2 million system log entries. It was
manually labeled by Hadoop domain experts, to identify anomalies,
where the anomalies describe incorrect execution paths. 2.9% of all
system log entries were labeled as anomalous by those experts. The
raw HDFS logs are semi-structured and consist of a header- and a
content part. The log data are sliced into sequences according to
block_ID’s. Then each trace associated with a specific block_ID is
assigned a ground truth label: normal/anomaly. In this paper we
use the HDFS data set to test our adapted LogDeep implementation
and to compare it with published results of [8].

3.2 Audit Data set

This data set was provided by researchers of AIT and is also publicly
available since 2020 [14]. The authors show in [15], how to set up
a testbed and generate the Audit data set. They published four
testbeds, where they log users accessing a Webmail platform and
online store in a time period of six days. Within this time period
one multistep attack and one complex vulnerability exploit were
launched. The most difficult task related to data set creation is to
correctly label log lines. For this data set the authors used time-
based labels and line-based labels. Time-based labeling uses time
stamps, which are parsed with each log line. An attack is labeled
malicious, when the log line occurrence lies within the time frame
of the attack stage. Problems with this approach arise, if normal log
lines interleave with log lines of an attack. So the second approach
called line-based labeling tries to overcome this shortcoming by
labeling attack steps in an idle system. It turns out that most attacks
generate ordered log-event sequences (e.g., Webshell upload) or
repeating log lines (e.g., scans). Through manual review, line-based
labels have proven to be more accurate for the Audit data set.

3.3 Feature Selection and Parsing

The Audit logs are collected by a Linux Audit daemon. Those logs
are interesting, because they provide low-level syscall information
and show accesses of files and paths on the host. Audit log lines
include types such as SYSCALL-, CWD-, PATH- or PROCTITLE
type. The type of each log line is specified at the beginning of the
log line in the type field. Type SYSCALL indicates that a log line was
triggered by a system call to the kernel. Type CWD does not occur
in the data set provided by the AIT. Type PATH specifies all paths
that a system call gets as arguments. Finally, Type PROCTITLE
entry gives the complete command-line in hexadecimal notation.
In this paper we concentrate only on the entries of type SYSCALL,
because they contain all relevant information and the remaining
type fields do not always occur. Each SYSCALL log line has several
features. An example of an Audit log line can be seen in Fig. 2.

EICC 2023, June 14-15, 2023, Stavanger, Norway

type=SYSCALL msg=audit(1583279999.201:38279754): arch=c000003e syscall=0
success=yes exit=1166 a0=10 a1=7f2f8668f048 a2=1f40 a3=5637e8a51eal
items=0 ppid=22418 pid=17343 auid=4294967295 uid=33 gid=33 euid=33 suid=33
fsuid=33 egid=33 sgid=33 fsgid=33 tty=(none) ses=4294967295 comm="apache2"
exe="/usr/sbin/apache2" key=(null)

Figure 2: Example of an Audit log line.

To make the features accessible from raw logs we use a parser. With
log parsing we extract event templates from unstructured raw log
data. Each log message consists of a constant event template and
a variable part, where values can differ over time. The goal is to
separate constant- from variable parts and form a log event. In [8]
they use an effective methodology to extract so called log keys.
Those log keys represent the constant part of a print statement in
given log entries. For our approach we used a state of the art parser
called Spell [7], which utilizes a Longest Common Subsequence
(LCS) based method. The LCS method is based on the assumption
that log lines mostly consist of constant parts and only a small
part is coverd by variables. If two log lines are produced by the
same log printing statement and only differ in the dynamic variable
part, the LCS of the two log lines is very likely to be constant
and thus an event template. In a log line all occurring words are
so-called tokens separated by delimiters. These delimiters depend
on the format of the log line. Tokens such as syscall or process
identifier (pid) are used for the construction of the LCS [7]. In our
approach log lines were grouped based on the pid feature first. This
way, we get all log lines that belong to a single process. With the
Spell parser, the grouped log lines were parsed based on the syscall
feature. Thus, each syscall that occurs in the data set, corresponds
to a log key. There are 268 unique log keys in total. The result of
these steps are ordered log-event sequences that can be used as
input for the LSTM. The LSTM divides these log-event sequences
into so-called windows and processes them one after the other.
Windows can be based on time or sessions. Time-based grouping
is again divided into sliding time windows and fixed time windows.
For sliding time windows, a duration is specified and pushed over
all data with a static step size. For each step all log lines are grouped
together that are between a start and end time of a time window. By
moving the window further, an overlapping of log lines is possible.
On the other hand for fixed windows, the step size is the same
as window size. Log lines are always considered in exactly one
window size and overlapping is not possible. Fixed time windows
give a less fine-grained view on log lines but each log line is also
only considered once. In contrast, session windows group log lines
by session identifiers. This way, program flows can be represented
very well, which may be processed at different times. It can also be
used to distinguish between events that may take place in parallel.
Unfortunately, not all types of log data have session identifiers
[13]. For the processing of Audit log lines we use a combination of
sliding and session window. This way we can use the advantages of
both. As session identifier we use the pid feature. For HDFS log data
"block_id" serves as session identifier, which marks a particular
execution sequence and groups together particular log lines.

3.4 LogDeep Adaption

A detailed search of codebases such as Github and Gitlab revealed
LogDeep [6] to be the most promising re-implementation, based
on ratings and year of release. LogDeep combines the work of

Himler et al.

[8],[28] and [17] to a framework for AD utilizing log data and
has already been adapted in other scientific works, such as [10].
Because of the scientific relevance, we focused on the DeepLog
part from this implementation. As previously described, DeepLog
uses LSTM as DL model. The main adjustable parameters in the
LogDeep implementation are:

e L: Number of layers of LSTM.

e o: Number of memory units in one LSTM block.

e Window size: Length of window under consideration.

o Candidates: Number of candidates that were predicted with
their respective probabilities.

After the parameters have been set, LogDeep reads the training
log-event sequences. The log-event sequences must have at least
the length of the specified window size. In principle, training of
the DL model and AD, that uses the trained model, are separate
processes. The reason for this is that after the training, the model
is stored and can be transferred somewhere else in order to per-
form AD there as well. The Adam optimizer is used for the LSTM.
This optimizer is often used for tasks where sparse gradients are to
be expected. The advantages of this optimizer are increased com-
putational performance and low memory requirements [12]. The
LSTM delivers candidates with a certain probability which log key
is expected next in the log-event sequences. Therefore, we use the
cross entropy as loss function here, which quantifies the difference
between probability distributions. After training, LogDeep can be
used for AD. For this purpose, normal and anomalous test data are
read in separately. The model calculates which log key comes next
for each individual window and compares whether this matches the
log keys in the test data. If the following log key is not contained in
the proposed candidates, the whole log-event sequence is marked
as anomaly.

3.4.1 Padding. While analyzing the source code of LogDeep, we
came across an interesting fact. If we take a closer look at the HDFS
data set, we see that train and test normal log-event sequences
consist of at least 10 consecutive log keys. However, in the test
abnormal log-event sequences, also shorter sequences occur. This
results in a problem for the window size, because the LSTM deter-
mines how far back it stores past information. In order to be able
to analyze these short sequences with the model, so-called padding
is applied. In this case, log-event sequences are filled with a log key
that not occured in the data, in order to achieve desired window size.
This log key must be unique and must not have occurred before,
otherwise the data set would be corrupted. Based on this discovery,
we conducted another experiment to show what effect padding has
on LogDeep. Section 4.1 presents the related results. If padding is
omitted, LogDeep cannot process and discards all test abnormal
log-event sequences in the AD phase, which number of log keys is
less than the window size. The size of the training and test normal
data set remains the same, only the size of the test abnormal data
set is reduced.

4 EVALUATION

The re-implementation of DeepLog called LogDeep [6] was used
as baseline for all further experiments. In the first step the code
base was analyzed. With the original code base only the HDFS data
set can be processed. The code has been adapted to allow a user to

Towards Detecting Anomalies in Log-Event Sequences with Deep Learning

choose if they want to process a HDFS or an Audit data set. In our
implementation the parameters for the selected data set can be set
and padding, which is described in Sect. 3.4.1, can be activated or
deactivated. The following requirements for the current implemen-
tation apply: python >= 3.6 and pytorch >=1.1.0.

4.1 LogDeep with HDFS data set

First, we verified if the evaluation metrics of LogDeep correspond
to those published in [8]. For this purpose we set the window size
to 10. The hidden size, which defines the number of hidden states,
was set to 64. Further, the number of layers was set to 2, number
of candidates to 9, batch size to 2,048, and number of epochs to
300. These values were also taken from [8]. As a basis for evalu-
ation we used the freely available HDFS data set in parsed form
and preselected splitting of train and test data [1]. This way our
implementation can be compared with other scientific publications
and errors caused by parsing can be omitted. The number of log
keys is 29 and the exact breakdown of the data set can be taken
from Tab. 1.

Train Test normal Test abnormal
sequences sequences sequences
4,855 553,366 16,838

Table 1: Splitting of HDFS data set in train- and test se-
quences.

Results show that the re-implementation achieves approximately
the same metrics as in [8]. The comparison is listed in Tab. 2.

Accuracy | Precision | Recall F1-Score

DeepLog [8] | - 95% 96% 96%

LogDeep [6] 99.76% 95.63% 96.35% 95.99%

Table 2: Comparison between DeepLog and LogDeep.

The effects of padding can be analyzed well using the HDFS data set.
Since only the test abnormal sequences contains short log-event se-
quences smaller than the window size, padding is only applied there.
By appending a unique log key, the log-event sequences are artifi-
cially extended in order to be processed with the LSTM. In principle,
this results in a trade off. On the one hand, artificial lengthening
gives better results for the metrics. By attaching a unique log key to
the test abnormal sequences, the AD is very simple and it has the
same effect as attaching an anomaly label. Therefore, the results
are artificially improved due to padding, which is misleading. On
the other hand, without padding, log-event sequences that are too
short would simply be discarded and not fed into the AD process.
The number of test abnormal sequences is reduced from 16,838 to
10,647. The small amount of test abnormal sequences compared to
the test normal sequences indicates an imbalanced data set. The
results of this experiment can be seen in Tab. 3 and Fig. 3.

Accuracy | Precision Recall F1-Score
padding 99.66% 95.13% 95.81% 94.45%
nopadding 99.66% 93.07% 89.03% 91.00%

Table 3: Comparison between padding and nopadding for
LogDeep with HDFS log-event sequences.

EICC 2023, June 14-15, 2023, Stavanger, Norway

100% I - N
80% |~ N
60% |- N
40% - .
20% |- 00 padding

0 0nopadding
0% 1 1 1 e
Accuracy Precision Recall F1-Score

Figure 3: Comparison between padding and nopadding for
LogDeep with HDFS log-event sequences.

4.2 LogDeep with Audit data set

The preprocessing- and parsing steps for the Audit [15] data set
were described in Sect. 3. The baseline of the Audit data set consists
of 18,428,737 log lines. In contrast to the HDFS data set, the common
split of data sets in DL of 80% train data to 20% test data was used
[5][2][20]. The exact separation into training, test normal and test
abnormal sequences can be seen in Tab. 4. The LSTM was not
fundamentally changed and we use padding in the first step.. We
empirically assessed that the LSTM achieves best performance
when the number of candidates are set to 6 and number of epochs
are set to 20 for the Audit data set.

Log Train Test normal | Test abnormal
lines sequences sequences sequences
~18 mil. 33,634 8,409 90

Table 4: Splitting of Audit data set in train- and test sequences.

The results for a LogDeep approach with ~18 million Audit log
lines and padding can be taken from Tab. 5. When analyzing the
Audit log-event sequences, we see that 39.56% of the test abnormal
sequences also occur in the train sequences and 28.67% of the test
abnormal sequences occur in the test normal sequences. However,
we have extended the analysis to not only look at identical log-event
sequences but also to check if test abnormal sequences occur at
some arbitrary point in training or test normal sequences. An Audit
log-event sequence is built up on individual log keys, e.g., syscalls.
A practical example could be: If we log the behavior of a user, the
sequence of syscalls which are executed is not clear from the start
or can also occur in a different order. To continue the example, one
can assume an attacker, who behaves like a normal user up to a cer-
tain point. Thus, the beginning of an Audit log-event sequence can
look exactly the same in the benign as well as in the anomaly case.
This makes it difficult to distinguish between benign and malicious
log-event sequences and leads to poor Recall scores, which is the
most important value for accurate AD. One recognizes a limitation
here due to the recorded features of Audit logs. Another important
point for the Audit data set is that it is an imbalanced data set. As

EICC 2023, June 14-15, 2023, Stavanger, Norway

Tab. 4 shows we have only 90 malicious log-event sequences. The
low number of test abnormal sequences compared to train and test
normal sequences is the reason for the high Accuracy values.

If the Audit log-event sequences are not padded, the number of
train sequences is reduced from 33634 to 32822, the number of
test normal sequences from 8409 to 8169 and the number of test
abnormal sequences from 90 to 44. The results for the reduced
data set can be seen in Tab. 5 and Fig. 4.. It can be seen that some
metrics for both data sets are degraded by nopadding. But the Recall
seems to increase. The reason for this is that we have test abnormal
sequences that are detected regardless of whether they are padded
or not. Those sequences are very long sequences and stand out from
the rest. Nopadding reduces the number of processable anomalies
by half. This reduction increases the Recall despite the same number
of correctly detected sequences. Nopadding is also not an option
because too short log-event sequences are simply omitted. In our
opinion the effect of padding for Audit data is also not as poor as
for the HDFS data, because the same unique log key is appended to
the train, test normal and test abnormal sequences.

Accuracy | Precision Recall F1-Score
padding 99.04% 68.00% 18.88% 29.56%
nopadding 99.53% 58.07% 40.91% 48.00%

Table 5: Comparison between padding and nopadding for
LogDeep for Audit log-event sequences.

100% - 0] 0o padding
[D nopadding
80% |~ -
60% |~ — -
40% |- |
20% |- H
0% T T 1 T
Accuracy Precision Recall F1-Score

Figure 4: Comparison between padding and nopadding for
LogDeep for Audit log-event sequences.

5 DISCUSSION

If we want to detect contextual anomalies we can use LSTM mod-
els in general and our LogDeep re-implementation as the results
show. While validating already published scientific results for the
HDFS data set, we noticed that a specific padding function was
used. Padding results in an artificial lengthening of log-event se-
quences. That means if log-event sequences are not at least as long
as the window size they will not be considered at all and discarded.

Himler et al.

Especially for the HDFS data set this has undesired effects. The
train- and test normal sequences are sufficiently long log-event
sequences. This is important for the applied window size of the
LSTM model. In contrast to this, the test abnormal sequences are
artificially lengthened with a unique log key. For AD it is very sim-
ple to detect these log-event sequences, because they do not occur
during training and testing with normal sequences. This indicates
better performance than can be achieved in real operation. After
validating the results for the HDFS data set, we turned to the Audit
data set. We have chosen the syscall feature as log key. Experiments
have shown that due to the small number of distinct values for
the syscall and the occurrence of identical log-event sequences in
the train-, test normal-, and test abnormal sequences, a precise AD
is not possible. Another important point for the Audit data set is
that it is an imbalanced data set, like the HDFS data set. The Audit
data set consists of many more benign log lines than malicious log
lines. For the investigated Audit data set, the multiple occurrences
of log lines in the train-, test normal-, and test abnormal sequences
cannot be avoided, because attackers partly behave the same way
as normal users. That means, up to a certain point the behavior
looks identical to the logging system, because the same commands
are executed. It would be necessary to improve the logging fun-
damentally and to collect more features. In this paper we decided
not to simply discard the multiple occurrences of Audit log lines
just to achieve better metrics. Simply deleting these multiple oc-
currences would falsify the existing Audit data set. We have also
investigated the effects of padding for the Audit data set. In contrast
to the HDFS data set, the train- , test normal-, and test abnormal
Audit sequences are shortened log-event sequences with respect
to the window size. When artificially lengthened with a unique
log key, padding has the same effect on both data sets. With these
limitations in mind, further scientific research challenges in this
domain should be investigated:

o Further research would be needed to determine if LSTM is
the best DL model to analyze log-event sequences. We are
currently seeing a development of combining individual DL
models that were previously treated separately and that by
combining them, possibly better results can be achieved [24].

o In our approach we grouped individual log lines by their pid
and used the syscall feature as log key. However, since Audit
log lines have also other features, it would be of interest to
know if AD improves when using other features or a variety
of features as log keys.

o The handling of imbalanced data sets where many normal log
lines face very few anomalous log lines would need further
investigation.

6 CONCLUSION AND FUTURE WORK

In this paper we showed the necessary design steps, prerequisites
to consider, and an approach for AD utilizing DL which can han-
dle both HDFS and Audit data sets. Audit data sets were not used
extensively in this area of scientific research in the past. Our im-
plementation uses a LSTM and AD for log-event sequences. In the
course of implementation, limitations came to light that should be
considered in future design processes. It is imperative to have a
basic understanding of how the log data to be analyzed are collected

Towards Detecting Anomalies in Log-Event Sequences with Deep Learning

and structured. One of the biggest challenges for AD is to find the
right DL method for the use case at hand and its suitability for a
given data set.

We adapted a state of the art open source application called LogDeep
and were able to replicate the results from paper [8] which uses
a HDFS [26] data set. However, we found a limitation that occurs
due to the padding function. Through this function it is possible to
extend too short log-event sequences with respect to the window
size, which is important for the application of LSTM. This has to
be done in the test abnormal sequences set in such a way that AD
is almost trivial for these artificially modified log line sequences.
Consequently, the very good detection performance reported in
paper [8] cannot be achieved without the padding function. After-
wards, we adapted LogDeep for an Audit data set. Unfortunately, we
could not achieve nearly satisfactory values for the metrics of AD.
The padding function described above did not improve the results.
One of the reasons for the poor results is that the Audit data set is
imbalanced. In this data set there is an overabundance of benign log-
event sequences compared to a small number of malicious log-event
sequences. Furthermore, a large number of log-event sequences
were again found to be identical in the benign and malcious data
set. This is again due to the labelling problem described above. Due
to the limitations described in this paper, further scientific work is
needed to achieve satisfactory AD.

ACKNOWLEDGMENTS

This work was partly funded by the European Defence Fund (EDF)
project Alnception under grant no. 101103385.

REFERENCES

[1] Anonymous. 2021. Loghub. https://zenodo.org/record/3227177.

[2] Salah Bouktif, Ali Fiaz, Ali Ouni, and Mohamed Adel Serhani. 2018. Optimal Deep
Learning LSTM Model for Electric Load Forecasting using Feature Selection and
Genetic Algorithm: Comparison with Machine Learning Approaches. Energies
11, 7 (2018). https://doi.org/10.3390/en11071636

[3] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep Learning for Anomaly
Detection: A Survey. http://arxiv.org/abs/1901.03407

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:

A survey. Comput. Surveys 41, 3 (2009), 1-58. https://doi.org/10.1145/1541880.

1541882

] P. Dangeti. 2017. Statistics for Machine Learning. Packt Publishing.

[6] Donglee-Afar. 2020. LogDeep. https://github.com/donglee-afar/logdeep.

] Min Du and Feifei Li. 2016. Spell: Streaming Parsing of System Event Logs. In
IEEE 16th International Conference on Data Mining. 859-864. https://doi.org/10.
1109/ICDM.2016.0103
[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly

Detection and Diagnosis from System Logs through Deep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1285-1298. https://doi.org/10.1145/3133956.3134015

[9] Amir Farzad and T. Aaron Gulliver. 2020. Unsupervised log message anomaly

detection. ICT Express 6, 3 (2020), 229-237. https://doi.org/10.1016/j.icte.2020.06.

003

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. LogBERT: Log Anomaly

Detection via BERT. In International Joint Conference on Neural Networks. 1-8.

https://doi.org/10.1109/IJCNN52387.2021.9534113

[11] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience Report:

System Log Analysis for Anomaly Detection. In IEEE 27th International Sympo-
sium on Software Reliability Engineering. 207-218. https://doi.org/10.1109/ISSRE.
2016.21

[12] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-

mization. http://arxiv.org/abs/1412.6980

[13] Max Landauer, Sebastian Onder, Florian Skopik, and Markus Wurzenberger.

2022. Deep Learning for Anomaly Detection in Log Data: A Survey. http:
//arxiv.org/abs/2207.03820

[10

EICC 2023, June 14-15, 2023, Stavanger, Norway

[14] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner, and
Andreas Rauber. 2020. AIT Log Data Set V1.1. https://zenodo.org/record/4264796.
[15] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner, and
Andreas Rauber. 2021. Have it Your Way: Generating Customized Log Datasets
With a Model-Driven Simulation Testbed. IEEE Transactions on Reliability 70, 1
(2021), 402-415. https://doi.org/10.1109/TR.2020.3031317
Hongyu Liu and Bo Lang. 2019. Machine Learning and Deep Learning Methods
for Intrusion Detection Systems: A Survey. Applied Sciences 9, 20 (2019), 4396.
https://doi.org/10.3390/app9204396
Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. LogAnomaly:
Unsupervised Detection of Sequential and Quantitative Anomalies in Unstruc-
tured Logs. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. 4739-4745. https://doi.org/10.24963/ijcai.2019/658
Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. 2020. Self-Attentive Classification-Based Anomaly Detection in Un-
structured Logs. CoRR (2020). https://arxiv.org/abs/2008.09340
[19] Adam Oliner and Jon Stearley. 2007. What Supercomputers Say: A Study of Five
System Logs. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 575-584. https://doi.org/10.1109/DSN.2007.103
Santwana Sagnika, Bhabani Shankar Prasad Mishra, and Saroj K. Meher. 2021.
An attention-based CNN-LSTM model for subjectivity detection in opinion-
mining. Neural Computing and Applications 33, 24 (2021), 17425-17438. https:
//doi.org/10.1007/s00521-021-06328-5
Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. 2007. Condi-
tional Anomaly Detection. IEEE Transactions on Knowledge and Data Engineering
19,5 (2007), 631-645. https://doi.org/10.1109/TKDE.2007.1009
Miryam Elizabeth Villa-Pérez, Miguel A Alvarez Carmona, Octavio Loyola-
Gonzéalez, Miguel Angel Medina-Pérez, Juan Carlos Velazco-Rossell, and Kim-
Kwang Raymond Choo. 2021. Semi-supervised anomaly detection algorithms: A
comparative summary and future research directions. Knowledge-Based Systems
218 (2021). https://doi.org/10.1016/j.knosys.2021.106878
[23] R. Vinayakumar, Mamoun Alazab, K. P. Soman, Prabaharan Poornachandran,
Ameer Al-Nemrat, and Sitalakshmi Venkatraman. 2019. Deep Learning Approach
for Intelligent Intrusion Detection System. IEEE Access 7 (2019), 41525-41550.
https://doi.org/10.1109/ACCESS.2019.2895334
Qiaozheng Wang, Xiuguo Zhang, Xuejie Wang, and Zhiying Cao. 2022. Log
Sequence Anomaly Detection Method Based on Contrastive Adversarial Training
and Dual Feature Extraction. Entropy 24, 1 (2022). https://doi.org/10.3390/
€24010069
Markus Wurzenberger, Florian Skopik, Giuseppe Settanni, and Roman Fiedler.
2018. AECID: A Self-learning Anomaly Detection Approach based on Light-
weight Log Parser Models:. In Proceedings of the 4th International Conference
on Information Systems Security and Privacy. SCITEPRESS, 386-397. https:
//doi.org/10.5220/0006643003860397
Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM Press,
117. https://doi.org/10.1145/1629575.1629587
Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, and
Wenbin Zhang. 2021. PLELog: Semi-Supervised Log-Based Anomaly Detection
via Probabilistic Label Estimation. In IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings. 230-231. https://doi.org/10.1109/
ICSE-Companion52605.2021.00106
Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He,
Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dong-
mei Zhang. 2019. Robust log-based anomaly detection on unstable log data. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 807-817.
https://doi.org/10.1145/3338906.3338931

[16

(17

(18

[20

[21

[22

[24

[25

[26

~
=

[28

Received 11 January 2023; revised 24 March 2023; accepted 28 March 2023

https://zenodo.org/record/3227177
https://doi.org/10.3390/en11071636
http://arxiv.org/abs/1901.03407
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://github.com/donglee-afar/logdeep
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1016/j.icte.2020.06.003
https://doi.org/10.1016/j.icte.2020.06.003
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2207.03820
http://arxiv.org/abs/2207.03820
https://zenodo.org/record/4264796
https://doi.org/10.1109/TR.2020.3031317
https://doi.org/10.3390/app9204396
https://doi.org/10.24963/ijcai.2019/658
https://arxiv.org/abs/2008.09340
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1007/s00521-021-06328-5
https://doi.org/10.1007/s00521-021-06328-5
https://doi.org/10.1109/TKDE.2007.1009
https://doi.org/10.1016/j.knosys.2021.106878
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.3390/e24010069
https://doi.org/10.3390/e24010069
https://doi.org/10.5220/0006643003860397
https://doi.org/10.5220/0006643003860397
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/ICSE-Companion52605.2021.00106
https://doi.org/10.1109/ICSE-Companion52605.2021.00106
https://doi.org/10.1145/3338906.3338931

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DeepLog
	2.2 LogAnomaly
	2.3 LogRobust

	3 Approach for Anomaly Detection with log-event sequences
	3.1 HDFS Data set
	3.2 Audit Data set
	3.3 Feature Selection and Parsing
	3.4 LogDeep Adaption

	4 Evaluation
	4.1 LogDeep with HDFS data set
	4.2 LogDeep with Audit data set

	5 Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References

