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Abstract—Behavior-based anomaly detection (AD) approaches for enterprise-IT security are not easily applicable to other domains,
such as embedded devices and loT nodes in cyber-physical systems. AD approaches are usually highly optimized for specific purposes,
tightly bound to domain-specific technologies and rely on a specific syntax of investigated data. Data from cyber-physical systems is
however highly diverse, often poorly documented and not easily ingested for automated analysis. AECID provides an anomaly detection
approach, that monitors unstructured textual event data (i.e., log data), and implements self-learning for autonomous operation. A parser
generator establishes a model of normal system behavior on top of observed events, which then can be leveraged to detect anomalies as
deviations from that baseline. The unsupervised anomaly detection approaches of AECID apply machine learning techniques to perform
sequence analysis, correlation analysis and statistical tests of events represented in log data. This paper discusses AECID’s applicability
in a building security system use case. A proof of concept demonstrates the effective detection of anomalies in log data of a building
access control system stemming from card misuse, including stolen access cards and cloned cards.

Index Terms—Access control, anomaly detection, behavior modeling, intrusion detection, log data, machine learning, security

1 INTRODUCTION

NTERPRISE IT, embedded systems, smart manufacturing,

energy grids, industrial IoT, fintech, and other domains,
operate interconnected systems, which follow predefined
processes and are employed according to specific usage pol-
icies. The events generated by the systems governed by
these processes are usually recorded as log data [1] for
maintenance, accountability, or auditing purposes. Such
records contain valuable information that can be leveraged
to detect any inconsistency or deviation in the process, and
indicate anomalies potentially caused by attacks, misconfi-
guration or component failure. The investigation of such
events can be performed adopting different anomaly detec-
tion (AD) techniques [2].

AD approaches have been largely investigated by IT secu-
rity researchers and have been proven effective for very spe-
cific problems; nevertheless, these methods have not been
fully leveraged to achieve security in other domains, yet. The
reasons for this are manifold, but a major hurdle is that log
data is highly diverse and their structure mostly poorly
documented [3]. Instead of a few major system types like in
enterprise IT, in operational technologies, IoT and cyber-
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physical systems (CPS) hundreds of vendors exist, which
makes it even harder to maintain an understanding of sys-
tem log data structures. Additionally, the life span of CPS
components is much longer than in enterprise IT, which usu-
ally leads to a mixture of devices of different types and gen-
erations in large CPS. These are all factors that hinder the
wide adoption of standards for log data in this area and leads
to highly diverse and often insufficiently documented log
output [4].

We argue that the advantages provided by AD in enter-
prise IT security should efficiently be transferred to other
domains, including embedded systems and IoT security as
applied in building security systems (BSS). Specifically,
methods from user entity behavior analytics (UEBA) [5],
used to determine fraudulent behavior on enterprise end-
points, are a boon to CPS by determining behavior profiles
of entities within a CPS — and pinpoint any kinds of behav-
ior anomalies on top of that. In this paper, we take a closer
look into the application of AD in physical access control
systems [6]. Here, key cards allow users to enter areas of a
building for which they have been authorized. By deter-
mining deviations from individually learned usage pat-
terns of cards using log data from building security
equipment, we demonstrate that we are able to discover
different kinds of fraud, such as stolen cards and cloned
cards, and other kinds of weaknesses, including excessive
access rights.

The main contribution of this paper is the demonstration
of a smart anomaly detection approach in a non-enterprise
IT environment. The detection approach was designed for
self-learning a baseline in an unsupervised fashion and
applies subsequent online anomaly detection of deviating
behavior. Specifically, our goal is to detect strong changes of
the card holders’ behavior regarding their booking activities

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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as a consequence of fraudulent actions. We further discuss
the feasibility of four different detectors for physical access
control, where we investigate appropriate means to make
them applicable in a real life setting with noisy data due to
erratic users in changing environments.

We apply AECID [7], a cutting edge machine learning
solution that flexibly adapts to the observed infrastructure,
reliably builds system behavior models, and predicts and
detects behavior changes caused by intrusion attempts,
unintended configuration changes, and malfunction. We
show how AECID can be applied to increase the protection
provided by an existing facility security control center.

The remainder of the paper is organized as follows. Sec-
tion 2 provides important background on physical security
systems and use cases for AD in this context. Then, Section 3
outlines the AD methodology of AECID. Following these
design principles, we highlight the implementation for phys-
ical access control in Section 4. Specifically, we show the
structure of log data and the configuration of suitable detec-
tors. In Section 5, we demonstrate the application on real
data from a medium-sized operational environment. Then,
Section 6 reports on important lessons learned and critically
discusses limitations of our work. Eventually, Section 7 con-
tains related work and Section 8 concludes the paper.

2 BUILDING SECURITY SYSTEMS

A multitude of data sources exist in building security sys-
tems (BSS), suitable for detecting behavioral anomalies of
its users. In this paper we mainly focus on the usage of
access cards in physical access control, however, also data
from IoT cameras or other means of sensors are potentially
suitable to achieve similar results. Depending on the use
case, different types of anomalies, such as outliers or change
in trends need to be detected.

2.1 Anomaly Detection (AD) in BSS

The primary goal of Intrusion Detection Systems (IDS) is to
timely detect invaders and attackers, to react quickly and
reduce the caused damage [8]. There are many parallels in
how IDS are used in the areas of ‘classic” enterprise IT secu-
rity and building security systems. While, for example, fire-
walls and antivirus scans are applied to detect and prevent
attacks in computer networks, physical access control sys-
tems (such as electronic locks) and surveillance cameras are
used for the same purposes in physical facilities.

Smart anomaly detection approaches are required to reli-
ably discover deviations from a desired system’s behavior
because of an unusual utilization through an illegitimate
user [2]. Notice that this is the same regardless if a high-end
server landscape is being exploited or a low-end embedded
system of a BSS. For instance, if adversaries manage to steal
user credentials, or access cards in case of building security,
and are using these legitimate credentials to illegitimately
access systems they will eventually utilize them differently
from legitimate users. In IT environments, they run scans,
search shared directories and try to extend their presence to
surrounding systems. In physical building, they may do the
same, i.e., systematically try out where they can get access
or moving through a building on unusual routes. This will
generate a series of events identifiable by anomaly-based
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detection approaches. For that purpose, a baseline describes
the ‘normal and desired system behavior’ and everything that
differs from this description is classified as hostile. This way,
AD approaches can find new attack vectors that signature-
based approaches cannot.

2.2 Use Cases of AD in BSS

We describe four use cases of AD for physical access con-
trol, to demonstrate the benefits of AD. Detectors for these
use cases are further implemented and evaluated in the
remainder of this paper. Notice, certain misuse cases are not
covered by the introduced detectors, e.g., piggybacking, for
which other means, such as information from surveillance
cameras, would need to be processed. Additionally, the less
the attacker knows about the legitimate card holder and/or
the company policies the more likely they will cause anoma-
lies. In contrast. The better an attacker can mimic the legiti-
mate card holder’s behavior, the harder it will be for the
system to discover misuse.

2.2.1 UC#1 Systematic Trial and Error

A casual attacker finds a physical access card and enters a
building. Within the building s/he systematically tries out to
which rooms s /he can get access to with this card within short
time intervals. This usage pattern is unusual for the legitimate
owner of the card. A high number of booking events in small
time slots occur, potentially outside previous usage periods,
and at doors usually not used in this sequence. Numerous
types of anomalies may occur (unusual frequencies, breaking
sequences etc.), leading to detection of this misuse case.

2.2.2 UC#2 Cloned Cards

Similar to UC#1 an attacker gets hold of a legitimate access
card, however, this time s/he clones the card leading to two
identical cards causing booking events in the access system.
The same detection mechanisms as before apply. Moreover,
this time the AD system has an additional sophisticated
means to detect misuse, since two identical cards are now
used, potentially at close points in time. The AD system could
observe booking events across all cards at the different doors
of a building and built an understanding of how close doors
are located and how much time is needed to progress from
one door to another one. If the legitimate owner uses his card
at one part of the building, while the attacker causes bookings
in a another one, temporal conditions will be violated.

2.2.3 UC#3 Excessive Access Rights

In this case, a card has been granted access rights to a room,
but was never used to open the corresponding door. This
happens quite frequently if access rights are not managed
individually but via group memberships. Although the legit-
imate card owner would be allowed to go through the door
the usage on that particular lock would be highly suspicious.
An anomaly in this case is thus a booking event at a door by
a card holder who has never (or rarely) crossed this door.

2.2.4 UC#4 Remote Unlock Operations

Several BSS offer the operator the ability to temporarily
unlock doors for all persons remotely. This is a feature to
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Fig. 1. Approach to anomaly detection in log data.

ease delivery of goods. In many cases specific doors are
unlocked through predefined schedules at fixed time slots
or days of a week. For exceptional cases, operators can issue
unlock operations manually too. If an attacker bribes or
blackmails an operator, unusual unlock operations, e.g., at
doors that were never unlocked in the past or unlock opera-
tions at uncommon times, would be detected by AD.

3 ANOMALY DETECTION WITH AECID

This section provides some background information on appli-
cable log data analysis techniques and subsequent anomaly
detection in CPS.

3.1 Anomaly Detection in Logs Beyond Enterprise IT
While AD approaches for IT security have been investigated
by researchers for years, this field has not been deeply
explored beyond enterprise IT, especially for small cost-
effective devices with limited computing power, such as
low-end embedded systems and IoT nodes. Signature and
block-listing based approaches are only capable of detecting
malicious single events, instead, AD allows also to monitor
complex processes and to detect attacks that manifest in
malicious event frequencies and sequences [9]. However,
due to high false positive rates, challenges during parsing
unstructured textual log lines and fast changes in the syntax
of the log data, carrying out AD is not trivial. The rapidly
changing cyber threat landscape and the high data diversity,
caused by a high variety of computer systems/IT devices
and frequently changing networks, require flexible and self-
adaptive anomaly detection approaches. Self-learning solu-
tions build a baseline of the normal system behavior during
the training phase, and then use it as ground truth to detect
anomalies that expose attacks in the detection phase [10].
Typical machine (deep) learning approaches such as arti-
ficial neural networks (ANN), Bayesian networks, decision
trees, hidden Markov models (HMM) and support vector
machines (SVM) often require large amounts of resources
that are, as in case of embedded systems and IoT, often not
available. Moreover, the lack of appropriate and well-bal-
anced trainings data is an issue. Furthermore, they mostly
work for numerical data only and not for rather complex
interdependent text data, such as computer log data. Rea-
sons for this are high dimensionality of the data (compared
to simple numeric series), a lack of intuitive distance metrics,
and encoding issues [11], [12]. Hence, AECID applies rather
traditional methods from statistics and machine learning.
Clustering [13], and methods from probability [14] and
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graph theory [15] are leveraged to identify significant prop-
erties of log data and to build efficient parser models which
allow to reduce computational complexity of log parsing.
Furthermore, procedures adopt stochastic methods, such as
statistical tests, stochastic processes and association rules to
model normal system behavior and to identify rules which
describe unique event sequences and correlations in log data.

3.2 Overview of the AECID Approach

We apply the anomaly detection (AD) approach AECID',
that was designed to work on textual log data. Fig. 1 illus-
trates the operational mode of the AECID methodology.
The approach analyzes unstructured textual event data,
such as syslog messages from computer systems or protocol
data from manually recorded events (e.g., access logs).

In the training phase (1a) a parser generator analyzes tex-
tual log data and automatically builds event parsers, i.e.,
identifies implicit structures in apparently unstructured
records using clustering, to decompose and understand tex-
tual representations of events with no manual interven-
tion [16]. After the training phase (2), the parser obtains the
event parsers from the parser generator. The parser ana-
lyzes then the unstructured textual event data entities sepa-
rately (1b), i.e., it performs a single event evaluation. Thus,
depending on the configuration, the parser either forwards
not parseable events to the parser generator — which collects
them and adapts the event parsers (3a) -, or it triggers a
point anomaly (3b). The rule generator/evaluator and time
series analysis module obtain parseable events from the
parser, and it defines and evaluates statistical rules. For
example, it evaluates the distribution with which events
occur, it defines observed good event sequences, and it car-
ries out a time series analysis. Thus, the module detects
deviations of complex processes from the normal system
behavior as anomalous event frequencies and sequences (5).
Eventually, the parser along with the rule evaluator mod-
ule, define a model of the normal behavior of the observed
environment (e.g., a physical access control system to a
building), evaluate the model and continuously verify it.

4 SYSTEM IMPLEMENTATION

We discuss the implementation of an unsupervised anom-
aly detection system for a BSS using the AECID approach
outlined before. In particular, we investigate how log data
is being parsed and analyzed with a set of specifically con-
figured detectors.

4.1 Monitoring and Logging

Log data is the lowest common denominator of data that
any piece of software can produce to inform about its opera-
tional state. Thus, log data is a key information source for
many different applications, such as anomaly detection. We
collect log data from a building security system, specifically
from the physical access module of a AVASYS.access sys-
tem,” to steer the development of the analytical model that
captures the baseline of normal system behavior. The

1. AMiner: https:/ /github.com/ait-aecid /logdata-anomaly-miner [7]
2.PKE AVASYS.access with ADC-M and ADC-S controllers
installed in PKE’s headquarter in Vienna
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Downlink;2021-01-01 07:00:00,000;AT VIE: Entrance garage (1F);ACS door-controller 11/door 1 — Operating status;permanent unlock;-(CEN);. . .
Uplink;2021-01-01 07:12:36,000;,AT VIE: Entrance PKE (1F); ACS door-controller 10/door 1/reader 1 — status;06:20:36 valid card card541 person558;. . .
Uplink;2021-01-01 07:20:36,000; AT VIE: Main entrance 3F;ACS door-controller 24/door 1/reader 1 - status;06:21:36 invalid card card175 person197;-(SSD.1);. . .
Downlink;2021-01-01 07:21:19,000,AT VIE: Main entrance 2F;ACS door-controller 8/door 2 — Operating status;door unlock;operator043;. . .

’ Uplink;2021-01-01 07:25:10,000;AT VIE: Service entrance (BSMT);ACS door-controller 9/door 6/reader 1 — status;06:25:10 valid card card717 person742;. . .

(a) Example for log lines of door transitions and remote unlocks of doors. The down/uplink specifies the direction in which the

information was transmitted.

Path Path value
/Uplink/Timestamp/Site/Door ACS door-controller 9/door 6/reader 1
/Uplink/Timestamp/.../AccessText/Card | card717

(b) Example for a parser.

(c) Example for parser paths and corresponding path values.

Fig. 2. Example for the parsing process: raw log lines are dissected according to a parser tree to make single log tokens accessible via parser paths

for further analysis.

investigated log data includes log lines of a variety of event
types, such as updates and connection status. For the analy-
sis, only two event types are of particular interest. The first
type relates to door opening events and indicates if the
access to a door d € D was granted or rejected for a card ¢ €
C. The second type consists of remote unlock operations,
where an operator o € O remotely granted access to a door
d or the door d was unlocked according to a schedule.
Fig. 2a provides example lines for both event types.

4.2 Logdata Parsing

Log data occurs in form of unstructured or semi-structured
text lines that describe a certain system or network event.
Thus, log parsing is an important task prior to log analysis. A
log parser defines the syntax, i.e., unique structure, of the data
produced by a monitored system or service. It describes log
lines as series of nodes and maps elements of log lines to these
nodes, e.g., by assigning strings separated by white spaces in
text messages to nodes. The nodes restrict the benign format
or type of values, e.g., only allowing a static string, numerical
values, timestamps of a certain structure, etc. This way, the
log parser gives semantic meaning to nodes. AECID uses a
specific type of parser that has a tree-like structure (see
Fig. 2b). The tree-like structure reduces the complexity of log
line parsing and thus improves performance [16].

Fig. 2 depicts the parsing process of an example log line.
The parser dissects the framed log line from left to right by
traversing the parser tree and successively mapping sub-
strings of the log line to its nodes. The traversal starts at the
root node of the parser tree and accounts for the mentioned
node restrictions. This way the parser process ensures that
the whole log line is syntactically correct and mapped to a
known parser path. Each value of a parser node eventually
describes a part of the original log line. In the further analysis
phase, each token is referenced by a unique path. Two paths
and the values of the log line are listed in Fig. 2c. The path
consists of a sequence of node identifiers which specify the
traversal route to the node in the parser (similar to a directory
structure in a file system) and the value is the corresponding
substring in the log line. This way, we can efficiently access

the value of a door d and a card ¢ (among others) in a logged
event without the need of common linear tokenization. For
the details of this approach please refer to [16].

4.3 System Behavior Model Building

In this paper, we focus on two basic event types. The first
one captures the usage of a card ¢ € C (usually through its
legitimate owner) to open a door d € D; the second one logs
an operator’s o € O remote unlock operations (see UC#4) of
a specific door d. The recorded log data L = [I1,ls,...] is
assumed to be a sequence of log lines solely consisting of
one of these event types. The single log lines for door open-
ing attempts have the form I; = (;,¢;,d;) and the log lines
for remote unlocks I; = (¢;,0;,d;), where [t1,to,...] is a series
of ascending timestamps, ¢; a card, o; an operator and d; a
particular door. Table 1 provides a glossary of all symbols
used in this paper.

Door Sequence Model D. The usage of every card c is cap-
tured in a weighted directed graph G. = (D,, E,), where the
set of nodes D, C D is a fixed set of doors that have been
opened using c. An edge e.qu € E. reflects a transition
between two doors, where d' has been opened with ¢ after
opening (and presumably passing through) d. The weight of
an outgoing edge w, 4 of a door node d corresponds to the
probability that the next door opening attempt of c is the tar-
get door node d'. Therefore, the weights of all edges take val-
ues within the interval [0,1] and all outgoing edges of every
node sum up to 1, ie, Ve€ C Vd € D : Y ycp, Weaa = 1.
The timestamps of the door opening events are in ascending
order and are within a time interval, which reflects the core
working hours of the respective card owner. For most appli-
cation cases, it is feasible to assume a break during night.
Thus, we introduce an artificial end of day node d.. € D,
which is not the result of a log line, but is used to ‘terminate’
all transitions over midnight (and start new transitions on
the next day), i.e., the timestamp of the next line is on another
day. As a consequence, the model skips transitions from a
door d on one day to another door d' on another day. The
model building approach creates separate models G, for
eachcardc e C.
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TABLE 1

Glossary of the Model Symbols
C set of cards c card
D set of doors d door
0 set of operators 2 operator
L log data l log line
t time stamp D door sequence model
T transition time model R remote unlock model
g directed graph E set of edges
e edge w weight
A transition time matrix 8 entry of A
R list of door unlocks r timestamp record
S list of trained door sequences s  one trained door sequence
H  list of current door sequences  h current door sequence
P list of last card use P last card use
C confidence value n sequence length in ESD
m  aggregation window length mmax max. number anomalies
tuse time of last usage tmax max. time before removal
A list of anomaly results

Transition Time Model T. The timestamps ¢; of door open-
ing events depend on the physical distances between any
doors d € D. Through analyzing timestamps ¢; and ¢; of two
consecutive events reflected by [; and [; it is possible to
determine the minimal time it takes the owner of card c to
get from d; to d;. In the following, these times are called
minimal transition times. A symmetric matrix with a diago-
nal of zeroes A = {844}y 41epxp Stores these minimal tran-
sition times. For easier handling of the entries of A, the
entries 8,, and §,/, are interchangeable and therefore
simultaneously modified. The entries §,  of the matrix rep-
resent the minimal transition times between two doors d
and d’ of any card ¢ € C, as described in Eq (1).
min [t -] 1)

Sa.at =
dd (t,e,d),(t)c,d)eL

Remote Unlock Model R. For every door d & D, our
approach provides a model to capture scheduled unlocks
and unlocks triggered by operators o € O. The scheduled
unlocks usually follow a time plan and result in remote
unlock events for a specific door at precisely predefined
times and week days, while manually triggered and some-
what irregular unlocks are less deterministic. The model for
the remote unlocks is a list of lists R = {ry},.. The lists ry
include a record of the timestamps of each remote unlock
operation of door d. Note that this model does not take the
operators o € O into account that trigger unlock operations.
The reason for this is the rather low number of unlock oper-
ations in real use cases which would result in a lengthy
training phase (see Section 5).

4.4 AMiner Detectors

Detectors of the AMiner are designed to be universally appli-
cable and support a wide variety of log data structures. In
order to demonstrate this ability, we show how to configure
some detectors specifically useful for the BSS application
case. Additionally, these detectors cover the use cases dis-
cussed in Section 2. The detectors described in this section all
require a training phase, where the AMiner learns the detec-
tion algorithms’ model reflecting the monitored system’s nor-
mal behavior. Thereafter, the detectors automatically raise
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TABLE 2
Example for Anomaly Detection Using the NCD
Card | Doors | Anomaly
cardl | doorl
card2 | door3
Card Doors card3 | door6
cardl | doorl, door2, door3 card2 | door2 X
card2 | doorl, door3, doord cardl | door3
card3 doorl, door6 cardl | door4d X
(a) Example for trained com- (b) Example for anomaly de-
binations. tection.

anomalies when log lines deviate from the learned model.
Notice, this is an unsupervised approach that learns from the
beginning without the use of a labeled training set.

4.4.1 NewComboDetector (NCD)

Use cases UC#1 and UC#3 result in logged access attempts of
a card c to previously never passed doors d. Most cards ¢ € C
are only used in combination with a small set of doors d € D
and new combinations are added rarely to the list of benign
combinations. Consequently, it is feasible to detect anoma-
lous behavior by reporting every occurrence of a new card-
door combination. The NewComboDetector (NCD) analyzes
the value combinations of specific parser paths and raises
anomalies when new value combinations appear.

Training Phase. For each log line ; = (t;,¢;, d;) processed
in the training phase, any card ¢; that was used to open
door d; is added to D, of G,;.

Anomaly Detection. In the detection phase, for every log
line I; = (t;, ¢;, d;) that does not satisfy Eq. (2) an anomaly
is raised (and optionally the door d; is added to D, of
gci)~

d; € DC]: (2)

Example. Tables 2 a and 2 b demonstrate the detection of
new card-door combinations with the NCD approach.
Table 2 a includes the list of learned benign combinations.
Table 2 b provides a list of combinations occuring during the
detection phase. These are tested against the learned base-
line, and new, i.e., anomalous combinations are marked with
‘X’ in the third column of Table 2 b.

4.4.2 EventSequenceDetector (ESD)

Determined by physical circumstances and steady behavior
of card owners, doors are usually opened in repeating order.
For instance, many card owners always enter a building
through the main entrance, walk up to a particular floor
where they enter a department area, and move straight
into their offices. These usage patterns can be learned,
and used as a baseline to detect deviations in door open-
ing sequences.

The EventSequenceDetector (ESD) is a detector which
analyzes event sequences of a given length n. The ESD mon-
itors whether the sequence of the last n events has already
been observed in the training phase and raises anomalies
otherwise. The ESD can also analyze the sequence of values
of a given parser path depending on the value of another
path. This allows to analyze door sequences for each card ¢
separately.
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TABLE 3
Example for Anomaly Detection Using the ESD
Card Door sequences
cardl | doorl—door2, door2—door3, door3—doorl
card2 doorl—door3, door3—doorl
(a) Example for trained sequences.
Card Door | Resulting door sequence | Anomaly
cardl | doorl door3—doorl
card2 | doorl door3—doorl
card2 | door4 doorl—door4 X
card2 | doorl door4—doorl X
cardl | door3 doorl—door3 X
cardl | door4 door3—doorl

(b) Example for anomaly detection.

Training Phase. The model D described in Section 4.3 is
extended with a list of lists S = {s. : ¢ € C'}, where each list
s, refers to a card c present in the log data. Each list s, stores
all door sequences for card c that were present in the train-
ing phase. Furthermore, a second list of lists H = {h. : c €
C'} is introduced, where each list h. consists of the last n
doors d card ¢ was used on.

Anomaly Detection. For each new log line ; = (¢, ¢;, d;),
the ESD verifies if Eq. (3) still complies. If the sequence is of
length n and not in list s.,, an anomaly is raised (and option-
ally the sequence added to the list).

h(‘,l' e SCZ' (3)

Example. Tables 3 a and 3 b show an example for the anal-
ysis of door sequences for two cards using the ESD approach.
Table 3 a lists the sequences (sequence length n = 2) for each
card ¢ € Clearned during training. Table 3 b shows the anal-
ysis of new lines. In the third column of Table 3 b anomalies
are marked by ‘x’.

4.4.3 TransitionTimeDetector (TTD)

Physical distances between doors result in minimal transition
times in which cards can plausibly move between them.
Anomalous behavior as described in UC#2 potentially results
in door transitions that undercut these times. When physical
distances between doors are unknown in advance during
training, the minimal transition times need to be estimated.

The TransitionTimeDetector (TTD) analyzes the minimal
transition times between changes of values in log lines at a
given parser path. It can further be configured to distinguish
events based on the values of a second path. This feature ena-
bles the analysis of minimal transition times of value changes
in the first path of two log lines, while they keep the same
value in the second path. Applied to our application context,
this allows to track the minimal transition times between
two doors (referenced in the first path) of a specific card (ref-
erenced as static value in a second path).

Training Phase. The transition time model 7 builds the
basis for the TTD approach. The model is extended with a
list of pairs P = {p.}. which track the transition times of
cards ¢ € C. A pair p. = (t.,d.) includes the timestamp ¢,
and door d,. at which a card ¢ was last used.

The detector checks if for card ¢; of each processed log
line I; = (¢, ¢;, d;), list P contains an associated pair p,,. In
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that case, the transition time matrix A is updated. If the
entry 84, 4, in A is undefined, the entry is set to the current
transition time t; — t.,. Otherwise, the TTD verifies if the
transition time undercuts the time stated in matrix A as

given in Eq. (4).

8ay, d; < ti — Lo, (4)

If Eq. (4) does not hold, the entry 8de, d; of the matrix A is
updated with 8de, dy = ti — ;- The entry p. in P is updated
with p, = (¢;, d;) after the log line /; has been processed.

At the end of the training phase, the minimal transition
times of rare transitions are not well approximated. There-
fore, after the training phase the TTD periodically checks if
the transition times satisfy the triangle inequality.

The triangle inequality states that the transition time
between two doors d,d' € D is not greater than the sum of
the transitions of these doors to a third door d” € D as
Eq. (5) states. If an entry 8, is undefined and it exists a
door d’, where 8,4 and 8,y are defined, the entry is set to
the sum of these transition times. Furthermore, if the trian-
gular inequality in Eq. (5) does not hold for any combination
of doors, the entry is set to the sum of the two minimal tran-
sition times 8, 4» + 8,4 and the process is repeated until the
inequality holds for any combination.

(Sd,d/ < (de// + (Sd,”d’ (5)

Anomaly Detection. The anomaly detection works analo-
gously to the training phase with the addition that an anom-
aly is raised if a transition is observed, where the minimal
transition time is not defined or Eq. (6) is violated. Notice,
e €[0,1] is a threshold, introduced to lower the rate of
anomalies that relate to an imprecise approximation of the
minimal transition time.

The adaptation of the entries of matrix A can optionally
be stopped to counteract the impact of anomalies on the
subsequent anomaly detection. If A is updated, the triangle
inequality is periodically verified. The confidence  in an
anomaly finding relies on the degree to which a previous
transition value has been undercut. The simplest form is a
linear approximation as given in Eq. (7).

8a,0.(1 —€) <ty — 1, (6)
Cl8uyaustesti) =1 — ((ti —te;)/8a;.a.) (7)

Example. Table 4 depicts an example of the application of
the TTD approach. Table 4 a depicts the minimal transition
time matrix A which is used to analyze the transitions of the
lines stated in Table 4 b. The first three columns include the
values of the log lines and the other columns include the
evaluation of the transition times.

4.4.4  TimelntervalDetector (TID)

Remote unlocks (see Use Case #4 in Section 2) cannot be
analyzed the same way as door accesses, because the pat-
terns of remote unlocks are not influenced by physical dis-
tances between doors. Therefore, other analysis methods
need to be applied to log lines of this event type. Most
remote unlocks are scheduled and automatically issued,
therefore occur at the same time of a day — with minor
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TABLE 4
Example for Anomaly Detection Using the TTD
doorl | door2 | door3

doorl 0 01:00 02:30

door2 01:00 0 01:30

door3 02:30 01:30 0

(a) Example for trained minimal transition time matrix A.

Card Door | Time Transition time | Anomaly
cardl | doorl | 06:00
card2 | door3 | 07:30
cardl | doorl | 08:00 02:00
card2 | doorl | 08:30 01:00 x (C=0.6)
cardl | door2 | 08:30 00:30 x (€ =05)
cardl | doorl | 10:30 02:00

(b) Example for anomaly detection.

deviations due to clock drifts or network delays. Addition-
ally, remote unlocks with malicious intent presumably
appear at times when the door is less frequently used to
avert drawing attention. For these two reasons, we analyze
the time intervals of remote unlocks to detect anomalous
behavior.

The TimelntervalDetector (TID) is a detector that ana-
lyzes the time intervals in which values appear in selected
parser paths of log lines. Therefore, it is directly applicable
to track the time intervals in which doors are remotely
unlocked. Notice, we assume we do not have any knowl-
edge of normal remote unlock behavior but learn this base-
line from scratch through observation in a training phase.

Training Phase. In the training phase the timestamp t; of
each processed log line [; = (¢;, 0;, d;) which corresponds to
remote unlocks is added to list ry, of the remote unlock
model R described in Section 4.3. In the further analysis,
the TID only accounts for the week day and time of day to
learn common periods when unlock operations occur.

Anomaly Detection. For each processed log line [; =
(t;, 04, d;) the TID checks whether the difference between the
timestamp ¢; and any of the timestamps ¢ € r4, is less or
equal to a parameter o as Eq. (8) states. If no such timestamp
exists, an anomaly is raised. This process results in time
intervals surrounding the timestamps of the list 74, in which
unlock operations occurred in the training phase and are
thus allowed as depicted in Fig. 3 which is further described
in the example below. Sigma can be chosen depending on
how deterministic the unlock operations are performed;
e.g., manual door unlocks require a larger ¢ than an auto-
mated system.

min |t —¢;| <o (®)
tErd[

By default, the timestamp of the log line is added to the
list 74, to adapt the model to new behavior. Optionally, this
can be disabled and the model built just from a separate
training phase. Lists r,4, are periodically reduced, by remov-
ing timestamps which do not extend the range in which
unlock operations are allowed.

Example. Fig. 3 provides an example for the analysis using
the TID approach. The figure shows a timeline of 12 hours,
where vertical lines symbolize one hour distances. The time-
stamps from list r4, are marked as circles, the resulting time
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05:00 17:00

——Ho—OoVH—F—F+—+V+—1+t+O+3

| Time steps: 01:00
O rq =[07:00, 08:00, 15:30]
o =00:45
[J Resulting time intervals: [06:00, 09:00], [14:30, 16:30]
V New timestamps: [08:30, 12:30]
WV Anomalies: [12:30]

Fig. 3. Example for one normal and one anomalous timestamp detected
with the TID.

intervals as brackets and the timestamps of processed log
lines as triangles. While the gray triangle lies within the
allowed time interval, the black triangle lies outside and
results in an anomaly.

4.5 Anomaly Aggregation and Alerting

In noisy environments large quantities of anomalies may be
raised. Following up on each single occurrence would easily
overload security operators. Nevertheless, especially stolen
or lost cards, misused by illegitimate card holders, are an
underestimated problem today. Thankfully, for this use
case (UC#1), we can relax our detection requirements. The
assumption is that a motivated attacker systematically tests
a stolen or lost card for access in short time spans, i.e., ille-
gitimate card holders enter buildings usually once and test
how far they are able to get. Therefore, we do not need to
treat each single anomaly immediately, but need to detect
cumulative anomalies concerning the same card in limited
time spans. We apply a sliding window approach of length
m individually per card ¢, where m represents the number
of log lines from bookings of card c. If more than mmax log
lines are reported as anomalous a in this window by, for
instance, the NCD or ESD, an alert is raised. This way, we
limit the sensitivity of anomaly detection, reduce the anom-
aly rate and put more emphasis on situations described by
our use cases. Eq. (9) defines the alert model formally,
where A, = {a(.; i € {1,...m}},a.; € {0,1} is the list of
anomaly results of the last m lines caused by using card c €
C. The value of a(.; equals one if the ith last line was anom-
alous and zero otherwise.

m

Za(c,i) > Mmax 9)

i=1

4.6 Continuous Learning and Aging
Common machine learning approaches foresee separate
training and test phases to build models and test new data
instances against these learned models. The introduced
approach is basically not different from that, however, can
be utilized also in a continuous learning mode. In this case
anomalies are reported only once and the model automati-
cally extended by the new data right afterwards. This is spe-
cifically useful in quickly changing environments, where the
learned model never becomes stable. In that case, an operator
could be alerted by the first occurrence of, e.g., a new card-
door combination, but not by subsequent appearances.
However, with this approach, the model also continu-
ously grows over time and will soon also contain informa-
tion that does not constitute regular behavior but also
exceptional cases. In an extreme case, a card will become
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associated with all doors, and thus it will not be able to
detect anomalies related to this card any more. We therefore
foresee an important model extension if used in continuous
learning mode: Every addition of a model element in D, T
or R is associated with a timestamp ¢yse, indicating its last
usage (i.e., comparison with an element from a recent log
line). Whenever a model element, such as a card-door com-
bination, has not occurred in the log data for a time span
tmax, this element is removed from the model. This way,
obsolete information ages out of the models. Eq. (10) defines
this aging condition for removal of an element formally.
Symbol t denotes the current time.

t —tuse > tmax (10)

5 EVALUATION AND DISCUSSION

We demonstrate the applicability of our approach in course
of an extensive real world evaluation that was carried out
with data collected over a year. In order to rate the capabili-
ties of the different models and detectors, we evaluate their
detection performance separately. We investigate the impact
of different model parameters, such as length of training
intervals or confidence thresholds. Furthermore, we distin-
guish between (i) a simple anomaly detection approach,
where every deviation from a trained model is considered,
(ii) an approach that applies continuous learning, where
deviations are reported only once and then added to the
model, and (iii) an aggregated approach, where only the com-
bined occurrence of anomalies is reported as alerts.

5.1 Data Set Description

We evaluate our concepts with an extensive data set from
real world installations of the Austrian company PKE,? spe-
cifically from a centralized AVASYS.access management
system that spans 12 physical sites of PKE across Austria
and Germany. This data set contains log data that reflect the
card usage over a full year in the time from March 1st, 2020
to February 28, 2021. In that time, 598364 card bookings
were recorded by using 1808 unique cards at 145 distinct
physical doors. A total of 11092 unique card-door combina-
tions can be found in the data set. Notice that doors are not
equally distributed over the physical sites. The largest site
contains 49 doors, the second and third largest site 19 and
15 respectively. On the other side of the scale, seven loca-
tions contain less than 10 doors. This is an important fact
since it explains the different card usage patterns. While
some persons use their cards ten times a day, others only
use them once to enter a building. Additionally, some doors
need authorization in both directions, but most doors only
in one direction, i.e., people need the access card to enter a
building, but not to leave it.

Fig. 4 shows the number of produced log lines per day,
where one log line corresponds to one booking, i.e., the usage
of one card at a specific location. The figure visualizes a
weekly rhythm with dips over the weekends. Notice, the first
two weeks in this plot represent normal working weeks,
however, after that, in mid March 2020 the first hard lock-
down due to the Covid-19 pandemic caused a significant

3. https:/ /www.pke.at/
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Fig. 4. Number of log lines per day.

drop in the number of daily door transitions. Similarly,
around Christmas and towards the end of the z-axis of the
plot a sharp drop of activity can be recognized.

Another important question is how the booking opera-
tions are distributed across the cards. As expected, a few
cards are used quite extensively, while other cards are used
only a few times a day at best (depending on the site of the
card owner). Since our model should work without such
specific domain knowledge, we provide some insights into
the card usage behavior to explain the results later in this
paper, but do not account for this information in the anom-
aly detection phase.

Fig. 5a enumerates all cards in the data set on the z-axis
and shows for each card at how many unique doors this
card has been used per day on the y-axis. The cards are
sorted in descending order by the number of log lines the
respective card is associated with. Additionally, the color as
a third dimension provides insights into how frequently
card x has been used to open y unique doors at one day and
thus describe how common this usage pattern is (scaled to
[0,1] whereas 1 means 100%). For instance, a card might be
used at 2 unique doors most of the year (reflected by a red
to orange bar), but might be used infrequently by signifi-
cantly more unique doors (reflected by a blue to green bar).

We repeat this analysis, but just for those cards that were
used on at least 25% of all days in the data set (cf. Fig. 5b).
This way, we filter out all rarely used cards, primarily
caused by regularly executed lock-downs due to the Covid-
19 pandemic. It is however noteworthy that still 719 cards
(out of 1808) exhibit a somewhat ‘regular’ behavior, despite
the frequent lock-down measures.

As for the remote unlock operations 56 doors at 9 sites
are remotely unlocked by 17 different operators. From these
56 doors, 35 are located at one site alone. In total 7612
unlock operations are issued over the whole time span of
the data set.

Limitations of the Data Set. Several issues are noteworthy
that have impact on the further evaluation:

e Volatile card usage: Due to the Covid-19 pandemic
and several hard lock-downs the otherwise antici-
pated periodic booking behavior changed dramati-
cally. This alone constitutes numerous anomalies in
the data set.

o Temporary work assignments: Many card owners are fre-
quently re-assigned to different groups and depart-
ments to aid the project oriented business of PKE.
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Fig. 5. Number of used unique doors per day for each card (in descend-
ing order by the number of log lines of the respective card).

Thus, the data set is noisier, i.e., the model is less stable
than expected. This would however be different in a
more stable environment.

o  Changes of infrastructure: Some door controllers were
changed throughout the year which got new ids,
however no mapping from the old to the new ids was
performed by the system. So, several new doors
emerged during the year, while older ones disap-
peared. This causes anomalies too with our approach.

Anomalies. During data recording, we asked some card

holders to introduce anomalies. Although, we expect
anomalies due to variations of daily business, this way, we
had a confirmed ground truth. We knew the time stamps
where our approach should detect anomalies and could
use this knowledge to verify our findings. Of course,
besides these known anomalies, several unknown, but likely
still true positives, were detected, as discussed throughout
the evaluation.

The position and properties of the introduced known

anomalies are as follows:

o  Systematic Trial and Error (UC#1): On December, first
2020, card number 490 tried to open 34 doors at one
location in a time frame of 89 minutes, which should
clearly be detected and stick out of the background
noise.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

o Cloned Cards (UC#2): On September, 9th 2020, card
524 was cloned and used at two different sites
(Munich/DE and Vienna/AT) in a short time inter-
val, specifically, shorter than a realistic travel time
between the two sites.

e  Excessive Access Rights (UC#3): Naturally included
throughout the data set, people tend to use their
cards irregularly at doors they usually do not pass
through. The reason for that are quickly changing
project team assignments. There was no need to arti-
ficially include such anomalies into the data set. This
type of anomalies constitutes most of the noise in
our data set.

e  Remote Unlock Operations (UC#4): On December, 13th
2020, door ‘925 (TG) was remotely unlocked, delib-
erately outside usual unlock times.

5.2 Detection of Recurrent Anomalies

In our first experiments, we directly apply the detectors as
described in Section 4.4, specifically the NewComboDetec-
tor (NCD) to spot any new combinations of card-door usage
and the EventSequenceDetector (ESD) to detect any break-
ing door transition sequences.

In this set of experiments we aim to detect all deviations
from a trained behavior in a specified training phase. For
instance, for the NCD this means that if a card ¢ has not
been used at door d in the training phase, but is then used
five times after the training phase at the same door d, the
system will issue five recurrent anomalies®.

We first look into the application of the NCD. A key
question is how many combinations that have not been
observed in the training phase, the detector recognizes at
all. We further like to gain more insights into the effects of
different lengths of training phases on the detection results,
and aim to find an appropriate length. Table 5 b shows the
number of card-door combinations that were not part of the
training phase. Since card usage varies tremendously, we
implemented training phases per card, not for the whole
system. So, we take the first 20, 50, 100, 500, 1000 and 2000
log lines of each card for training (which might take longer
for rarely used cards) to build up the door sequence model
D. For each of these training phases, the number of detected
anomalies in the rest of the data set is given in the respective
columns. Notice, the first data column states all occurring
card-door combinations without learning, thus the numbers
are comparatively high.

We test the anomaly detection on data sets of different
lengths. Thus, we consider only the first month, the first 3
months, the first half year or the whole year of our data set.
This allows us to rate the feasibility of the training length. A
careful tradeoff is required here: If the training length is too
short, a high number of anomalies will be reported in the
testing phase; if it is too long, it takes a considerable amount
of time to create the model and enter the testing phase.

Additionally, Table 5 a reports the number of cards that
produced the anomalies given in Table 5 b. For longer train-
ing phases, less cards are available in the data set that even

4. In contrast to that, unique anomalies, describe new card-door com-
binations that occurred but do not count re-occurring bookings, so only
one anomaly would be reported in our simple example, instead of five.
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TABLE 5
Detection Performance of the NCD for Training Lengths
of 0, 20, 50, 100, 500, 1000, 2000 Log Lines Per Card

# months 0 20 50 100 500 | 1000 | 2000
01M 1165 561 261 114 2 0 0
03M 1464 899 541 299 21 2 0
06M 1622 | 1250 997 692 145 25 2
12M 1808 | 1447 | 1251 | 1053 | 342 162 40

(a) number of cards with sufficient data for training
# months 0 20 50 100 500 1000 | 2000
01IM 4427 864 327 110 0 0 0
03M 5950 1776 959 486 19 1 0
06M 8169 3435 | 2363 | 1530 189 21 0
12M 11092 | 5706 | 4440 | 3394 | 1004 380 48

(b) number of unique anomalies

produced that amount of log lines. For instance, training
with 100 lines is just possible for 1053 cards in the data set
of one year length, and even then produces 33861 anomalies
in this time span. Thus, training phases above 100 lines are
barely feasible, since this would further limit the number of
cards in the model.

Fig. 6 visualizes the number of NCD anomalies for each
card over a time span of 12 months after training with the
first 50, 100, and 200 log lines per card. Notice the changing
number of cards on the z-axis, since we only consider cards
with sufficient amounts of log lines in the data set and for
which the training phase could be finished. Here, the num-
ber of recurrent anomalies is relevant (blue line), which is
comparatively high, if they shall be treated manually (i.e., in
case a security operator is being alerted each time). Never-
theless, we conclude the investigation of detecting anoma-
lies with the NCD with the finding that increasing the
training phase from 50 to 100 lines almost cuts the number
of anomalies in half, however the impact of further increas-
ing the training phase to 200 lines is much less.

Similarly to the NCD, we apply the same schema to the
ESD. For the sake of brevity, we skip the detailed tables and
just show the number of detected anomalies for a training
phase of 100 lines per card in Fig. 7. The shape of the distri-
bution is similar to the NCD, however, the number of
detected anomalies is tremendously higher. This does not
come unexpected, since the ESD detects breaking sequences
and is thus much more sensitive than the NCD.

Eventually, both models for detecting recurrent anoma-
lies are not directly applicable on our data set without fur-
ther measures. Given the number of detected anomalies, it
is not feasible from an economic perspective for a security
operator to follow up on each instance. As a consequence of
this high false positive rate, operators would likely start to
ignore recurrent anomalies. We need a better model to pin-
point significant anomalies.

5.3 Detection of Unique Anomalies

Instead of detecting recurrent anomalies, in the second experi-
ment we aim to detect unique anomalies only. This means, we
enable continuous learning in our models and report only
new occurrences of card-door combinations (NCD) or new
occurrences of door transition sequences (ESD), and add
them after the first occurrence to our models. In a real applica-
tion, this would likely not happen automatically, but would

3167

1400 A BB Recurrent anomalies with training length 50

Unique anomalies with training length 50
1200 A
1000

800 1

600

Number of anomalies

400 -

2001

0 200 400 600 800 1000 1200

Card instances

800
EEE Recurrent anomalies with training length 100

700 4 Unique anomalies with training length 100

Number of anomalies
w B w o
o o o (=3
o o o o
L L L L

2001

1001

0 200 400 600 800 1000

Card instances

Bl Recurrent anomalies with training length 200
Unique anomalies with training length 200

600

500

400 A

3001

Number of anomalies

2001

1001

,

Fig. 6. NCD: Recurrent and unique anomalies.

QAR ‘ IR \‘\ li \
T T Y T T T T T
100 200 300 400 500 600 700 800
Card instances

require additional confirmation from a security operator to
add them (and would require an aging procedure to remove
them again from the model). The TransitionTimeDetector
(TTD), used to detect impossible travel times between doors,
and the TimelntervalDetector (TID), used to spot unusual
remote unlock operations, are applied in an unsupervised
mode already, i.e., they continuously learn new values. Now,
we do the same for the NCD and ESD too.

We refer again to Fig. 6 (specifically to the configuration
with training length 100) for the NCD and Fig. 7 for the ESD,
however, this time we just count the unique anomalies, i.e.,
the first occurrence of a new combination or sequence
(orange lines). As expected, the number of anomalies is
greatly reduced, but anomaly reduction works much better
for the NCD than for the ESD. For the NCD, only 3394 unique
anomalies are reported instead of 33861 anomalies in total,
which reduces the number of anomalies over the whole data
set to approx. 10%. For the ESD the reduction rate is worse
and the remaining amount is 24%. This does not come unex-
pected. Since the underlying model of the ESD is more com-
plex and thus more prone to unique anomalies, reduction
works worse than for the simpler model of the NCD.
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For the NCD, this may result in a manageable number of
anomalies, depending on the environment and the security
requirements of the applicant. Manual investigation of the
results confirmed the presence of anomalies corresponding
to UCH#3, i.e,, staff using their excessive access rights to pass
through doors that they did not use in the past. A consider-
able (but not otherwise defined) amount of this type of
anomalies are caused by the fact that parts of the infrastruc-
ture were upgraded in the observation period, resulting in
changed door ids. Nevertheless, the average anomaly rate
per card for a training length of 100 lines is 3.22 (3394
unique anomalies distributed accross 1053 cards) with a
standard deviation of 4.33, which is a bearable number for
manual investigations in high security environment. Time-
wise, this would mean an investigation of approx. 9.2 anom-
alies per day over all cards. However, keep in mind that we
investigated a quite volatile environment; thus in a high-
security environment with rigid processes we would expect
far smaller numbers of anomalies. We therefore deem the
NCD fit for purpose to spot anomalies corresponding to
UC#3 and with limitations UC#1. We relax the security
requirements further and apply an anomaly aggregation
mechanism in the next section to reduce the efforts of secu-
rity operators.

Notice, the ESD too may detect the resulting anomalies of
use cases UC#1 and UC#3. However, this detector suffers
from high noise and is further not feasible for rarely used
cards, where no stable sequences emerge. To counter this
problem, a new door sequence h,. of a card ¢ € C could be
tested globally to appear in any sequence list s» of a card
¢ € C. This would mean that the sequence of a card usage
is tested against all known sequences of all cards, and thus
significantly change our use case assumptions for anomaly
detection. We did therefore not follow up on that. The ESD
intuitively seems to be a feasible approach for mature high-
security environments with stable processes, but cannot be
fully tested with our data set due to high noise.

The TTD is used to detect cloned cards, specifically their
simultaneous usage at different locations (UC#2). For that
purpose we ran through the full 12 months of the data set
and continuously updated model 7 with the minimum
times between two bookings of the same card at two distinct
doors. After two weeks, we started to report anomalies.
Fig. 8 visualizes the distribution and type of anomalies. The
top graph shows the whole time span including the first
two weeks. In the beginning the minimal transition times
are only poorly estimated resulting in a high amount of
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Fig. 8. TTD: Number of anomalies (top) and after a training length of two
weeks (bottom).

anomalies. After two weeks, we still let the model continu-
ously learn new minimal times, but report their occurrences
as anomalies. The bottom graph shows the number of model
updates, i.e., anomalies, per day. Notice, anomalies have a
confidence. The more a new value undercuts the old one, the
higher is the confidence in this anomaly. If we just consider
the highest category (red; cutoff at 0.9 confidence) only a
hand full (28) of anomalies are reported over the year. There
is a significant peak in the beginning of June 2020, which is
the result of newly installed doors at location DE STR, which
have not been trained and therefore considered noise in the
data set. Similarly, end of October to begin of November new
doors were added at the location AT VIE, mid to end of
December at the location AT GRZ and other single doors
were added at other times that resulted in single anomalies.
However, the red confidence anomaly reported beginning of
September 2020 is caused by the artificially introduced
anomaly as described in Section 5.1. Besides this true positive
and the described noise due to infrastructure changes, the
further 7 anomalies are considered false positives, which is a
treatable number for one year of observation. Overall, the
TTD achieves an accuracy of 0.999.° We could even argue
that these 7 anomalies are true positives too, since we suc-
cessfully detected significant infrastructure changes (that
could have been the consequence of adversarial manipula-
tions) without external knowledge. We conclude that the
TTD is fit for purpose.

The TID’s purpose is to detect unusual remote unlock
operations at relevant doors (UC#4). Here, we distinguish
between new doors that have never been unlocked, and
unlock operations outside previously observed time intervals.

5. calc: 1-7[FP]/(598364[total lines]-38543[2 weeks’ lines]) = 0,999987
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Fig. 9. TID: Number of new doors (top) and number of unlock operations
outside learned intervals (bottom).

Additionally, there are two different forms of unlock opera-
tions: (i) permanent unlocks that allow repeatedly opening a
door until locked again, and (ii) one time unlocks which allow
exactly one person to pass through. In total we observe 7020
unlock operations, of which 592 are one time unlocks in the
whole dataset over 12 months. For UC#4 we deem one time
unlocks more relevant, since an attacker would need to issue
only a single command and thus the hurdle is lower. Out of
the 7020 unlock operations, the TID detects 56 anomalous
new door unlocks (of which only 17 are one time unlocks).
Likewise, out of the 7020 unlock operations, 90 of them
occurred outside learned hours (respectively 14 of them were
one time unlocks). Fig. 9 visualizes these numbers on a time-
line. If we again apply a training period of 2 weeks, we can
further decrease these numbers. Then only 15 anomalous
new door unlocks and 10 unlocks outside learned intervals
occurred. These add up to 25 anomalies of which one was the
deliberately introduced anomaly on December, 13th 2020.
The other 24 anomalies seem to be the result of unusual
behavior which could not be explained as either malicious or
good retrospectively. If they are treated as false positives the
TID achieves a accuracy of 0.997. For an observation period of
12 months, these numbers, summarized again in Table 6, are
perfectly manageable for a security operator, and we there-
fore consider the TID effective.

5.4 Detection of Alerts With NewComboDetector

The anomaly rate emitted by the NCD is barely economi-
cally manageable, yet this detector is crucial to cover UC#1
and partly UC#3. We therefore apply anomaly aggregation
and alerting as described in Section 4 to reduce the anomaly
rate. Table 7 shows the resulting number of alerts for vari-
ous training lengths of 0, 20, 40 and 80 log lines per card (as
indicated in the first row of the table). We tested with differ-
ent window sizes. The values z/y in the first column express

TABLE 6
TID: Number of Anomalies Out of 7612 Unlock Operations
Training length 0 weeks 2 weeks
New door unlocks (total) 56 46
Out of time unlocks (total) 90 78
New door unlocks (single) 17 15
Out of time unlocks (single) 14 10

3169

TABLE 7
Number of Created Alerts for Varying Window Lengths and for
Training Lengths of 0, 20, 40 and 80 log Lines per Card

window / train. 0 20 40 80
10/2 24/2452 21/434 21/331 21/224
20/5 17/575 17/75 17/68 17/49
30/7 15/243 15/40 15/38 15/27
40/10 12/53 12/19 12/18 12/12
60/15 7/14 7/10 7/8 7/7
80/20 2/5 2/2 2/2 2/2

The first number represents the true positives, the second one the total number
of alerts. Notice, these are massively reduced by training.

that the window size is = and y anomalies are allowed
before an alert is raised. For instance, if we perform no train-
ing at all, and apply a window size of 20 log lines of which 5
anomalies are allowed before raising an alert (which effec-
tively means that more than 5 different doors out of 20 are
used by the same card without training), we receive a maxi-
mum of 575 alerts over a whole year. From these 575 alerts
only 17 are true positives stemming from use case UC#1
introduced in Section 5.1. Fig. 10 depicts exactly that case.
Even without training, the number of anomalies due to
newly occurred card-door combinations within the speci-
fied sliding window, leading to higher number of alerts, is
manageable. The most anomalous card 490 is associated
with 17 alerts (positioned on the very left of Fig. 10, which is
exactly the card used to demonstrate UC#1. If we addition-
ally apply training of only 20 lines per card, we can reduce
the total number of alerts over a year from 575 to just 75 of
which 17 are true positives. This results in a accuracy of
5648/5706=0.99. With anomaly aggregation, we were able
to isolate the anomalous card successfully.

5.5 Model Stability and Aging

Enabling continuous learning allows, optionally together
with anomaly aggregation, an economically feasible detec-
tion in unsteady environments. Whether continuous learn-
ing should be used instead of a confined training phase
depends on the volatility of the observed environment. Nev-
ertheless, with continuous learning we run into the risk of
extending the model with information from exceptions that
are not representative for the environment. For instance, the
NCD learns every new card-door combination, even when a
door is used just once with a card. We therefore investigate
the stability of the learned model and how quickly it ages.
For that purpose, we take a closer look into the NCD and use
again different training lengths of 50, 100, and 200 log lines
per card. In the training phase, our approach associates cards
with doors and record all card-door combinations. After the
training phase is complete, we measure for each card how
many doors have been learned but are not used any more in
the test phase. Specifically, we divide the log data in the test
phase for each card individually into batches of 40 log lines
and measure the percentile of deprecated cards. Fig. 11
depicts the results. Notice, the results are smaller for shorter
training lengths, since fewer cards are part of the model.
While short training lengths are favorable from an aging per-
spective, they are more prone to high anomaly rates, e.g.,
caused by false positives, as shown in Fig. 6. Furthermore,
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Fig. 10. NCD: Number of alerts (window length = 20, alert when more
than 5 anomalies occure) and training length 0.

the growth rate is notable, which over all cards seems to be
linear and independent from the training length. The config-
uration and application of an appropriate aging mechanism
to remove outdated model parts seems advisable but is left
for future work here.

The stability of the trained model heavily depends on the
length of training. Applying a continuous learning mode,
no dedicated training phase exists. Here the main question
is after how many bookings (the so called “init phase’,’ the
card usage behavior is expected to be stable, and new
(unique) card-door combinations shall be reported as anom-
alies. Fig. 12 aims to to answer this question. It shows the
number of unique anomalies per card over the whole data
set (i.e., doors used the first time with a specific card). With
an init length of zero, the number on the y-axis corresponds
to the total amount of associated unique doors with a card
(shown on the z-axis). The model grows quickly in the
beginning as cards are used at new doors and thus the
anomaly rate drops when extending the init length. The
number of anomalies dependent on the init length is a valu-
able metric for the model stability. Taking a closer look into
Fig. 12b, where we just considered frequently used cards
(on average at least once a day over the year, except Sun-
days), it reveals that after 100 log lines (red line) approxi-
mately half of all doors used throughout the whole year
(blue line) per card, have been observed. After 500 log lines
per card (purple line) 80-90% of all card-door combinations
have occurred. Conversely, this means that an aging period,
i.e, the time span after which model elements should be
removed to avoid overtraining, should be adapted to these
numbers. An NCD aging of, e.g., 100 lines, would mean that
every card-door combination that has not been observed for
100 log lines, is removed from the model and subsequently
alerted as anomalous. The shorter the aging period is, the
higher is the potential false positive rate; the longer the
aging period is, the higher is the chance for false negatives.

5.6 Online Anomaly Detection

Since one of our design goals was online anomaly detection,
we finally investigate how quickly we are able to detect mali-
cious behavior. While this is comparatively easy to achieve
for TID and TTD, since here a single value deviating from

6. Notice, we carefully distinguish the init phase from the training
phase, since after the init phase the model is still extended with every new
card-door combination, while after a training phase, the model is frozen.
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the model may immediately cause an alert by design, it is
much more challenging for the NCD and ESD, where from
potentially thousands of anomalies the significant ones need
to be isolated in a timely manner. For our measurements, we
pick again the NCD and apply aggregation of unique anoma-
lies as outlined before. Table 8 shows the time delays in thou-
sands of seconds from the first detected anomaly to an
aggregated alert. An alert is raised if m, anomalies occurred
in the last m events. At first sight, regardless from the config-
uration, the time delays seem to be extremely high, poten-
tially hundreds of hours. However, this is perfectly fine if we
consider anomalous bookings over longer time spans, poten-
tially days, where card holders might try to gradually evalu-
ate the limits of their access rights.

Looking into the standard deviation in Table 8 already
reveals that the distribution of time delays is key for the

# anomalies per card with init length 0

# anomalies per card with init length 20

# anomalies per card with init length 50

# anomalies per card with init length 100
# anomalies per card with init length 500
# anomalies per card with init length 1000
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(@) NCD: Unique anomalies per card.

# anomalies per card with init length 0

# anomalies per card with init length 20

# anomalies per card with init length 50

# anomalies per card with init length 100
# anomalies per card with init length 500
# anomalies per card with init length 1000
# anomalies per card with init length 2000

Number of anomalies
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Card instances

(b) NCD: Unique Anomalies per card for cards used more than
300 times in the whole data set.

Fig. 12. NCD: Unique Anomalies with different init lengths.
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TABLE 8
NCD: Mean and Median of Time Delays in Thousands of
Seconds From the First Detected Anomaly to an Aggregated Alert

all cards cards with > 100 log lines
m/my mean  median  std dev. mean median  std dev.
10/2 1017 81 2907 462 57 1377
20/5 1999 405 3877 1189 261 2312
30/7 2847 777 5055 1944 451 3846
40/10 3308 277 6361 2031 172 4255
60/15 8142 3119 8925 8142 3119 8925
80/20 13660 21269 11189 13660 21269 11189

evaluation of alerts. Fig. 13 visualizes these delays. The
alerts with a rather small delay on the left side (around 102
days corresponding to approx. 8.6 to 28.8 minutes) are the
result of the introduced anomaly (cf. Section 5.1), while the
anomalies to the right are considered false positives. The
true positives are the result of someone systematically try-
ing out new doors (i.e., one door every few minutes), while
the anomalies on the right side are the result of accidentally
used new doors over longer time spans. These numbers
also match the true positives outlined in Table 7 where 7
out of 14 alerts are considered true positives. Eventually,
distinguishing aggregated alerts due to their time delay has
huge benefit to sort out false positives and timely, i.e.,
within minutes, revealing the anomalies stemming from the
defined use cases.

6 LESSONS LEARNED

Various lessons were learned in the deployment and evalu-
ation of the detectors. We discuss specific findings on the
suitability of the detectors as well as general thoughts on
the applicability of AD for the given use cases. The findings
are substantially based on the measured detection accuracy
in course of the evaluation.

6.1 Limitations of the Data Set

The data set suffers from some limitations, most noteworthy,
changing user behavior due to the pandemic, as well as
changes in the infrastructure (door controllers were replaced).
We carefully designed the detectors, in consultation with the
system owner, to make them resilient against these issues.

6.2 Initial Deployment of Detectors

For the evaluation, we varied the detector configurations for
a wide range of parameters, e.g., initialization lengths, train-
ing lengths and confidence thresholds. The resulting set of
curves are discussed in detail in Section 5. These figures are
supposed to reveal the impact of the different configurations
on the final results, however, are not generally valid, but spe-
cifically applicable to the investigated data set. The suitabil-
ity of the parameters rely on the detection use cases (and
anomalies to be discovered), the number of doors per site,
the number of users on these sites and the average door tran-
sitions per card. Parameters need to be set carefully in order
to obtain useful results, i.e., reliably discover anomalies due
to misuse, and on the other side not to suffer from noise (i.e,
anomalies due to legitimate behavior variations). One aspect,
which is hard to estimate, is the stability of usage behavior of
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Fig. 13. NCD: Histogram of the time delays in days from the first
detected anomaly to an alert (m = 60, m; = 15 training length = 0).

card owners, i.e., how deterministic is the booking behavior
of people without major interruptions through holidays and
inconsistencies through changes of work assignments. Sta-
bility was most notably assumed in the detector design of
the ESD, but also to a smaller extent in the NCD. Both detec-
tors have great potential to successfully reveal even subtle
anomalies, however, they are prone to varying user behav-
ior. Eventually, for a successful configuration of the detec-
tors, the stability of user behavior must be verified at first
before setting aforementioned parameters.

6.3 Continuous Improvements

After the initial deployment our system delivered poor per-
formance, which lead to an unacceptably low accuracy, e.g.,
the NCD had an accuracy of 0.943 with a training length of
100 lines.

Thus, we continuously tested and adapted the applied
detectors. We performed parameter selection analysis
and performance analysis, which lead to the concept of
anomaly aggregation (see Section 5.4) into alerts. Further-
more the continuous learning and aging process of the
behavior models was investigated (see Section 5.5). We
discuss our lessons learned regarding these aspects in
the following.

6.3.1 Parameter Selection

The optimal parameter selection of the training length
depends on the specific detector and data set properties.
Both the TTD and TID were easily configured by applying a
training length of two weeks, because of their user-indepen-
dent model design. The model designs of the NCD and ESD
analyze the cards individually and therefore the user based
training length always results in a trade off between the ini-
tialized model stability and the number of analyzed cards
in a given time window. The analysis yielded that a training
length higher than 100 was not feasible due to excluding too
many cards from the analysis.

Another investigated parameter is the confidence thresh-
old of the TTD, which states with which factor the transition
time has to be undercut to raise an alert. The evaluation
yielded that the purposefully introduced anomaly was
found with a threshold of 0.9, while simultaneously reduc-
ing the number of false positives from 324 to 7. The thresh-
old could be reduced to discover more subtle anomalies,
but was sufficient to detect the introduced ones. Notice, the
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optimal threshold depends on the distance between sites
and can be set lower if they are situated closer to each other.

6.3.2 Performance Analysis

While the TTD and TID yielded sufficiently good results
(i.e., we detected 100% percent of the synthetically added
anomalies) with an economically small number of false pos-
itives (i.e., 7 and 24 anomalies for TTD and TID respectively,
which corresponds to maximal two anomalies per month
and detector), both the NCD and ESD reported too many
anomalies (NCD 3394 and ESD 20878 anomalies with train-
ing length of 100 lines per card). This is a result of the
assumed stability of the user behavior in the model design,
which was however not present in the analyzed log data.
The main problem was the temporary work assignments of
the card users, which resulted in ever changing card door
combinations and sequences.

To reduce the number of anomalies the aggregation into
alerts was introduced. While it was not possible to aggre-
gate the anomalies of the ESD into informative alerts,” the
NCD reported a sufficiently small number of alerts after
aggregation, i.e., a drop from 5706 anomalies to 75 alerts (of
which 17 are TPs) with a time window of 20/5 and trainings
length of 20, while maintaining the detection of the pur-
posefully introduced anomaly.

6.3.3 Aging

While the continuous learning of the detectors yielded an
effective reduction of reoccurring false positives, it also
introduced the problem of an ever growing model. The
aging method was introduced to simultaneously reduce the
complexity of models and enhancing the anomaly detection
by removing old information. Fig. 11 shows that approx. 5%
of unused doors drop out per batch (each 40 log lines per
card) when progressing along the timeline.

6.4 Result Interpretation

Unfortunately, anomaly detection results are not easy to
interpret. The system reports any deviation from the
learned baseline, the art however is to distinguish devia-
tions due to malicious behavior from deviations due to
unsteady (but natural) behavior of legitimate card holders.

6.4.1  Anomaly/alarm Arrival Rate

With all described modifications a total number of 89 alerts
were falsely raised in the analysis of the whole data set. The
NCD, TTD and TID raised 58, 7 and 24 false alerts respec-
tively. If the trainings length is assumed to be two weeks
long, this corresponds to about one false alerts every four
days, which appears manageable. The number of false alerts
scales directly with the number of cards and their respective
usage behavior or remote unlock operations.

6.4.2 Application of the Classic FPR Metric

The low number of actual positive population in compari-
son to the actual negative population is the reason why the

7. There were too many alerts: 1038 alerts (of which 17 are TPs) with
a long window of size 80/20 and training length of 100
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F-score was not suitable for the evaluation [17]. The accu-
racy® is an easily comprehensible measure, which states the
percentage of correct classification of lines into their associ-
ated population. This means, that the accuracy equally
weights the actual positive and negative population. We
argue that the detectors are reasonably precise, because
they detected all synthetically injected anomalies, and there-
fore the possible distortion of the accuracy due to class
imbalance is negligible. The accuracy of the NCD, TTD and
TID is 0.99, 0.999 and 0.997 respectively, which are reason-
ably good results, i.e., the number of expected anomalies
can be handled by a security operator as outlined above.

7 BACKGROUND AND RELATED WORK

The topic of this paper involves a number of different tech-
nical aspects. We structure the review of related work there-
fore into (i) monitoring and logging, (ii) intrusion detection
systems, (iii) anomaly detection, and (iv) application in
cyber-physical systems, specifically in building manage-
ment/security systems.

7.1 Log Data

Data logging has a widespread application area in informa-
tion and communication technology. Log data is an impor-
tant source for system monitoring [18], which comprises
acquisition of data and knowledge. Furthermore, log data is
investigated in course of digital forensics [19], which is
applied, for example, after an attack was detected to investi-
gate its origin and find out information about the attacker
and the purpose of the attack. Database logs can be used to
back up and restore database content in case of a system
crash or a destruction caused by an unauthorized access vio-
lation [20], [21], [22]. Log data contains automatically gener-
ated traces about all processes of services and components of
a computer network. Thus, it protocols all events occurring
in such networks. Log data is usually represented in human-
readable text format. This makes it easy to access the pro-
vided information. Other data sources, such as network
packets, require time-, computational- and resource-inten-
sive preprocessing before analysis. Thus, log data is a valu-
able source for cyber security analysis tools, such as IDS. The
level of detail of information provided by log data depends
on the configuration of the logging mechanisms [23]. One
drawback is that usually only logs of lower severity levels,
i.e.,, warning and error logs, are stored and used for security
analysis. But to carry out extensive analysis, verbose logging
is required, which, however, often is not the case. Reasons
are that logging often is a resource consuming task and pro-
duces large amounts of data that have to be stored [1].

7.2 Anomaly Detection

The rapidly changing cyber threat landscape requires flexi-
ble, self-learning and adaptive IDS approaches. One solu-
tion is self-learning anomaly detection (AD) [24]. They
usually learn during a training phase a baseline of normal
system behavior that then serves as ground truth to detect
anomalies that expose attack traces. Generally, there are
three ways how self-learning AD can be realized [7], [10],

8. Accuracy = (TP + TN) / (TP + FP + TN + FN)



SKOPIK ET AL.: BEHAVIOR-BASED ANOMALY DETECTION IN LOG DATA OF PHYSICAL ACCESS CONTROL SYSTEMS

[25]: (i) Unsupervised: This method does not require any
labeled data and is able to learn to distinguish normal from
malicious system behavior during the training phase. Based
on the findings, it classifies any other given data during the
detection phase. (iii) Semi-supervised: This method is applied
when the training set only contains anomaly-free data and
is therefore also called ‘one-class’ classification. (iii) Super-
vised: This method requires a fully labeled training set con-
taining both normal and malicious data. These three
methods do not require active human intervention during
the learning process. While unsupervised self-learning is
entirely independent from human influence, for the other
two methods the user needs to ensure that training data is
anomaly free or correctly labeled. Consequently, the previ-
ously described methods are categorized as unsupported
self-learning approaches [7], [25].

Using completely unsupported self-learning raises some
challenges. While providing training data for unsupervised
self-learning is rather easy and does not require any prepro-
cessing, this approach might learn malicious system behav-
ior as normal. Semi-supervised approaches try to avoid this
problem by using anomaly-free training data. Applying
these methods raises the problem of obtaining training data
that guarantees to be anomaly-free. Retrieving such a dataset
from a running productive system is usually difficult,
because organizations are often not aware of malicious activ-
ities in their computer network. Also for self-learning based
anomaly detection it is true that the more information is pro-
vided during the training phase, the more accurate the sys-
tem works later while a computer network is monitored.
Thus, supervised self-learning approaches provide the most
detailed ground truth, but providing suitable training data
for specific networks is time- and resource consuming.

To avoid the mentioned drawbacks, supported self-learn-
ing approaches can be applied, where also system adminis-
trators can influence the training phase. This means for
example, when an event is occurring for the first time and
therefore is not part of the normal system behavior and as a
consequence is classified anomalous, the administrator can
decide if the event comprises an anomaly or if it is a false
alarm and the event should be considered as normal system
behavior in the future. Furthermore, self-learning can be
used to constantly adapt the baseline, which describes the
normal behavior and keep it up-to-date, when, for example,
new devices are added to or removed from a network, or
when the used software changes because of system updates.

Aside from all the advantages of AD based detection
methods, they have also been shown to be vulnerable to a
certain type of attack [26]: When using carefully manipu-
lated input samples, i.e., adversarial examples, a threat actor
can circumvent detection or cause erroneous predictions
(high-confidence misclassification). AD based methods are
especially affected by poisoning attacks, where attackers try
to manipulate the training phase in a way that during the
detection phase their attacks are accepted as benign sys-
tem/network behavior [27].

7.3 Machine Learning

There exist many machine learning [28] algorithms to
implement self-learning AD that can be applied for that
task. Methods that are used for machine learning in cyber
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security are, for example [25], [29]: (i) Clustering: Clustering
enables grouping of unlabeled data. It is often applied to
detect outliers and forms the foundation for generating log
parsers that define a system’s normal behavior [13], [30], [31].
(i) Artificial neural networks (ANN): Input data activates neu-
rons (nodes) of an artificial network, inspired by the human
brain. The nodes of the first layer pass their output to the
nodes of the next layer, until the output of the last layer of
the artificial network classifies the monitored computer
networks’ current state [32]. (iii) Bayesian networks: Bayesian
networks define graphical models that encode the probabilis-
tic relationships between variables of interest and can predict
consequences of actions [33]. (iv) Decision trees: Decision trees
have a tree-like structure, which comprises paths that lead to
a classification based on the values of different features [34].
(v) Hidden markov models (HMM): A Markov chain connects
states through transition probabilities. HMM aim at determin-
ing hidden (unobservable) parameters from observed param-
eters [35]. (vi) Support vector machines (SVM): SVM construct
hyperplanes in a high- or infinite-dimensional space, which
then can be used for classification and regression. Thus, simi-
lar to clustering, SVM can, for example, be applied for outlier
detection [36].

7.4 Security of Cyber-Physical Systems

Numerous research works addressed the different security
aspects of the vast field of Cyber-Physical Systems (CPS),
including production systems [37], smart cities, smart
energy grids [4], medical application areas and so on. The
various CPS security goals were discussed in [38]; CPS secu-
rity challenges and issues were presented, including Big
Data security [39], and IoT issues [40]; several security and
privacy solutions using cryptographic mechanisms were
discussed in [41]. Building management systems [42] utilize
one form of cyber physical systems. IoT based smart secu-
rity for home automation systems has been investigated
by [43], while [44] reviewed smart home security in detail.
Our work specifically focuses on physical access control, as
applied by building security systems (BSS) as part of larger
building management systems (BMS) [45].

Physical access control has been investigated in more
detail by [6], who report on the core set of features a physical
access control system should have baed on examining exist-
ing systems, industry standards and government regulations.
Some works, such as [46], already introduced approaches to
detect suspicious patterns in physical access control. How-
ever, their main purpose is different from ours. While our
approach was designed for self-learning a baseline and sub-
sequent online anomaly detection (of deviating behavior),
common approaches were designed for the discovery of door
unlock sequences which are fundamentally impossible by
checking them against a defined plan (and not against obser-
vations over time as our approach). The concept of “expected
behavior” is therefore fundamentally different from our
works, since theirs is pre-defined by a plan, while ours is cre-
ated (and continuously adapted) through observations.

8 CoONCLUSION AND FUTURE WORK

In this paper, we investigated the use of anomaly detection
in log data of cyber-physical systems. We outlined generally
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applicable detection approaches and demonstrated their
capabilities on a real-world data set from a building security
system. There, we studied detection capabilities in context
of different use cases in the domain. The experiments
showed that with careful configuration of training phases
and the use of aggregation features, our system is able to
find misuse stemming from stolen or cloned cards.

We introduced four different detectors which covered
varying parts of the initially presented use cases and which
performed with varying degree of success. It is noteworthy
that the design goal of our anomaly detection approach,
applied in building security systems, was not to reveal every
single unusual booking or door traversal, which is technically
possible but results in unbearably high numbers of anomalies.
Instead, our goal was to detect strong changes of the underly-
ing behavior of e.g., card holders and their booking behavior.
This significantly relaxes the otherwise tight requirements on
anomaly detection, since aggregation and longer observation
periods aid the targeted detection of such behavior shifts and
reduces the noise and potentially the number of false posi-
tives. In an extensive evaluation with a real data set, we dem-
onstrated the detection performance and its dependency on
the learning mode, training length, and use of anomaly aggre-
gation. Eventually, we showed that with optimized settings
of the machine learning detectors, we were able to discover
traces of misuse within the defined use cases.

Future works is manifold. The consideration of changes
and updates in the environment, e.g., the replacement of
door controllers or the re-assignment of access cards to new
personnel is key to increase the detection performance.
Such changes should trigger a new learning phase or tar-
geted purge of the learned model for the concerned cards or
doors. Further research is required concerning the update
strategy of trained models in conjunction with the discussed
aging approach. While the continuous learning mode is use-
ful in volatile environments, where no steady behavior
models emerge, it is also tricky to configure an underlying
aging approach appropriately. There is currently no strat-
egy to come up with feasible configuration parameters of
such models.

Another important extension involves the consideration
of contextual elements, such as the operational role of a
card holder, and information on project assignments or
leaves. We expect that accounting for such information can
increase the anomaly detection performance respectively
the interpretation of anomalies by distinguishing expected
behavior deviations from unexpected ones. Eventually, the
case study of this paper provides interesting insights into
the applicability of anomaly detection for security purposes
in cyber-physical systems.

REFERENCES

[1] A.Chuvakin, K. Schmidt, and C. Phillips, Logging and Log Manage-
ment: The Authoritative Guide to Understanding the Concepts Sur-
rounding Logging and Log Management, Oxford, United Kingdom:
Newnes, 2012.

[2] F. Skopik, M. Wurzenberger, and M. Landauer, Smart Log Data Ana-
Iytics: Techniques for Advanced Security Analysis, Berlin, Germany:
Springer, 2021.

[3] S. Huda et al., “Defending unknown attacks on cyber-physical
systems by semi-supervised approach and available unlabeled
data,” Inf. Sci., vol. 379, pp. 211-228, 2017.

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

F. Skopik and P. Smith, Smart Grid Security: Innovative Solutions for
a Modernized Grid, Oxford, United Kingdom: Syngress, 2015.

M. Shashanka, M.-Y. Shen, and J. Wang, “User and entity behav-
ior analytics for enterprise security,” in Proc. IEEE Int. Conf. Big
Data, 2016, pp. 1867-1874.

E. B. Fernandez, ]. Ballesteros, A. C. Desouza-Doucet, and M. M.
Larrondo-Petrie, “Security patterns for physical access control
systems,” in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy, 2007,
pp. 259-274.

M. Wurzenberger, F. Skopik, G. Settanni, and R. Fiedler, “AECID:
A self-learning anomaly detection approach based on light-weight
log parser models,” in Proc. Int. Conf. Inf. Syst. Secur. Privacy, 2018,
Pp- 386-397.

M. E. Whitman and H. J. Mattord, Principles of Information Security,
6th ed. Boston, MA, USA: Cengage Learning, 2017.

H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion
detection system: A comprehensive review,” J. Netw. Comput.
Appl., vol. 36, no. 1, pp. 16-24, Jan. 2013.

M. Goldstein and S. Uchida, “A comparative evaluation of unsu-
pervised anomaly detection algorithms for multivariate data,”
PLoS One, vol. 11, no. 4, 2016, p. e0152173.

T. Chen, L-A. Tang, Y. Sun, Z. Chen, and K. Zhang, “Entity
embedding-based anomaly detection for heterogeneous categori-
cal events,” 2016, arXiv:1608.07502.

A.Taha and A. S. Hadi, “Anomaly detection methods for categori-
cal data: A review,” ACM CSUR, vol. 52, no. 2, pp. 1-35, 2019.

M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber,
“System log clustering approaches for cyber security applications:
A survey,” Comput. Secur., vol. 92,2020, Art. no. 101739.

V. K. Rohatgi and A. M. E. Saleh, An Introduction to Probability and
Statistics. Hoboken, NJ, USA: Wiley, 2015.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory,
Berlin, Germany: Springer, 2012.

M. Wurzenberger, M. Landauer, F. Skopik, and W. Kastner, “AECID-
PG: A tree-based log parser generator to enable log analysis,” in Proc.
IFIP/IEEE Symp. Integr. Netw. Serv. Manage., 2019, pp. 7-12.

C. K. Williams, “The effect of class imbalance on precision-recall
curves,” Neural Comput., vol. 33, no. 4, pp. 853-857, 2021.

S. E. Hansen and E. T. Atkins, “Automated system monitoring
and notification with swatch,” Library Inf. Sci. Abstr., vol. 93, 1993,
pp- 145-152.

S. Raghavan, “Digital forensic research: Current state of the art,”
CSI Trans. ICT, vol. 1, no. 1, pp. 91-114, 2013.

R. Fang, H.-1. Hsiao, B. He, C. Mohan, and Y. Wang, “High perfor-
mance database logging using storage class memory,” in Proc.
IEEE Int. Conf. Data Eng., 2011, pp. 1221-1231.

P. Frithwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl,
“Innodb database forensics: Reconstructing data manipulation
queries from redo logs,” in Proc. IEEE Int. Conf. Availability Rel.
Secur., 2012, pp. 625-633.

M. Wurzenberger, F. Skopik, G. Settanni, and W. Scherrer,
“Complex log file synthesis for rapid sandbox-benchmarking of
security-and computer network analysis tools,” Inf. Syst., vol. 60,
pp- 13-33, 2016.

R. Gerhards, “The syslog protocol: Rfc 5424,” Internet Eng. Task
Force, 2009.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1-58, 2009.

M. Wurzenberger, F. Skopik, and G. Settanni, “Big data for
cybersecurity,” in Encyclopedia of Big Data Technologies, S. Sakr and
A. Zomaya, Eds, Berlin, Germany: Springer, 2018, pp. 1-9.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

M. Kloft and P. Laskov, “Online anomaly detection under adver-
sarial impact,” in Proc. 13th Int. Conf. Artif. Intell. Statist., 2010,
pp- 405-412.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Prac-
tical Machine Learning Tools and Techniques, San Mateo, CA, USA:
Morgan Kaufmann, 2016.

A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE
Comm. Surv. Tut., vol. 18, no. 2, pp. 1153-1176, Apr.—Jun. 2016.

R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE
Trans. Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005.

P.He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on
log parsing and its use in log mining,” in Proc. 46th Annu. IEEE/
IFIP Int. Conf. Dependable Syst. Netw., 2016, pp. 654—661.



SKOPIK ETAL.: BEHAVIOR-BASED ANOMALY DETECTION IN LOG DATA OF PHYSICAL ACCESS CONTROL SYSTEMS 3175

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Cannady, “Artificial neural networks for misuse detection,” in
Proc. Nat. Inf. Syst. Secur. Conf., 1998, pp. 443-456.

D. Heckerman et al, “A tutorial on learning with bayesian
networks,” Nato Asi Ser. D. Behav. Social Sci., vol. 89, pp. 301-354,
1998.

S. R. Safavian and D. Landgrebe, “A survey of decision tree classi-
fier methodology,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3,
pp- 660-674, May /Jun. 1991.

L. E. Baum and ]J. A. Eagon, “An inequality with applications to
statistical estimation for probabilistic functions of Markov pro-
cesses and to a model for ecology,” Bull. Amer. Math. Soc., vol. 73,
no. 3, pp. 360-363, 1967.

I. Steinwart and A. Christmann, Support Vector Machines, Berlin,
Germany: Springer, 2008.

G. Settanni, F. Skopik, A. Karaj, M. Wurzenberger, and R. Fiedler,
“Protecting cyber physical production systems using anomaly
detection to enable self-adaptation,” in Proc. IEEE Ind. Cyber-Phys.
Syst., 2018, pp. 173-180.

E. Bou-Harb, “A brief survey of security approaches for cyber-
physical systems,” in Proc. IEEE 8th IFIP Int. Conf. New Technol.
Mobility Secur., 2016, pp. 1-5.

H. Ye, X. Cheng, M. Yuan, L. Xu, J. Gao, and C. Cheng, “A survey
of security and privacy in Big Data,” in Proc. Int. Symp. Comm. Inf.
Techn., 2016, pp. 268-272.

J.S. Kumar and D. R. Patel, “A survey on Internet of Things: Secu-
rity and privacy issues,” Int. . Comput. Appl., vol. 90, no. 11,
pp- 20-26, 2014.

O. Kocabas, T. Soyata, and M. K. Aktas, “Emerging security mech-
anisms for medical cyber physical systems,” IEEE/JACM Trans.
Comp. Biol./Bioinf., vol. 13, no. 3, pp. 401-416, May/Jun. 2016.

D. Minoli, K. Sohraby, and B. Occhiogrosso, “IoT considerations,
requirements, and architectures for smart buildings—energy opti-
mization and next-generation building management systems,”
IEEE Internet Things J., vol. 4, no. 1, pp. 269-283, Feb. 2017.

R. K. Kodali, V. Jain, S. Bose, and L. Boppana, “IoT based smart
security and home automation system,” in Proc. IEEE Int. Conf.
Comput. Commun. Autom., 2016, pp. 1286-1289.

R. J. Robles and T.-H. Kim, “A review on security in smart home
development,” Int. ]. Adv. Sci. Technol., vol. 15, pp. 13-22, 2010.

W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang,
“Securing building management systems using named data
networking,” IEEE Netw., vol. 28, no. 3, pp. 50-56, 2014.

S. Fong and Z. Yan, “A security model for detecting suspicious
patterns in physical environment,” in Proc. IEEE 3rd Int. Symp. Inf.
Assurance Secur., 2007, pp. 221-226.

Florian Skopik (Senior Member, IEEE) received
the PhD degree in computer science from the
Vienna University of Technology. He is head of
the cybersecurity research program with the Aus-
trian Institute of Technology. His main interests
are centered on critical infrastructure protection
and intrusion detection. He is a member of vari-
ous conference program committees (e.g., ACM
SAC, ARES, CRITIS), editorial boards, and stan-
dardization groups, such as ETSI TC Cyber, IFIP
TC11, and OASIS CTI

Markus Wurzenberger received the PhD degree
in computer science from the Vienna University
of Technology. He is a scientist and project Man-
ager with the Austrian Institute of Technology. His
main research interests are log data analysis with
a focus on anomaly detection (AD) and cyber-
threat intelligence. He is one of the key research-
ers working on the AMiner, a software component
for log analysis, which implements several AD
algorithms and is included as package in the offi-
cial Debian Linux distribution.

Georg Hold received the bachelor's degree in
technical mathematics, from the the Vienna Uni-
versity of Technology, in 2018. He is a junior scien-
tist at the Austrian Institute of Technology. Since
then, he is part of the cyber security research pro-
gram, working on novel anomaly detection meth-
ods applicable on log data. He currently pursues a
Masters degree in technical mathematics with TU
Vienna in collaboration with the AIT.

Max Landauer is currently working toward the
PhD degree in computer science with the Vienna
University of Technology, in collaboration with the
Austrian Institute of Technology. He is a scientist
with the Austrian Institute of Technology. His main
research interests are log data analysis, anomaly
detection (AD), and cyberthreat intelligence. For
his dissertation, he is working on an approach
that extracts actionable cyberthreat intelligence
from raw log data.

Walter Kuhn is the designer of the AVASYS secu-
rity management system with PKE Holding AG
used to generate the data in this paper. He started
his activities with the Austrian Institute of Technology
as Business Unit Manager, where he also designed
the previous version of the AVASYS system. The
research focus was on safety-critical and fail-safe
systems. After moving to PKE, he established the
Research and Development department there and
worked on several funded research projects.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


