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ABSTRACT
Intrusion detection systems (IDS) reinforce cyber defense by au-
tonomously monitoring various data sources for traces of attacks.
However, IDSs are also infamous for frequently raising false posi-
tives and alerts that are difficult to interpret without context. This
results in high workloads on security operators who need to manu-
ally verify all reported alerts, often leading to fatigue and incorrect
decisions. To generate more meaningful alerts and alleviate these
issues, the research domain focused on multi-step attack analysis
proposes approaches for filtering, clustering, and correlating IDS
alerts, as well as generation of attack graphs. Unfortunately, exist-
ing data sets are outdated, unreliable, narrowly focused, or only
suitable for IDS evaluation. Since hardly any suitable benchmark
data sets are publicly available, researchers often resort to private
data sets that prevent reproducibility of evaluations. We thus pro-
pose AIT-ADS, a new alert data set that we publish alongside this
paper. The data set contains alerts from three distinct IDSs moni-
toring eight executions of a multi-step attack as well as simulations
of normal user behavior. To illustrate the potential of our data set,
we experiment with open-source tools for attack graph extraction.
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1 INTRODUCTION
Today’s landscape of cyber threats involvesmore sophisticated tools
and complex exploits than ever before. Advanced Persistent Threats
(APT) are specifically known to conduct targeted and stealthy at-
tacks that leverage previously unknown attack vectors and are
difficult to detect in a timely manner [13]. Adversaries such as
APTs often progress in similar patterns consisting of several se-
quential steps that are known as the cyber kill chain, where later
stages of attacks generally involve more severe breaches or threats
to affected systems and networks [27]. To counteract these threats,
security analysts deploy intrusion detection systems (IDS) such as
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signature-based IDSs that monitor networks for patterns that are
known to correspond to malicious activities, as well as anomaly-
based IDSs that aim to recognize suspicious deviations from normal
user behavior and system utilization [6]. There is a high diversity
of available methods with respect to the monitored data sources
(e.g., network packet captures or application log files), operation
modes (e.g., expert rules or machine learning), and triggers (e.g.,
simple string matching or statistical analysis).

A common property of most IDSs is that they are designed to
generate alerts for low-level events that are likely the origin of some
kind of malicious or undesired actions. However, given the facts that
productive systems often generate events in massive amounts and
false positive alerts created by possibly unusual yet benign activity
can hardly be prevented, the number of alerts generated by IDSs
easily becomes overwhelming for security operators and makes
manual review and assessment of every single alert infeasible. In
fact, studies show that generated alerts may comprise up to 99%
of false positives, causing fatigue and incorrect decision making
by operators [1]. In addition, low priority alerts that occur in high
volumes (e.g., resulting from basic scanning) could conceal more
relevant alerts that occur simultaneously but only in small numbers.

It is thus necessary to prioritize or weigh alerts and enrich them
with contextual information such as their relation to each other in
the view of a larger attack chain. In academic research, this task is
referred to as multi-step attack analysis and aims at the aggregation
or correlation of single alerts into higher-level abstractions of attack
scenarios. However, recent studies indicate that this objective is
difficult to achieve for several reasons. In particular, each step of
the attack chain often generates multiple alerts, for example, when
malicious activities leave detectable traces in multiple monitored
sources; at the same time, the same or similar alerts may be gen-
erated as part of separate attack steps or even entirely different
attack scenarios [10]. Thereby, real-world attacks often involve
multiple systems within the same network, causing that analysis of
isolated machines only provides an incomplete view on the attack
chains and necessitate to combine relevant traces across several
distributed data sources [12]. Moreover, multi-step attack analysis
does not only require to infer the nature of each step, but also the
links between them [18]. Even though multi-step attacks gener-
ally follow kill chains, inferring these links is especially difficult
since there is not necessarily a direct mapping between them, e.g.,
there may be arbitrary many steps from the same kill chain stage
involved [28]. Even worse, there are situations where some attack
steps appear normal in isolation and can only be identified when
also other steps are considered [3].

There is a need to address these problems with novel scien-
tific approaches; however, as pointed out in several recent surveys
[4, 7, 12, 18], one of the main issues holding back the research com-
munity is the lack of publicly available data sets for experimentation
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and evaluation. Existing public data sets origin from outdated or
oversimplified systems [4, 7], only consider a single source of data
[3], and fit the purpose of intrusion detection rather than multi-
step attack analysis [4, 10]. As a consequence, researchers often
resort to private data sets from productive systems that prevent
reproducibility and comparability of results [7].

Alongside this paper we therefore publish the AIT Alert Data
Set (AIT-ADS), a new alert data set that aims to resolve this gap.
We ensure that the properties of our data set align with several of
the challenges inherent to the problem domain of multi-step attack
analysis, including high volumes of alerts and false positives [18],
the presence of alerts from heterogeneous IDSs involving diverse
detection techniques and alert formats [18], collection of alerts
from multiple network components and data sources [3, 12], in-
clusion of anomaly-based alerts that lack contextual information
or direct connections to root causes [18], changes of attack step
order and attack parameters [18, 28], and a clear and repeatable
attack plan [4]. To this end we select the synthetically generated
and publicly available AIT Log Data Set version 2 (AIT-LDSv2)
[8] for alert generation, because it provides system log data and
network packet captures of simulated normal behavior and a multi-
step attack executed with variations of attack parameters in eight
different environments. In particular, we forensically analyze the
AIT-LDSv2 withWazuh IDS as well as AMiner IDS and collect alerts
from Suricata IDS to generate our data set. To the best of our knowl-
edge, this is the first public data set specifically designed to enable
researchers to evaluate approaches for multi-step attack analysis,
including related research areas focusing on prioritization, filtering,
aggregation, and correlation of alerts, as well as the generation of
meta-alerts, handling of false positives, and more. We publish the
alert data set on an openly accessible data sharing platform1 and
also provide the scripts for reproduction and analysis of the data
set2. We summarize our contributions as follows:

• A new public data set comprising alerts generated by multi-
ple detectors monitoring diverse data sources for multi-step
attack scenarios independently executed in eight networks.

• Illustrative applications of open-source tools for multi-step
attack analysis on the data set.

The remainder of the paper is structured as follows. Section 2
reviews existing alert data sets and their applications. We then
outline our approach of generating and labeling the data set in Sect.
3. Section 4 illustrates the application of an open-source tool for
attack graph generation. We discuss our findings in Sect. 5 and con-
clude the paper in Sect. 6. Appendix A describes a method to weigh
detectors and filter irrelevant alerts. Appendix B demonstrates the
application of an open-source framework for alert aggregation on
the data set. Appendix C provides a detailed list of all detectors that
produce the alerts that make up the data set.

2 BACKGROUND & RELATEDWORK
When it comes to scientific evaluations of approaches for multi-
step attack analysis, availability of appropriate data sets is a critical
factor. Unfortunately, surveys have shown that around 40%-50%
of works published in this research field rely on private data sets,

1AIT-ADS available at https://zenodo.org/record/8263181 (accessed 2023-08-24)
2Code available at https://github.com/ait-aecid/alert-data-set (accessed 2023-08-24)

meaning that their results are not reproducible [7, 12, 18]. Publish-
ing these data sets is often not permitted due to the fact that they
origin from productive environments and possibly involve sensi-
tive data. Moreover, more than half of the remaining publications
that do use public data sets resort to data sets from the DARPA
collection [4]. These data sets have been heavily criticized for a
multitude of reasons, such as being outdated (they were generated
in the years 1998-2000) and apparent oversimplification of both
background traffic and attack manifestations [24]. The data sets also
only involve network traffic and are thus not suitable to generate
alerts from host-based IDSs that analyze system log data [3].

One of the main problems is that publicly available data sets were
originally not intended to be used for multi-step attack analysis;
they were primarily designed as data sets for IDS research that
researchers resort to for evaluation of multi-step attack analysis
methods for the lack of better alternatives [4]. For example, Chadza
et al. run Snort IDS on one of the DARPA 2000 scenarios to obtain an
alert data set, which they use to develop and evaluate an approach to
detect the current stage of the attack and predict the upcoming ones.
Specifically, they leverage Hidden Markov Models and compare
various training and initialization algorithms.

For the purpose of evaluating alert aggregation algorithms, Lan-
dauer et al. [10] apply signature- and anomaly-based IDSs on the
AIT-LDSv1 [9], which comprises log data from four attack execu-
tions. The problem with their resulting evaluation data is that the
AIT-LDSv1 only comprises log events from a single server rather
than multiple components in the network. For this reason, we select
the AIT-LDSv2 that improves upon this issue among several others,
including extensiveness of simulations for normal behavior, real-
ism of network layout, collection of network traffic, and reliability
of attack labels. In Appendix B we test their approach for alert
aggregation on our newly generated data set.

Another source of alert data sets is provided by the annual Col-
legiate Penetration Testing Competition3 (CPTC). The organizers
of the event provide student teams with simulated environments of
corporate or industrial networks and task them to discover vulner-
abilities of software services for educational purposes. In course of
this event, log data and alerts from IDSs deployed in the networks
are collected and published as publicly available data sets, which
have since been used by several researchers. For example, Perry et
al. [19] use the CPTC-2017, which comprises alerts from Suricata
IDS triggered by the attacks from ten student teams, to train an
LSTM and predict upcoming attack stages. While the CPTC data
sets appear highly useful for analysis of attack strategies, it is im-
portant to take into account that these data sets primarily resemble
comprehensive penetration tests rather than targeted attacks since
students are tasked to discover as many vulnerabilities as possible
[14, 16]. Close examination of the CPTC-2017 has also shown that
attack sequences commonly used across multiple teams mostly
relate to scans or other basic attacks, while more advanced attack
techniques are usually unique to one or few teams [16]. In-depth
analysis of the CPTC-2019 also showed that there is only little over-
lap of the discovered vulnerabilities across different teams [14]. As
a consequence, single alert occurrences need to be mapped to some
high-level categories of attack stages in order to extract common

3Collegiate Penetration Testing Competition, https://cp.tc/ (accessed 2024-05-06)
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attack patterns of multi-step attacks from the data sets. This is
accomplished by Nadeem et al. [17], who map alert signatures from
Suricata IDS to the abstract categories of the Action-Intent Frame-
work [15] for the purpose of generating attack graphs. We discuss
their approach in more detail in Sect. 4 and use it to generate an
attack graph for the data set introduced in this paper.

Beside the DARPA data set, Zhou et al. [28] use the ISCXIDS2012
[22] and the CIC-IDS2017 [21] for evaluation of their approach
to detect multi-step attacks in sequences of alerts. Both data sets
only comprise network traffic and are primarily designed for IDS
research. While the ISCXIDS2012 already contains traces of multi-
step attacks, the CIC-IDS2017 only involves individual attack steps
that are rearranged by the authors to fit their purpose. To evaluate
their approach, Ben et al. [2] use the CTF data set from DEFCON4

2017, which contains alerts from the network-based Snort IDS with
a total of 36 unique alert signatures. They experiment with deep
neural networks for the prediction of attack types based on involved
IP addresses and previously observed attack types.

Ramaki et al. [20] use the Scan-of-the-Month data set provided
by the Honeynet project5 to evaluate their approaches for alert fil-
tering, similarity-based clustering, and cluster summarization. The
advantage of this data set is that it comprises logs from heteroge-
neous sources, including a network-based IDS, firewall events, and
system logs. Another honeypot data set is presented by Sperotto et
al. [23], who collect network flows and label them manually. Husák
et al. [5] also provide a honeypot data set from an alert sharing
platform monitored by network-based IDSs. Common problems
with data sets from honeypots include lack of control over attacker
activities and difficulties in labeling unknown traffic [8].

3 ALERT DATA SET
This section describes the alert data set published alongside this
paper. We explain how we generated and labeled the data set and
highlight relevant characteristics.

3.1 AIT-LDSv2
Publicly available alert data sets are scarce, but so are suitable log
data sets containing traces of attacks [8]. One of them is the AIT-
LDSv26 published in 2022. The data set contains synthetic network
traffic and system logs collected from a virtual test environment
that represents an enterprise network, which consists of an in-
tranet zone with a file share and an intranet server, a demilitarized
zone with a VPN server, a mail server, and a cloud storage, and
an Internet zone with a DNS server and additional mail servers,
all connected through a firewall. Normal behavior is generated
by extensive state machines that simulate employees interacting
with available services. The simulation was set up to run for mul-
tiple days and involves two main attack cases. The first one is a
multi-step attack comprising several scans using the tools Nmap
for service and host scans, Dirb for directory scans, and WPScan
for scanning the intranet server running a WordPress platform, as
well as exploits to upload a webshell through a vulnerable Word-
Press plugin, password cracking, installation of a reverse shell, and

4DEFCON, https://defcon.org/ (accessed 2024-05-06)
5Honeynet project, https://honeynet.onofri.org/scans/index.html (accessed 2024-05-06)
6AIT-LDSv2, https://zenodo.org/record/5789064 (accessed 2024-05-06)

privilege escalation. The second attack case exfiltrates sensitive
data from the file share over stealthy DNS requests using the tool
DNSteal. As a challenge to anomaly-based IDSs, the exfiltration
case was designed to be already active at the beginning of the data
set and stop at a specific point in time, which is more difficult to
detect than a new service starting. For more information about the
log data set, we refer to the publication describing the design of the
test environment used to collect the data [8].

The AIT-LDSv2 has some unique features that, to the best of our
knowledge, make it the only publicly available data set suitable to
obtain alerts that adequately address common challenges of multi-
step attack analysis (cf. Sect. 1). First, the data set comprises eight
scenarios named fox, harrison, russellmitchell, santos, shaw, ward-
beck, wheeler, and wilson, that all involve the same environment
and attack cases. However, each scenario was designed to have
unique variations regarding the attack cases (i.e., attack parameters
such as scan intensities), environment (e.g., number of deployed
servers), and user simulations (e.g., roles of employees and their
individual preferences). Alerts generated from these eight instances
thus enable derivation of training and test data sets for attack step
prediction, evaluation of approaches for alert aggregation across
organizations, computation of similarities for single or combined
attack steps, etc. Second, the data set comprises packet captures
from network traffic as well as log files from various sources, such
as low-level Audit logs, Apache access logs, DNS logs, syslog, CPU
logs, and several application logs. This means that we are able to
generate alerts from several sources using IDSs that operate on
network as well as host level. Third, log data is collected from every
component in the network. As attacks leave traces on multiple ma-
chines, generated alerts need to be correlated accordingly. Fourth,
a large portion of the data is collected during normal operation.
Generating alerts from that data yields false positives, which enable
evaluation of alert prioritization and filtering mechanisms. Fifth,
the data set is fully labeled. We are therefore able to assign labels
to alerts based on labeled attack phases and log events.

3.2 Intrusion Detection Systems
We obtain alerts from three open-source IDSs by forensically pro-
cessing the AIT-LDSv2 with Wazuh and AMiner and collecting
alerts from Suricata. Note that even though all generated alerts are
in JSON format, there is no common schema for the alert objects
since different detectors use specific fields. For example, detector
signatures reside in the “description” field of Wazuh alerts and the
“AnalysisComponentName” field of AMiner alerts. The table in Ap-
pendix C summarizes all 93 unique detector signatures (34 from
AMiner, 29 from Suricata, and 30 from Wazuh). In the following,
we refer to these detectors by the abbreviations shown in that ta-
ble (note that the first token of the abbreviation indicates the IDS:
AMiner - A, Suricata - S, Wazuh - W ). The following paragraphs
briefly describe each deployed IDS.

Wazuh7 is a host-based and signature-based IDS that scans log
files for potentially malicious events. Wazuh relies on a data base of
expert rules that specify textual patterns that need to match in log
lines to trigger alerts. There are also advanced rules that are only
active when other rules have been triggered beforehand or some

7Wazuh, https://wazuh.com/ (accessed 2024-05-06)
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patterns have matched a minimum amount of times in a specific
time interval. Since Wazuh does not support forensic analysis of
log files, we created a script that reads out the timestamps of log
files in the AIT-LDSv2 and feeds them into Wazuh in real-time.

Suricata8 is a network-based and signature-based IDS that may
also be used as an intrusion prevention system (IPS). Suricata in-
spects network packets and conducts pattern matching using a
data base of expert rules similar to Wazuh. Specifically, Suricata
matches flows by protocol, IP addresses, ports, etc. The authors
of the AIT-LDSv2 already deployed Suricata on the servers in the
network. Accordingly, Suricata alerts are already available in the
data set and can be conveniently collected by Wazuh.

AMiner9 is a host-based and - contrary to Wazuh and Suricata -
anomaly-based IDS. This means that it is necessary to train AMiner
with sufficiently many logs corresponding to normal system be-
havior so that the models used for detecting deviations adequately
represent normal activities. We therefore use the first two days of
each scenario in the AIT-LDSv2 for training and switch the AMiner
to detection mode afterwards, so that the learned models are not
affected by the attacks. Moreover, there is no default configuration
for AMiner that works out-of-the-box; instead, we empirically se-
lect and configure the following detectors: (i) event detection (Evt)
detects new event types that have not been observed before, (ii)
value detection (Val) detects new categorical event parameters, (iii)
combo detection (Com) is similar to value detection but works on
combinations of event parameters, (iv) character detection (Chr)
recognizes new characters in textual parameters, (v) entropy detec-
tion (Ent) analyzes likelihoods of character transitions in textual
parameters, (vi) frequency detection (Frq) applies seasonal time-
series forecasting on event frequencies, (vii) count detection (Clc)
detects unusual event count distributions in time windows, (viii)
range detection (Rng) detects numeric parameters outside of learned
minimum and maximum bounds, and (ix) average change detection
(Avg) analyzes numeric parameters for deviating means and vari-
ances. For more details on these detection mechanisms, we refer to
the AMiner paper [11] and our repository (see link in Sect. 1).

3.3 Scenario Timelines
Our generated alert data set comprises alerts from the three afore-
mentioned IDSs applied on each of the eight scenarios provided in
the AIT-LDSv2. For brevity, we only provide plots for the harrison
and shaw scenarios in the following; we select these two as illus-
trative examples with diverse attack manifestations. Figure 1 plots
the alerts generated from each detector during the entire time span
of the simulations, including phases of normal activity. Thereby,
each alert occurrence is marked by a distinct symbol and color to
differentiate the location of detection, i.e., the network component
where the IDS reported the alert. The time windows where the two
attack cases of the (A) multi-step attack and (B) data exfiltration
leave detectable traces in the logs are indicated by shaded intervals
of blue and red colors respectively.

Examining these plots makes it immediately clear that several
detectors report a high number of false positives, i.e., alerts occur-
ring outside of the attack time windows. We point out that referring

8Suricata, https://suricata.io/ (accessed 2024-05-06)
9AMiner, https://github.com/ait-aecid/logdata-anomaly-miner (accessed 2024-05-06)

to these alerts as false positives may be misleading; the detectors
correctly report these events as expected, it is just the case that the
events themselves do not correspond to any activities related to
the attacks in the context of these scenarios. For example, alerts
are triggered when the ClamAV service attempts to update, which
occurs roughly once every hour on multiple components (W-Sys-
Cav). Other detectors are triggered by normal user activity and thus
only occur during daytime, for example, users logging into their
mail accounts generate alerts that notify on a successful authenti-
cation (W-Sys-Dov). Another interesting observation is that almost
all AMiner detectors report multiple false positives in the first half
of the first day of each scenario, which is the result of training the
models (e.g., adding new categorical values to the value detector)
that are still incomplete and not representative for the system be-
havior at this point. As visible in the plots, the frequencies of these
false positives quickly diminish for most detectors and there are
hardly any false positives from the second day onward.

The plots also show that the multi-step attack triggers several
alerts from each of the three IDSs in every scenario. As expected,
most of the alerts stem from the intranet server, which is the main
target of this attack case. We present a more detailed view on the
multi-step attack in the following section. The data exfiltration
attack also triggers several alerts. In every scenario, stopping the
exfiltration service is detected as anomalous by the AMiner (A-Aud-
Com4) as this behavior has not been observed in the training phase.
Moreover, since the exfiltration generates a high number of events
while it is active, the AMiner is able to recognize deviations of DNS
event frequencies once the service stops and reports alerts until
the end of the simulations (A-Dns-Clc1/2/3). In the harrison and
santos scenarios, the exfiltration itself is also detected by Suricata,
which produces a high number of alerts until the service is stopped
(S-Dns-Qry3). The reason for this is that only in these scenarios
the domain of the attacker has a “.biz” top-level-domain, which
is considered suspicious. These Suricata alerts also trigger Wazuh
rules, creating additional alerts (W-All-Evt andW-All-Mul1).

3.4 Labeling of the Alert Data Set
This section outlines our approach to label alerts in the AIT-ADS
based on their occurrence times and associated log events.

3.4.1 Time-based labeling. The most straightforward way of gen-
erating a ground truth of benign and malicious behavior is to label
alerts based on their occurrence times. This strategy requires that
the attack schedule is known and the execution of each attack step
immediately results in the generation of log events and network
packets that are subsequently detected by IDSs in a timely manner,
i.e., there is almost no delay between the time a malicious action
is carried out and the occurrence timestamp of the alert or the log
event associated with the alert. Since the attacker behavior in the
AIT-LDSv2 is modeled with a state machine that produces log data,
the start and end times of each attack step are available.

Figure 2 zooms in on the multi-step attack and shows shaded
intervals for the start and end times of each step, in particular,
network scans (A1/red), service scans (A2/cyan), WordPress scan
(A3/yellow) Dirb scan (A4/blue), webshell upload and command
execution (A5/green), password cracking (A6/light blue), reverse
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Figure 1: Alert timelines. Detectors triggering alerts are depicted on the vertical axis (cf. Appendix C). Hosts where alerts origin
are indicated through symbols and colors. Shaded intervals indicate multi-step attack (A/blue) and data exfiltration (B/red).

shell (A7/brown), privilege escalation (A8/purple), and data exfil-
tration (pink). This type of labeling might be sufficient in cases
where only the time of detection is used to evaluate the effective-
ness of IDS, however, suffers from some drawbacks when more
fine-granular evaluation is pursued. Foremost, it is not possible
to differentiate alerts that are related to certain attack steps from
false positive alerts that coincidentally occur during the respective
attack interval, such asW-Sys-Dov alerts that appear in multiple at-
tack intervals. Similarly, it is difficult to adequately label alerts that
occur during overlapping attack steps, such as the multi-step attack
that is executed while the data exfiltration is active at the same
time. Finally, some detectors violate the assumption on timeliness
and produce alerts with delays so that their occurrence times fall
outside of attack intervals, e.g., detectors that evaluate collections
of events within time windows and only produce alerts after the
end of the window has passed, such as A-Dns-Clc1 alerts from a
frequency-based anomaly detector.

3.4.2 Event-based Labeling. To address the aforementioned prob-
lems of time-based labeling, we also assign labels to individual
alerts based on the specific log line that triggered their detection.
This labeling strategy requires that the log data and network pack-
ets themselves are labeled individually. Fortunately, the authors
of the AIT-LDSv2 provide such labels for a handpicked selection
of network components and log sources that they determined as
particularly relevant for the deployed attacks, such as the intranet
server and file share that are the main targets of the multi-step
attack and data exfiltration respectively.

All alerts from AMiner and Wazuh IDS contain the original log
event that is automatically added to the alert by the IDS; accord-
ingly, we are able to retrieve the label corresponding to that line
by searching all labeled events for perfect matches, i.e., both the
time stamp and the event message must coincide. Alerts generated
by Suricata need to be treated differently as the authors of the
AIT-LDSv2 only provide labels for netflows generated from the
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Figure 2: Labeling of themulti-step attack in two out of eight scenarios. Time-based labels are indicated by shaded time intervals
and event-based labels of individual alert occurrences are indicated through symbols and colors.

packet captures, which lack a unique identifier. We therefore base
our matching strategy on the community ID for netflows project10
that compares protocols, IP addresses, and ports. In addition, we
require that the time difference between the alert and the labeled
netflow lie within a short interval of 2 seconds.

Figure 2 shows the event-based labels through symbols and
colors of event occurrences. As expected, the assigned labels match
with the intervals of the time-based labeling strategy; however,
false positives such as W-Sys-Dov alerts remain unlabeled. The
main issue with an event-based labeling strategy for alerts is that
it is only as accurate and complete as the labels of the original log
data set, which is often difficult to ascertain [8]. For example, some
W-Acc-400 alerts that are generated as consequences of scans are
detected in proxy logs for which no labels in the AIT-LDSv2 exist.

4 MULTI-STEP ATTACK ANALYSIS
This paper considers two analysis methods for multi-step attack
analysis: alert aggregation and attack graph extraction. Appendix B
provides details on alert aggregation, specifically an approach that
relies on similarity computation of short alert sequences to identify
repeating patterns, which are in turn merged into generic meta-
alerts. Alert aggregation generally puts less focus on the recreation
of the sequential execution stages of attacks, such as linking meta-
alerts into chains. On the contrary, attack graphs specifically aim
to visually summarize attack strategies by connecting related steps
that attackers need to take to achieve their goals. Generation of such

10Community ID Flow Hashing, https://github.com/corelight/community-id-spec (ac-
cessed 2024-05-06)

graphs is often a tedious process that requires expert knowledge;
however, there are also attempts to ease this task through automa-
tion. One of them is SAGE [17], an open-source tool that is available
on GitHub11 and enables alert-driven attack graph extraction from
raw intrusion alert sequences.

The framework relies on amanually craftedmapping of intrusion
detection alerts to some higher-level attack stages, such as scanning,
exploit, or privilege escalation. In particular, the authors rely on the
categories provided by the Action-Intent Framework [15], which
draw away from technical details of alert signatures and focus on
goals and strategies of attackers when classifying alerts. As an
initial step, SAGE filters irrelevant alerts, in particular, alerts that
relate to non-malicious activities (according to the mapping) and
repetitions of alerts within short time intervals. The remaining
alerts and their corresponding attack stages are then arranged into
so-called episodes of attacker behavior, i.e., short sequences of alerts
that relate to distinct actions. SAGE then leverages FlexFringe [26],
an open-source framework to generate probabilistic automata for
software behavior from logs, to merge sequential episodes and
subsequently create graphs. While the resulting graphs comprise a
single end node representing the goal of the attackers, they may
comprise multiple start nodes to represent all the possible paths
attackers take to achieve their goals. Finally, SAGE also leverages
alert attributes to enrich the resulting graph, for example, port
numbers are extracted to identify the services targeted by a specific
attack step.

11SAGE repository, https://github.com/tudelft-cda-lab/SAGE (accessed 2024-05-06)
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Figure 3: Attack graph generated by the SAGE framework showing the steps in which attackers conducted the multi-step attack
in fox (maroon), harrison (pink), russellmitchell (yellow), santos (brown), shaw (purple), wardbeck (green), wheeler (orange),
and wilson (blue) scenario.

The authors of SAGE assume that several attacker teams oper-
ate on the same infrastructure and thus pursue the generation of
separate attack graphs for every victim system to understand how
different teams attack the same component. Since the infrastruc-
tures in our scenarios are almost identical in terms of available
systems but isolated from each other, we therefore modify the data
so that the attackers appear to target the same systems. To this
end we overwrite all IP addresses of victim components to coincide
with those of their counterparts across all scenarios. Furthermore,
we apply prioritization (cf. Appendix A) on our alert data set to
reduce the number of false positives that we feed into SAGE. Note
that SAGE is unsupervised and does not require labeled data.

SAGE relies on two crucial parameters that set the time win-
dows to filter redundant alerts and aggregate alerts into episodes,
which we set to 2 seconds to group alerts that occur close in time
as related (cf. Appendix B where we use the same time interval
for alert grouping), and 2 hours to ensure that attack chains are
not interrupted, respectively. Figure 3 displays the resulting at-
tack graph for the intranet server, which is the primary target of
the multi-step attack. Attackers are color-coded according to their
corresponding scenarios and arrows indicate their progression in
compromising the intranet server. The graph shows that the steps
taken by attackers are similar across all scenarios, starting with
scanning activities (“host discovery” and “service discovery”), con-
tinuing with the exploit of the WordPress platform (“public app
exploit”), until access is gained via the webshell (“user privilege
escalation”) and eventually privileges are escalated (“privilege esca-
lation”). Note that some attack phases are duplicated as different
ports are involved. Moreover, attacks such as the password cracking
phase are missing from the graph as the corresponding alerts do
not occur sufficiently consistent across scenarios. Overall, the at-
tack graph provides a compact and high-level overview of common
patterns and dependencies of attack phases but does not allow to
differentiate attacks on a fine-granular level, e.g., WordPress and
Dirb scans are merged into a single state. Due to its challenging mix
of similar alert patterns and diverse attack manifestations, our alert

data set offers a suitable basis for the development and evaluation
of new algorithms for attack graph mining.

5 DISCUSSION
We generated the alert data set that is introduced in this paper
with several use-cases and requirements in mind; specifically, we
aimed to resolve issues with existing alert data sets and designed the
data set to address challenges in the research domain of multi-step
attack analysis [4, 7, 18]. The main characteristics of the alert data
set that differentiate it - to the best of our knowledge - from data
sets commonly used by researchers are as follows. (i) The data set is
publicly available and thus facilitates reproducibility of evaluations.
We publish configuration files of deployed IDSs so that others are
able to replicate the data set or produce variants of it by changing
configuration parameters, e.g., adapting detectors (see link in Sect.
1). (ii) The data set involves several multi-step attacks carried out
independently and with variations in eight different scenarios (cf.
Sect. 3.1), enabling aggregation and meta-alert generation (cf. Sect.
4 and Appendix B). (iii) Alerts are generated from three different
IDSs with heterogeneous detection techniques that analyzemultiple
sources, involve diverse alert formats (cf. Sect. 3.2), and stem from
all relevant components in the network (cf. Sect. 3.1). (iv) Since the
alerts are generated from a synthetic and labeled log data set, we
are also able to provide labels for attack phases and single alerts
(cf. Sect. 3.4). (v) The data set also involves a high number of false
alerts and is thus suitable for evaluation of alert prioritization and
filtering (cf. Sect. 3.3 and Appendix A).

We see several interesting research opportunities enabled by
our data set. For example, analyzing which alerts occur more often
during attack phases than during normal operation allows to assign
weights to each detector and effectively filter irrelevant alerts (cf.
Appendix A). In real-world applications, however, labels for system
activities are generally not available or reliable, which requires un-
supervised approaches or possibly semi-supervised training phases
where only normal activity occurs on the systems. Another prob-
lem that could be addressed by future research is that some of the
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Table 1: Effect of filtering on the numbers of alerts in scenarios and average reduction rates

Alerts fox harrison russellmitchell santos shaw wardbeck wheeler wilson Avg. reduction rate
All 473,104 593,948 45,544 130,779 70,782 91,257 616,161 634,246 -
Filtered by prioritization 420,600 (11.10%) 425,392 (28.38%) 11,705 (74.30%) 11,709 (91.05%) 6,667 (90.58%) 7,107 (92.21%) 431,319 (30.00%) 435,538 (31.33%) 56.12%
In attack phases 421,653 (10.88%) 431,492 (27.35%) 12,015 (73.62%) 13,004 (90.06%) 6,935 (90.20%) 7,040 (92.29%) 432,334 (29.83%) 440,108 (30.61%) 55.6%
Filtered and in attack phases 420,112 (11.20%) 424,974 (28.45%) 11,230 (75.34%) 11,217 (91.42%) 6,065 (91.43%) 6,213 (93.19%) 430,737 (30.09%) 434,952 (31.42%) 56.57%
SAGE 5,755 (98.63%) 6,515 (98.47%) 383 (96.59%) 238 (97.88%) 175 (97.11%) 210 (96.62%) 6,785 (98.42%) 8,209 (98.11%) 97.73%
Alert aggregation 167 (99.96%) 167 (99.96%) 167 (98.51%) 167 (98.51%) 167 (97.25%) 167 (97.31%) 167 (99.96%) 167 (99.96%) 98.93%

detectors that report many true positives also produce compara-
tively many false positives, which may not be accepted in practice.
We thus foresee our data set to be useful for the development and
evaluation of new methods for alert prioritization.

One of the key metrics used by researchers to compare ap-
proaches on alert filtering and aggregation is the reduction rate,
which measures what percentage of alerts does not need to be re-
viewed by human operators. Table 1 compares reduction rates that
we achieved on our alert data set using the frameworks explored in
this paper. The first row shows the total number of alerts generated
in each of the eight scenarios. The second row shows how many
alerts remain after applying our prioritization technique, i.e., only
considering alerts from detectors with a detection score of more
than 0.7 (cf. Appendix A), as well as the reduction rate in brackets.
The third row then shows the numbers of alerts from any detectors
that occur within one of the attack phases. Applying both filtering
techniques in combination, i.e., only considering alerts by relevant
detectors that occur within attack phases, yields almost the same
numbers as before in each scenario and an average reduction rate of
56.57% across all scenarios. We consider this as a validation that our
prioritization selects those detectors as relevant that produce many
alerts related to attacks while filtering false positives. Since these
are the alerts we feed into the analysis techniques for multi-step
attacks, we compute their reduction rates based on these counts.

SAGE (cf. Sect. 4) removes duplicates of alerts within time win-
dows and achieves an average reduction rate of 97.73%. Alert ag-
gregation (cf. Appendix B) on the other hand finds similar groups
of alerts across all scenarios and merges them to meta-alerts, re-
sulting in a total of only 167 distinct alerts, which corresponds to
an average reduction rate of 98.93%.

We illustrate that both analysis techniques for multi-step attacks
yield interesting and useful results when applied on our data set;
however, we also want to point out some ideas for future work that
could further improve these concepts. While the graph extraction
of SAGE itself is unsupervised, it hinges on a mapping of detector
signatures to high-level attack phases that needs to be created
through expert knowledge. This may be difficult in practice as an
exhaustive list of signatures is not necessarily known and may
change over time. Even more problematic is the fact that some
alerts possibly fit into more than one stage of the kill chain. In
particular, alerts from anomaly-based IDSs are often too generic to
be mapped to a specific attack, for example, log events occurring
with unusual frequencies could be related to basic scans, brute-
force attacks, or some activity related to data exfiltration as shown
in Sect. 3.3. The alert aggregation approach on the other hand is
fully unsupervised, but does not show the progression of attack
steps. We thus propose to combine the advantages of both methods
and apply SAGE’s algorithm for attack graph generation on the
sequences of meta-alerts identified by alert aggregation. This could

allow to derive attack graphs with high technical detail regarding
the involved alerts in different stages, which could in turn enable
automatic recognition of attacks that follow similar attack stages,
attribution of observed multi-step attacks to certain adversarial
actors, as well as prediction of subsequent attack phases.

We also share some insights regarding challenges that need to
be considered for the generation of new alert data sets. Most of all,
alerts are obviously heavily dependent on the selection and config-
uration of IDSs. Unfortunately, designing a suitable setup of IDSs is
non-trivial since configurations are likely very diverse in real-world
scenarios and specifically the configuration of anomaly-based IDSs
highly depends on expert knowledge about the monitored systems.
This also concerns the time used to train detectors utilizing machine
learning techniques. Additional detectors with advanced analysis
techniques as well as a more extensive set of detection rules could
generate more distinct alerts and thus further improve the results
of multi-step attack analysis. Overall, we believe that IDS selec-
tion and configuration would benefit from a structured analysis
of attack manifestations in log data that investigates how and in
what sources different attack techniques leave traces suitable for
detection. In addition, we also argue that alert data sets comprising
overlapping attack phases caused by one or multiple adversaries
launching several attacks at the same time could result in more
challenging alert data sets with relevance for advanced analysis of
multi-step attacks. We leave these tasks for future work.

6 CONCLUSION
In this paper we describe a novel alert data set that we specifically
generate for the purpose of evaluating approaches in the research
domain of multi-step attack analysis, such as detection and pre-
diction of attack stages. We collect the data set by forensically
analyzing the AIT-LDSv2, a publicly available collection of network
traffic and log data sets, and collecting alerts with three different
intrusion detection systems, namely Suricata, Wazuh, and AMiner,
to generate more than 2.6 million alerts with 93 distinct detector
signatures. The data set is designed to overcome prevalent issues
with existing data sets by providing alerts from modern and het-
erogeneous detectors monitoring diverse data sources for traces
of relevant and fitting attack steps. As we show in this paper, the
properties of the data set make it a promising basis for future re-
search endeavors. Specifically, the presence of alerts with diverse
relevance for detection as well as false positive alerts facilitate fil-
tering and prioritization techniques. Since the alerts origin from
eight separate environments where the attack steps are executed
with variations, the data set also enables generation of meta-alerts
and attack graphs. We foresee to use the data set to develop and
evaluate approaches for attack pattern recognition that combine
the advantages of meta-alerts and attack graphs.
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APPENDICES
A DETECTOR PRIORITIZATION
This section outlines a scoring scheme to prioritize detectors for
the purpose of filtering alerts with low relevance or false positives.

A.1 Alert counts in scenarios
Across all scenarios, the total number of alerts is 2,655,821, where
2,293,628 (86.4%) origin from Wazuh, 306,635 (11.5%) from Suricata,
and 55,558 (2.1%) from AMiner. However, alert counts vary strongly
depending on the scenario, e.g., Wazuh generates 560,265 alerts
in wilson but only 32,302 in russellmitchell. The reasons for that
are manifold, but mostly depend on the length of the simulation
(6 days vs 4 days), the number of employees simulated as part of
the scenario (24 vs 10), and the parameters of attack executions
(extensive vs basic scanning).

The plots in Sect. 3 display overall distributions and patterns of
alerts, but make it difficult to compare frequencies of alerts as many
symbols overlap. We therefore also count the numbers of alerts
reported by each detector for a quantitative comparison. Figure 4
shows a heatmap of reported alerts in scenarios, where darker colors
indicate higher alert frequencies and the exact numbers are written
in the respective cells. This plot allows to differentiate the four sce-
narios with extensive scanning (fox, harrison, wheeler, wilson) from
those with basic scanning (russellmitchell, santos, shaw, wardbeck)
as the latter have significantly less alerts reported by detectors
such as W-Acc-400, W-Err-Fbd2, A-Acc-Chr2, etc. The heatmap also
shows that there are not only significantly more alerts reported by
S-Dns-Qry3 in the harrison and santos scenarios (cf. Sect. 3.3), but
also in the wheeler scenario as it uses the “.biz” top-level-domain
for the network.
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Figure 4: Total number of alert occurrences by detection type in each of the eight scenarios.

A.2 Alert Rates
As visible in Fig. 1, there is a significant number of false positive
alerts in our data set. Such a situation would likely not be tolerable
in practice as the large number of alerts puts a high workload on
operators. Beside practical issues, alerts reported by detectors that
are mainly responsible for false positives are also problematic for
the purpose of multi-step attack analysis, because even though they
are not related to the attacks, some of them interfere with true
positive alerts and thereby hinder identification of relevant alerts
and interpreting their context of occurrence. Clearly, the focus of
analysts should lie on alerts that are capable of detecting one or
more attacks steps but do not appear during normal operation.

To be able to differentiate alerts with low and high relevance,
we count the number of alerts during each attack phase and ad-
ditionally define a time window of normal operation to obtain a
baseline of average alerting frequencies for each detector. To this
end we leverage the attack times provided in the AIT-LDSv2 and
specify a test phase of 5 hours roughly at the same time of day as
the multi-step attack but one day earlier. This selection ensures
that the test phase does not overlap with the training phase of
the AMiner and that the average alert occurrence frequencies are
comparable as both test phase and attack phases are affected by a
similar background noise of normal activity.

Figure 5 provides a heatmap of the alert rates, i.e., alert occur-
rences per minute accumulated over all scenarios and for each
detector, where very infrequent rates of less than 0.01 alerts per
minute are depicted as > 0 and empty cells indicate that no alerts
are raised by the detector in the respective time interval. We em-
phasize that counting is only based on the alert timestamp, i.e.,
the counts for a detector represent how many alerts it produces
in the respective time interval without validating that the alert is
actually a direct consequence of an attack. The plot already gives
a good idea about which detectors are more useful than others.
For example, we consider W-Acc-Att as a highly valuable detector
for producing relevant and specific alerts as it reports on average
more than 8 alerts per minute during the Dirb scan and not a single
alert during any other observed time interval. Detectors such as
A-Acc-Val2 do involve few false alerts, however, we consider them
useful as they also report comparatively high numbers of true posi-
tive alerts during specific attack phases. On the contrary, detectors
such as S-Dns-Loo that only report false positives, S-Tls-Hnd that
involve similar alert rates for phases of attack and normal behavior,

or W-Mai-Brt that do not report any alerts in the observed time in-
tervals at all, do not contribute to attack detection in our scenarios.
We emphasize that these detectors may be useful for other attack
cases and that our analysis only focuses on detection of the attacks
involved in the AIT-LDSv2. In the following section, we leverage
alert rates to compute scores for detectors that enable ranking.

A.3 Detector Scores
Based on the insights from the previous section, we propose to
compute quantitative scores for detectors based on howmany alerts
they report during attacks and intervals of normal activity. To this
end, we compare the number of alerts reported by a detector 𝐷
during the time interval Δ𝐴 of attack phase 𝐴 with the number of
false positives in the observed test interval of length Δ𝑇 , weigh
them by the duration of the intervals to compensate for the fact that
longer time intervals are more likely to contain randomly occurring
false positives, and average their ratio for each scenario 𝑆 . Formally,
Eq. 1 describes how this score is computed, where the number sign
(#) yields the set size and A𝐷,𝑆 is the set of all alerts from detector
𝐷 in scenario 𝑆 . We refer to this metric as the robustness score
𝑠𝑟𝑜𝑏 (𝐴, 𝐷), because it assesses how robust a detector 𝐷 reports
alerts for attack phase 𝐴 with respect to false positives caused by
normal behavior noise. The robustness score lies in the interval
[0, 1], where values closer to 1 indicate that the detector reports
significantly more alerts during attack phases than normal behavior
and values closer to 0 indicate that false positives are dominating.

𝑠𝑟𝑜𝑏 (𝐴, 𝐷) =
1
#𝑆

∑︁
𝑆

(
1 −𝑚𝑖𝑛

(
1,
#(A𝐷,𝑆 in Δ𝑇,𝑆 )
#(A𝐷,𝑆 in Δ𝐴,𝑆 )

·
Δ𝐴,𝑆
Δ𝑇,𝑆

))
(1)

Another important factor when it comes to assessing the relevance
of detectors is the ability to recognize a specific attack phase in-
dependent from attack parameters and other influences from the
technical environment or system utilization. In our situation, this
means an attack should optimally be detected in a robust way across
all scenarios. We therefore multiply the robustness score 𝑠𝑟𝑜𝑏 (𝐴, 𝐷)
with the ratio of scenarios where detector 𝐷 triggered at least one
alert in the respective interval Δ𝐴 . Equation 2 formally describes
how to compute the detection score 𝑠𝑑𝑒𝑡 (𝐷). Note that we seek the
maximum detection score achieved for any attack as we consider
an accurate and robust detection of a single attack step as sufficient
for a detector to be regarded as relevant; capabilities of a single
detector to detect multiple attack phases are beneficial, but not
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Figure 5: Average alert occurrences per minute by detection type during attack phases and normal operation.

essential. Again, the detection score lies in the interval [0, 1], with
higher values indicating superior detection performance.

𝑠𝑑𝑒𝑡 (𝐷) = max
𝐴

(
𝑠𝑟𝑜𝑏 (𝐴, 𝐷) ·

#(𝑆 : 𝐴 ∈ 𝑆 ∧ #(A𝐷,𝑆 in Δ𝐴,𝑆 ) > 0)
#(𝑆 : 𝐴 ∈ 𝑆)

)
(2)

Table 2 shows the number of scenarios where a specific detector
reports at least one alert during each of the attack phases. For
example, the first row shows that W-All-Mul3 reports alerts for
both WordPress and Dirb Scans in every single scenario; given that
the detector does not report any false alerts in the test interval, it
can thus be considered highly relevant. The detector also reports
alerts for the service scans, however, only manages to do so in
five out of eight scenarios and thus falls short to detectors such as
W-Aut-Ssh2 that appears better suited to detect that attack phase.

The two rightmost columns of the table state the computed ro-
bustness and detection scores for all detectors. Note that we sorted
the table by detection score and omit detectors with a score of 0
as they do not detect any attacks at all. Generally, high ranked
detectors are hardly affected by false positives and may even detect
more than one attack phase, while low ranked detectors are less
robust, often fail to detect attacks consistently across scenarios,
or both. Consider A-Aud-Com2 as an example, which detects the
privilege escalation attack phase across all scenarios without trig-
gering any false alerts in the observed test interval; accordingly,
the best possible scores of 𝑠𝑟𝑜𝑏 (Priv. Esc.,A-Aud-Com2) = 1 and
𝑠𝑑𝑒𝑡 (A-Aud-Com2) = 1 are achieved. A-Mon-Avg on the other hand
is affected by false positives. In the fox scenario, the detector reports
one false positive in the test phase of 18,000 seconds, and one true
positive as a consequence of the increased CPU resource consump-
tion that takes place during the password cracking attack phase last-
ing for 2,120 seconds. This yields a robustness of 1− 1

1 ·
2,120
18,000 = 0.88

in the fox scenario; averaged over all scenarios we obtain a ro-
bustness score of 𝑠𝑟𝑜𝑏 (Password cracking,A-Mon-Avg) = 0.94. As
shown in Table 2, the detector only raises alerts in 6 out of 7 scenar-
ios where the password cracking attack takes place, resulting in a
detection score of 𝑠𝑑𝑒𝑡 (A-Mon-Avg) = 0.94 · 67 = 0.8. In comparison,
A-Mon-Rng does not report any false positives but fails to detect
the password cracking attack in one additional scenario, resulting
in a slightly lower detection score of 𝑠𝑑𝑒𝑡 (A-Mon-Rng) = 0.71.

Table 2: Number of scenarios with at least one alert reported
during attack phase and derived scores for each detector
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W-All-Mul3 5 8 8 1.0 1.0
W-Acc-Sus 6 8 1.0 1.0
W-Acc-Att 8 1.0 1.0
W-Err-Fbd2 5 3 8 1.0 1.0
W-Aut-Ssh2 8 1.0 1.0
W-Aut-Uid 8 1.0 1.0
W-Aut-Sud 8 1.0 1.0
W-Err-Fbd1 8 4 1.0 1.0
A-Aud-Com4 3 8 1.0 1.0
A-Aud-Com2 8 1.0 1.0
A-Aud-Com6 1 8 1.0 1.0
A-Acc-Val1 8 1.0 1.0
A-Acc-Ent2 8 7 7 1.0 1.0
W-Acc-400 7 8 8 1 4 1.0 1.0
A-All-Evt 8 8 8 8 1 1 2 1.0 1.0
W-Acc-500 8 4 1 1.0 1.0
A-Acc-Val2 5 8 8 2 1.0 1.0
W-Aut-Pam1 8 1 1.0 1.0
A-Acc-Chr2 8 8 1 1 1.0 1.0
S-Smt-Wel 7 1.0 0.88
S-Smt-Rep 7 1.0 0.88
S-Flw-Nmp 7 1.0 0.88
S-Tls-Ssl 7 1.0 0.88
W-All-Ids 7 1 2 2 5 4 6 1.0 0.87
A-Mon-Avg 2 6 1 4 0.94 0.8
A-Mon-Rng 5 1.0 0.71
W-All-Evt 5 7 5 4 5 7 3 2 1 7 8 0.8 0.7
W-All-Mul1 5 6 1 3 3 6 1 1 5 8 0.81 0.61
S-Tls-Rec 5 7 5 4 6 6 3 1 7 8 0.57 0.5
A-Acc-Clc 1 1 4 2 3 1 1 1 0.99 0.49
W-All-Mul2 4 4 2 3 5 1 4 7 0.9 0.45
S-Htt-Mat 1 3 2 0.94 0.4
S-Tls-Typ 1 2 1 3 1 1.0 0.38
A-Aud-Com3 3 1.0 0.38
W-Acc-Brt 3 1.0 0.38
W-Acc-Cms 3 1 2 4 5 1.0 0.37
S-Flw-Apt 1 3 8 0.82 0.35
W-Mai-Inv 1 3 5 0.8 0.3
W-Sys-Fai 1 3 5 0.8 0.3
W-Aut-Pam2 1 3 5 0.8 0.3
W-Sys-Dov 7 3 5 4 3 6 5 5 7 8 0.46 0.29
S-Tls-Hnd 5 3 3 4 3 6 3 1 7 8 0.42 0.26
S-Htt-Res 2 1.0 0.25
A-Dns-Clc1 2 1.0 0.25
A-Dns-Frq 1 2 1 1.0 0.25
A-Acc-Frq 2 1 2 1.0 0.25
W-Sys-Cav 1 1 2 7 8 8 0.24 0.24
S-Dns-Qry4 2 2 6 0.85 0.24
A-Dns-Clc2 1 1 3 5 0.5 0.19
A-Dns-Val1 1 1.0 0.14
A-Dns-Chr 1 1.0 0.12
A-Aud-Com5 1 1.0 0.12
S-Dns-Qry3 2 1 1 2 1 1 2 1 1 1 2 0.88 0.11
A-Dns-Ent 1 2 0.63 0.08

B ALERT AGGREGATION
The main goal of alert aggregation is to identify repeating patterns
of individual attack steps or fine-grained actions that make up
multi-step attacks, and generate meta-alerts for each of these pat-
terns. Thereby, meta-alerts are abstract representations of specific
activities that are generated by merging two or more alerts related
by some logical connection, e.g., similarity or co-occurrence [25].
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Figure 6: Meta-alerts and alert groups generated by the AECID-alert-aggregation framework for service scans (cyan), WordPress
scan (yellow), Dirb scan (blue), webshell upload (green), password cracking (light blue), reverse shell (brown), privilege escalation
(purple), service stop (dark green), and data exfiltration (red) attack phase.

To this end we select the AECID-Alert-Aggregation framework
[10] that is publicly available as open-source software on GitHub12.
The approach is designed as an incremental procedure that first
groups alerts that occur close in time based on the assumption that
co-occurring alerts are possibly related to each other, then measures
the similarity of these alert groups by comparing alert attributes,
alert frequencies, and sequential patterns in alert occurrences, and
eventually merges groups that achieve high similarities. The meta-
alerts resulting from this continuous merging strategy are in the
same format as the alerts themselves (i.e., JSON format) but the
fields and corresponding values are adapted, extended, or removed
to correspond to the majority of groups associated with the meta-
alert. For example, an attribute of an alert that appears in all groups
with different values may be replaced with a wildcard in the meta-
alert to indicate that its exact value is irrelevant for identifying the
attack, while other attributes with coinciding values across groups
may be added to the meta-alert as is.

12AECID-Alert-Aggregation repository, https://github.com/ait-aecid/aecid-alert-
aggregation (accessed 2024-05-06)

For our experiments we feed the filtered alerts from the 26 top
ranked detectors according to our prioritization technique (cf. Ap-
pendix A) that occur in any of the known attack phases into the
aggregation framework. We manually investigate alert occurrences
in the multi-step attack to find a suitable value for the parameter
that is referred to as interval time by the original authors. Since
this parameter is crucial for grouping related alerts as it specifies
the minimum time without any alert occurrences between any two
groups, we select an interval time of 2 seconds as this appears large
enough to group alerts within the same attack phase but short
enough to avoid grouping alerts of distinct phases. Across all sce-
narios we obtain 150 groups of alerts that are formed within the
attack phases.

There are two parameters that specify the minimum similarity
thresholds for merging groups and alerts, which we set to 0.55
and 0.5 after empirically validating the results. With these settings
the aggregation framework merges the alert groups into 42 meta-
alerts. Several of these meta-alerts only correspond to a single
group of alerts; the main focus of our experiment, however, lies on

52

https://github.com/ait-aecid/aecid-alert-aggregation
https://github.com/ait-aecid/aecid-alert-aggregation


Introducing a New Alert Data Set for Multi-Step Attack Analysis CSET 2024, August 13, 2024, Philadelphia, PA, USA

Table 3: Detectors in the data set and abbreviations

Detector Abbreviation
New characters in Apache Access referer. A-Acc-Chr1
New characters in Apache Access request. A-Acc-Chr2
Unusual occurrence frequencies of Apache Access request methods. A-Acc-Clc
High entropy in Apache Access referer. A-Acc-Ent1
High entropy in Apache Access request. A-Acc-Ent2
High entropy in Apache Access user agent. A-Acc-Ent3
Unusual occurrence frequencies of Apache Access logs. A-Acc-Frq
New request method in Apache Access log. A-Acc-Val1
New status code in Apache Access log. A-Acc-Val2
New event type. A-All-Evt
New apparmor parameter combination in Audit logs. A-Aud-Com1
New cred_acq parameter combination in Audit logs.

A-Aud-Com2New cred_disp parameter combination in Audit logs.
New cred_refr parameter combination in Audit logs.
New login parameter combination in Audit logs. A-Aud-Com3
New service_start parameter combination in Audit logs. A-Aud-Com4New service_stop parameter combination in Audit logs.
New syscall parameter combination in Audit logs. A-Aud-Com5
New user_acct parameter combination in Audit logs.

A-Aud-Com6

New user_auth parameter combination in Audit logs.
New user_cmd parameter combination in Audit logs.
New user_end parameter combination in Audit logs.
New user_login parameter combination in Audit logs.
New user_start parameter combination in Audit logs.
Unusual occurrence frequencies of DNS log events. A-Dns-Clc1
Unusual occurrence frequencies of DNS query IPs. A-Dns-Clc2
Unusual occurrence frequencies of DNS query records. A-Dns-Clc3
New characters in DNS domain. A-Dns-Chr
High entropy in DNS domain. A-Dns-Ent
Unusual occurrence frequencies of query records in DNS logs. A-Dns-Frq
New ip address in DNS logs. A-Dns-Val1
New query record in DNS logs. A-Dns-Val2
CPU value deviates from average in monitoring logs. A-Mon-Avg
CPU value out of expected range in monitoring logs. A-Mon-Rng
ET INFO Suspicious Domain (*.ga) in TLS SNI S-Dns-Dom
ET DNS DNS Lookup for localhost.DOMAIN.TLD S-Dns-Loo
SURICATA DNS Unsolicited response S-Dns-Uns
ET DNS Query for .cc TLD

S-Dns-Qry1
ET DNS Query for .su TLD (Soviet Union) Often Malware Related
ET DNS Query for .to TLD
ET DNS Query to a *.pw domain - Likely Hostile
ET INFO DNS Query for Suspicious .ga Domain S-Dns-Qry2
ET INFO Observed DNS Query to .biz TLD S-Dns-Qry3
ET INFO Observed DNS Query to .cloud TLD S-Dns-Qry4
ET SCAN Behavioral Unusual Port 445 traffic Potential Scan or Infection S-Flw-445
ET POLICY GNU/Linux APT User-Agent Outbound S-Flw-Aptlikely related to package management
ET HUNTING Possible COVID-19 Domain in SSL Certificate M2

S-Flw-CovET HUNTING Suspicious Domain Request for Possible COVID-19 Domain M1
ET HUNTING Suspicious TLS SNI Request for Possible COVID-19 Domain M1
ET SCAN Possible Nmap User-Agent Observed S-Flw-Nmp
SURICATA HTTP gzip decompression failed S-Htt-Gzp
SURICATA HTTP unable to match response to request S-Htt-Mat
SURICATA HTTP invalid response chunk len S-Htt-Res
ET INFO Session Traversal Utilities for NAT (STUN Binding Request) S-Nat-TrvET INFO Session Traversal Utilities for NAT (STUN Binding Response)
SURICATA SMTP invalid reply S-Smt-Rep
SURICATA SMTP no server welcome message S-Smt-Wel
SURICATA TLS certificate invalid der S-Tls-Crt
ET INFO TLS Handshake Failure S-Tls-Fai
SURICATA TLS invalid handshake message S-Tls-Hnd
SURICATA TLS invalid record/traffic S-Tls-Rec
SURICATA TLS invalid SSLv2 header S-Tls-Ssl
SURICATA TLS invalid record type S-Tls-Typ
Web server 400 error code. W-Acc-400
Web server 500 error code (Internal Error). W-Acc-500
Common web attack. W-Acc-Att
CMS (WordPress or Joomla) brute force attempt. W-Acc-Brt
CMS (WordPress or Joomla) login attempt. W-Acc-Cms
Suspicious URL access. W-Acc-Sus
IDS event. W-All-Evt
First time this IDS alert is generated. W-All-Ids
Multiple IDS alerts for same id (ignoring now this id). W-All-Mul1Multiple IDS alerts for same id.
Multiple IDS events from same source ip. W-All-Mul2Multiple IDS events from same source ip (ignoring now this srcip and id).
Multiple web server 400 error codes from same source ip. W-All-Mul3
Auditd: SELinux permission check. W-Aud-Sel
PAM: Login session closed. W-Aut-Pam1PAM: Login session opened.
PAM: User login failed. W-Aut-Pam2
PAM: Multiple failed logins in a small period of time. W-Aut-Pam3
sshd: authentication success. W-Aut-Ssh1
sshd: insecure connection attempt (scan). W-Aut-Ssh2
First time user executed sudo. W-Aut-SudSuccessful sudo to ROOT executed.
User successfully changed UID. W-Aut-Uid
Apache: Attempt to access forbidden directory index. W-Err-Fbd1
Apache: Attempt to access forbidden file or directory. W-Err-Fbd2
Dovecot brute force attack (multiple auth failures). W-Mai-Brt
Dovecot Invalid User Login Attempt. W-Mai-Inv
ClamAV database update W-Sys-Cav
Dovecot Authentication Success. W-Sys-Dov
syslog: User authentication failure. W-Sys-Fai

those meta-alerts that represent the same or similar attack phases
across multiple scenarios. Figure 6 therefore visualizes all meta-
alerts (white squares) with at least three corresponding groups
that we color-code by attack phase. In each group we print the
scenario and a (possibly truncated) list of involved alerts, including
their frequencies. The meta-alerts comprise an unique identifier
and also a (possibly truncated) list of merged alerts. Overall, the
visualization indicates that most alert groups belonging to the same
stages of the multi-step attack are correctly merged together. For
example, meta-alert m0 corresponding to the service stop phase
(green squares) is merged from groups containing similar alerts
from seven out of eight scenarios. Since the Dirb scan is executed
in extensive and basic mode in different scenarios (cf. Appendix
A.1), two distinct meta-alerts m8 and m23 form that correspond to
each of the execution modes. Moreover, the plot reveals that some
attack phases comprise multiple sub-steps that actually need more
fine-granular labels, e.g., the service scans (cyan squares) yield three
distinct meta-alerts. These findings align with the situation faced
by the original authors of the approach [10]. While most meta-
alerts only contain groups that belong to the same attack phase,
the figure shows that groups containing only a single alert appear
more difficult to cluster correctly; specifically, this concerns meta-
alerts m9 and m10. The reason for this is that the same detector
raises alerts for multiple attack phases and a single alert is thus not
specific enough to act as a unique identifier for some attack phase.
Overall, these results suggest that our alert data set is suitable to
develop and evaluate alert aggregation approaches, because alert
patterns of some attack phases are more difficult to cluster and
merge than others and the generation of a set of meta-alerts that
subsumes all alert groups remains a challenge.

C LIST OF DEPLOYED DETECTORS
Table 3 provides a list of all detectors that report alerts in our data
set. The table also states the abbreviations that we use in this paper,
where the first token indicates the IDS (AMiner - A, Suricata - S,
Wazuh - W ), the second token refers to the log source or data
field where the alert was found (Apache access - Acc, Audit - Aud,
authentication logs - Aut, Apache error - Err, DNS - Dns, mail logs
- Mai, Syslog - Sys, resource monitoring - Mon, packet captures -
Dns/Flw/Htt/Nat/Smt/Tls, multiple sources -All), and the third token
is event-specific. For simplicity, we use the same abbreviations for
some signatures with similar implications.
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