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Abstract
Understanding the current threat landscape as well as timely detection of imminent attacks are primary objectives of cyber
security. Through time-series modeling of security data, such as event logs, alerts, or incidents, analysts take a step towards
these goals. On the one hand, extrapolating time-series to predict future occurrences of attacks and vulnerabilities is able to
support decision-making and preparation against threats. On the other hand, detection of model deviations as anomalies can
point to suspicious outliers and thereby disclose cyber attacks. However, since the set of available techniques for time-series
analysis is just as diverse as the research domains in the area of cyber security analytics, it can be difficult for analysts to
understand which approaches fit the properties of security data at hand. This paper therefore conducts a broad literature review
in research domains that leverage time-series analysis for cyber security analytics, with focus on available techniques, data sets,
and challenges imposed by applications or feature properties. The results of our study indicate that relevant approaches range
from detective systems ingesting short-term and low-level events to models that produce long-term forecasts of high-level
attack cases.
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1 Introduction

Cyber analysts continuously monitor and assess the threat
landscape. Recent reports thereby indicate a strong increase
of both the number and variety of cyber attacks, with ran-
somware, threats against availability, and intrusions in cloud
computing environments currently ranging among the most
critical attack vectors [63, 69]. To alleviate these threats,
security experts employ advanced analysis techniques that
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aim to predict the spread of such attacks and provide coun-
termeasures for detection and mitigation.

Across all domains of cyber security, analysts have long
understood the importance of this kind of security data ana-
lytics. In particular, collection, analysis, and interpretation of
such data are key elements in ensuring security, for example,
when it comes to live monitoring of systems and networks
for the purpose of threat detection, forensic investigations of
cyber incident timelines in security operation centers (SOC),
or estimation and prediction of current trends in the threat
landscape [110, 125].

The number and diversity of potential data sources for
the collection of security data is enormous, and dealing with
massive amounts of data in various formats is a challenging
task [122]. A common feature of most security data sets is
that they include some kind of timestamps or time-related
attributes, which are essential for contextualizing the data
and correlating events with each other. This time information
could thereby, for example, relate to the timestampof an event
taking place on a system, the date of a cyber incident or its
detection, the discovery of a vulnerability, etc.

Due to this temporal nature of most security data sets,
time-series analysis (TSA) is a natural choice for analysts.
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The main benefit of TSA is that through analysis and model-
ing of the data that occurred in the past, one is able to forecast
future trends and react to them appropriately [68]. In the con-
text of cyber security, this can mean to project what types of
attacks or attack steps will happen next, when or where they
will occur, and how the overall situation is evolving, i.e.,
howmany attacks are expected to occur in an upcoming time
period [50].

TSA comprises a versatile set of methods, and many tech-
niques can be applied in various application domains of cyber
security. However, properties of the analyzed data, such as
mixtures of categorical and numeric features, seasonality, or
sparsity, limit the effectiveness of certain techniques with
respect to the model and prediction accuracy. As a con-
sequence, it is not straightforward to select and configure
adequate TSA methods for a specific use-case at hand.

To the best of our knowledge, there is currently no exten-
sive overview that analyzes the big picture of TSA in the
cyber analytics domain. Existing surveys are either outdated
[26], consider application of TSA without security context
[18, 24], or focus only on specific application cases such as
smart grids [105], attack prediction [51], or anomaly detec-
tion for Internet-of-Things devices [27].

With this paperwe aim to address the aforementioned gaps
by providing an overview of TSA in the research domain of
cyber security analytics. To this endwepropose the following
research questions for our study:

– RQ1: Which domains of cyber security analytics involve
time-series analysis?

– RQ2: What are suitable sources of security-relevant data
for time-series analysis?

– RQ3: What constraints and challenges do data and use-
cases impose on the application of time-series analysis
and how are they overcome by approaches?

In this paper we answer these research questions through
a broad review of relevant literature. Specifically, we search
and select scientific publications that apply methods from
TSA on data sets collected in cyber security application
domains, e.g., intrusion detection and attack prediction. We
point out that due to the enormous amount of publications
that could potentially be considered relevant for this study,
we only aim to gather a representative sample of papers for
the main application domains and focus on the overall trends
and differences across all research areas.

In course of our study, we briefly describe each reviewed
approach and compare themwith a common schema, includ-
ing features such as application domains, type of input data,
number of input dimensions, applied TSAmethods, aggrega-
tion or pre-processing of data instances, etc. We also analyze
evaluations of the presented approaches to identify relevant

data sets, whichwe also investigate and summarize. Based on
the findings and limitations stated in the analyzed papers, we
derive common problems and constraints that emerge when
handling security data. We summarize our contributions as
follows:

– A review of scientific publications leveraging time-series
for cyber security applications,

– an overview of techniques from time-series analysis and
how they are applied with security data, and

– a discussion of challenges, gaps, and recommendations
for future research.

The remainder of the paper is structured as follows. Sec-
tion2 summarizes the background of time-series analysis for
security applications. Section 3 provides a review of related
literature. Section4 outlines the methodology of our study,
including our selection criteria for relevant publications. Sec-
tion5 provides an in-depth review of the selected publication,
whichwe group by their application domains. Section6 com-
prises a theoretical discussion of time-series models used in
the literature and explains how they are applied with secu-
rity data. Section7 analyzes how authors evaluated their
approaches and dives into publicly available data sets and
evaluation metrics. Section8 contains the answers to our
research questions and recommendations for future work.
Finally, Sect. 9 concludes the paper.

2 Background

This section covers the background of our research, including
some general information on time-series analysis and the
relevance of time-series in security analytics.

2.1 Fundamentals of time-series analysis

When analyzing time series—with the goal of predicting
future values or gaining knowledge about the underlying
process—mathematical modeling plays a crucial role. In
general, two types of models can be distinguished: domain-
specific models and general-purpose models. As a rule of
thumb, domain-specific models are preferable when exist-
ing process information can be reflected in the mathematical
model. For example, when modeling radioactive decay [93]
or the spread of disease [15], a domain-specific model is
a good starting point for data analysis. If this background
knowledge about the domain or use case is not available, or
should not be used, general-purpose models can be used for
prediction. Many of these general-purpose models exist and
are explained in standard textbooks [92].
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A number of properties that can be differentiated along
orthogonal dimensions are important for selecting the appro-
priate technique:

– Area of influence.A fundamental property of a model is
the area of influence of the time series. A global model
aims to describe and model the time series holistically; a
local model, on the other hand, works with a segment, a
so-called window, to model the data locally [47, 111].

– Continuity.The distinction between discrete and contin-
uous can be approached in different ways [92, 109, 112].
In addition to mathematical definitions, applied math-
ematics adds a pragmatic perspective: in many cases,
organizational, practical, or technical conditions deter-
mine whether a variable can be considered discrete or
continuous, e.g., every computer measures time using a
discrete integer, although time is considered continuous
in most cases.

– Model characteristics. The model characteristics are
determined by the starting point of the modeling [131,
144]. Two frequently used approaches with numerous
hybrid forms can be distinguished: Model-based and
data-based. In themodel-based approach, the time series
is modeled with a formula, a parametric model or a dis-
tribution. Due to its explicit character, it is possible to
model prior knowledge. The purely data-based approach
dispenses with an explicit model and describes the time
series using similarities of itself. While the model-based
approach ideally requires prior knowledge, sufficient his-
torical data must be available in the data-driven case.

– Fundamental patterns. In the smooth transition of
model properties, fundamental patterns assumed in the
time series and to be considered in the model play an
important role [92]. The most prominent representatives
are cyclical and seasonal (a cycle occurs when the data
show increases and decreases that do not have a fixed
frequency, as opposed to seasonal patterns that always
have a fixed and known frequency), as well as trend and
stationary (a trend exists in a time series when there is a
long-term increase or decrease in the data. The change
need not be linear. A stationary time series does not
depend on the time at which the series is observed. Con-
sequently, time series with trends, seasonality, or cycles
are not stationary).

2.2 The nature of time in security data analytics

The nature of time in time-series security data analytics is
multifaceted and crucial for understanding and predicting
various phenomena. Time-series data, captured at regular
intervals, is fundamental in studying the dynamics of sys-
tems over time. This type of data is integral in a wide range

of fields, including finance, healthcare, and security, among
others. There are two important aspects when it comes to
interpreting time in security analytics: use of time as feature
in analysis and interpretation of time in analysis results.

2.2.1 Use of time as a feature in analysis

Leveraging time as a key feature provides crucial insights
into patterns and anomalies, particularly evident in the field
of time-series security analytics. Use of time as a feature can
be seen from different perspectives [41]:

– Incorporating Lag Features. Lag features are a central
aspect of time-series analysis. They involve using past
values of a variable to predict future values. For example,
in predicting a company’s stock price, yesterday’s closing
price is a valuable piece of information. This approach
captures temporal dependencies and trends, and is critical
in fields like finance and economics. In security, previous
user behaviour parameters, or network traffic statistics,
could be a crucial information in determining anomalies.

– RollingWindow Statistics. This technique involves cal-
culating summary statistics over a moving window of
time. It’s useful for smoothing out noise and focusing
on underlying trends. The window size and the spe-
cific statistics used (like mean or standard deviation)
depend on the application and the characteristics of the
data. Rolling window features are valuable for identify-
ing long-term trends, seasonal patterns, and sudden shifts
in data.

– Time-based Features. Features like the day of the week,
the month of the year, and holiday indicators are crit-
ical for capturing seasonality and temporal patterns in
data. For instance, in security analytics, data volumes
exchanged over network may vary significantly between
weekdays and weekends or during specific holiday peri-
ods. Extracting these time-based features can greatly
enhance the accuracy of predictive models in time-series
analysis.

– CyclicTimeFeatures.Previouslymentioned time-based
feature (day in month or in week, the month of year...)
does not, from the analytic model point of view, for-
mally reflect cyclic nature of time, and the fact that e.g.
value that comes after Sunday is Monday. Additional
pre-processing and feature engineering techniques are
usually necessary to address these issues, for example,
by applying sine and cosine transformations on the total
number of seconds passed since a reference time point
that effectively presents time in 2-dimensional space sim-
ilar to a clock (see Stojanović et al. [113] for a detailed
description and equations).
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2.2.2 Interpretation of time in results

The interpretation of time in time-series analysis results is
primarily about understanding the dynamics and underlying
patterns of the data. It involves:

– IdentifyingTrends andSeasonality.Byanalyzing time-
series data, one can identify trends (long-term increase
or decrease) and seasonality (regular, predictable patterns
within a specific time frame). This understanding is cru-
cial in fields like security, but also meteorology [76] and
economics [87], where recognizing patterns over time
can inform future predictions and strategies [28].

– Understanding Temporal Dependencies. Time-series
analysis allows for the understanding of how current
values are influenced by past values. This temporal
dependency is key to predicting future events based on
historical data [92].

– InterpretingFeature-BasedRepresentations. In feature-
based time-series analysis, various representations are
used to interpret the data meaningfully [42]. Features
might encode deeper theoretical concepts like entropy
or stationarity, or they might derive from the shapes of
time-series subsequences. Understanding these features
can provide insights into the characteristics of different
classes within the data, thus aiding in more accurate pre-
dictions and better domain understanding.

3 Related work

Anomaly detection for cyber security applications has been
widely researched in the past. Accordingly, several compre-
hensive surveys already exist. Pang et al. [94] andChalapathy
et al. [22] review deep learning approaches for anomaly
detection and specifically focus on the various types of neural
networkmodels suitable for certain application cases, includ-
ing cyber security. Fernandes et al. [37] survey approaches
for anomaly detection in network traffic data and thereby
identify several classes of data, anomalies, and detection
techniques. Even thoughmost of these surveysmention time-
series as a way to represent data and modeling techniques
for anomaly detection, they do not delve into the various
application domains of cyber security and instead pursue a
broad overview of the topic of anomaly detection. Accord-
ingly, these surveys are unable to identify similarities and
differences among these application areas and cannot analyze
and compare domain-specific aspects such as data proper-
ties, suitablemodels, and commonly encountered issues with
respect to certain use-cases.

Forecasting, on the other hand, is a research topic that
is often realized with time-series models; however, exist-
ing surveys on forecasting, such as the one by Torres et al.

[120] that focuses on deep learning techniques, do not con-
sider any application contexts such as security. To the best of
our knowledge, our paper is the first survey that particularly
focuses on time-series analysis for both anomaly detection
and forecasting in the cyber security domain.

Given the deep scientific background of time-series anal-
ysis and the widespread utilization of methods thereof, it
comes at no surprise that researchers have studied the appli-
cation of time-series analysis in various domains, including
cyber security. For example, Choi et al. [24] provide a com-
prehensive survey of anomaly detection methods using deep
learning models suitable for time-series data. Their applica-
tion ranges cover a broad range of topics that are relevant
for industrial settings, such as detection of damage or faults
in smart manufacturing processes, resource optimization
through modeling of energy consumption patterns, and mon-
itoring of cloud computing environments. While the authors
discuss intrusion detection as one of the application sce-
narios, they only provide a brief discussion of few related
publications but do not provide any details on the various
types of data encountered in security applications. More-
over, they do not consider time-seriesmodels other than those
based on deep learning. Our literature review, on the other
hand, considers all types of time-series models and provides
amore comprehensive view on cyber security topics that also
go beyond intrusion detection.

The survey byBraei et al. [18] considers statisticalmodels,
machine learning, and deep learning for anomaly detection.
They compare the analyzed methods on various data sets
such as network traffic captures. Even though this kind of
data is relevant in security applications, the authors do not
consider the various types of attacks that could manifest
in network traffic and carry out their analysis without con-
sidering the application context. Moreover, the survey only
includes univariate time-series methods, which limits the
scope to approaches and data sets that fulfill this require-
ment. In opposite to that, our paper emphasizes the diversity
of application contexts and their respective requirements and
considers both univariate as well as multivariate methods.

Internet-of-Things (IoT) devices are often deployed to
monitor physical attributes and thereby produce time-series
data suitable for analysis. Since anomaly detection enables
the automatic identification of issues,many researchers focus
on time-series analysis on IoT data. Sgueglia et al. [105] con-
duct a systematic literature review and identify several open
research gaps, including problems with high-dimensional
data and lack of robust and generally applicable models
suitable for practical use-cases. Cook et al. [27] provide
another survey on this topic and state that efficient, incremen-
tal, and adaptive models are required to enable utilization
of time-series analysis in real-world applications. Rather
than focusing on IoT explicitly, we identified industrial con-
trol systems as a relevant application area, among several
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others.We therefore discuss the related topics IoT and cyber-
physical systems as part of that application area. Moreover,
both surveys touch the subject of cyber attacks as a possi-
ble cause of anomalies, but are generally directed towards
generic anomaly detection. Our survey specifically analyzes
requirements in the context of cyber security.

Other than aforementioned surveys that only marginally
focus on aspects of cyber security, Husák et al. [51] pro-
vide a survey on attack prediction, which includes attack
projection (predict the next move of an attacker), intrusion
prediction (predict upcoming cyber attacks), and forecast-
ing of the cyber situation as a whole. Thereby, they provide
in-depth explanations of various models commonly used in
literature and state shortcomings, such as the need for attack
models and the lack of openly available data sets suitable
to evaluate the proposed approaches. Other than our paper,
the survey aims to provide an overview of attack prediction
approaches using any type ofmodeling or learning technique,
thus only some of the reviewed approaches leveragemethods
from time-series analysis.

In addition to surveys or review papers, some publications
explain and compare several different methods from time-
series analysis on the same data sets in order to investigate
the capabilities of these models for a certain kind of data. For
example, Lande et al. [68] evaluate four forecasting models
on four different data sets, Kalouptsoglou et al. [58] compare
the prediction capabilities of models based on deep learning
and statistical models, and Pokhrel et al. [96] compare lin-
ear with non-linear models. In the following, we review the
approaches analyzed in these papers based on their applica-
tion domains; in Sect. 6, we individually describe each of the
time-series models encountered in the reviewed literature.

4 Methodology

To answer the research questions stated in Sect. 1, we con-
duct a review of scientific publications that apply methods
from time-series analysis in the context of cyber security
applications. To this end we gather a set of publications
using a web search on Google Scholar1 using the keywords
“cyber security”, “intrusiondetection”, “cyber attacks”, “IDS
alerts”, and “cyber situational awareness” in combination
with “time-series” and “forecasting”. We point out that it
is infeasible to survey the intersection area of cyber security
and time-series analysis completely, since any publication
that analyzes timestamped security data can be argued to be
related to time-series analysis. To overcome this problem,
we pursue a broad review of relevant publications and there-
fore only include scientific papers that explicitly focus on
the application of methods from time-series analysis using

1 https://scholar.google.com/.

temporal security data. Note that this excludes (i) papers that
only visualize time-series for interpretation without applying
any technical methods, such as trend analyses for malware
[1] or vulnerabilities [23, 30], (ii) papers that do not make use
of time-dependent data even when methods from time-series
analysis are applied, such as shapelet detection in executable
files [95], (iii) papers that do not process security data, such
as detection of video manipulations [140], as well as (iv)
papers on adversarial attacks [36, 59, 98].

We analyze each of the selected publications with respect
to a set of pre-defined features that are suitable to distinguish
different approaches in time-series analysis. In the following,
we briefly describe each of these features.

– Domain states the corresponding application domain for
the approach presented in the respective publication.

– Variables stateswhethermultiple features are used by the
time-series models, i.e., whether univariate (UV) analy-
sis that only considers a single variable or multivariate
(MV) analysis that considers more than one variable is
carried out. Some approaches consider multiple features
but only analyze them individually with univariate meth-
ods, which we mark with an asterisk (UV*).

– Data specifies the type of data used in the publication.
– Features describes the input derived from the data that
is fed into the time-series models.

– Values specifies whether the input data involves contin-
uous (Con), discrete (Dis), categorical (Cat), or binary
(Bin) features.

– Method states the time-series models or analysis meth-
ods used in the publication.

– Granularity states whether analysis is based on aggre-
gated data such as event windows (Window) or time-
windows (TW), single observations (Point), or time
intervals (Interval). For eventwindows and timewindows
we also state the length of the window as the number of
events or temporal duration respectively. This distinction
is based on the classification presented by Li et al. [72].

– Seasonal specifieswhether the publication considers sea-
sonality as part of the analysis, and the lengths of the
periods used in the approaches.

We realize that a large portion of our gathered publica-
tions specifically focuses on the detection of anomalies in
security data. This is reasonable, since the automatic detec-
tion of immanent threats is a widely researched topic in cyber
security and time-series analysis enables modeling of sys-
tem behavior patterns and the recognition of deviations from
these models. For these publications, we therefore addition-
ally assess the following features.
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Fig. 1 Overview of common application domains (grey boxes) leverag-
ing time-series analysis along various stages of cyber security analytics.
Attacks and failures in IT or OT systems are disclosed in technical log
data by fast, autonomous, and effective anomaly detection techniques.

Subsequently, generated alerts are either filtered and prioritized for fur-
ther manual analysis, or form the basis for long-term forecasts of cyber
threats

– Anomalies explains the type of anomalies in the data.
For example, anomalies could be related to brute force
intrusions, denial of service attacks,manipulation of data,
or system failures without malicious intent.

– Mode specifies whether training the anomaly detec-
tion system is supervised (SUP), i.e., labels for normal
and anomalous instances are required, semi-supervised
(SEMI), i.e., only normal instances are used for train-
ing, or unsupervised (UNS), i.e., no label information is
required.

The following section provides an overview of the
reviewed publications, which we group by their application
domains. The section also contains tables that state each of
the aforementioned features for every publication.

5 Application domains

Cyber security specialists leverage methods from time-series
analysis in several highly diverse application domains, each
with their own goals, requirements, and data types. Based on
the reviewed papers, we identify some of the most prevalent
application areas and investigate the use of TSA separately
for each domain. We first provide an overview and then
describe some approaches of each domain in detail.

5.1 Overview of time-series analysis in cyber
security analytics

Time-series analysis comprises generic methods that are
applicable in many different fields of cyber security analyt-

ics. In course of this literature review, we identified the main
application areas where time-series analysis is applied. Fig-
ure1 provides an overview of the workflow of cyber security
analytics, where each of our identified application domains
is placed as a grey box alongside a sequential chain of cyber
security analytics that spans from local and timely threat
detection in high-frequency log data to global and long-term
analysis of attacker behavior patterns.

On the left hand side of the figure, security incidents
caused by malicious actors that aim to compromise net-
works, exfiltrate data, or damage systems, as well as safety
events caused by failures or other system problems, affect
both IT networks prevalent in enterprises (servers, hosts,
etc.) as well as cyber-physical systems. Monitoring solu-
tions that maintain a record of a wide variety of events in
the form of system logs, network traffic captures, applica-
tion log data, sensor readings, etc., contain traces of these
undesired activities and are thus suitable data sources for
detection of any adverse activities. Methods from TSA are
suitable candidates for this kind of anomaly detection, specif-
ically when it comes to modeling periodically occurring
events and disclosing unusual changes of behavior patterns
such as sudden increases of event frequencies. We differ-
entiate between methods leveraged by host-based intrusion
detection systems (HIDS) that analyze system and applica-
tion log data collected from servers and hosts, network-based
intrusion detection systems (NIDS) that analyze network
traffic and packet captures in organizational networks, ICS
intrusion detection (ICS) that analyzes network traffic and
sensor readings from cyber-physical systems, VANET detec-
tion (VANET) that leverages data from vehicular ad-hoc
networks, and failure detection (FD) that aims to disclose
any unusual deviations that may relate to system issues.

123



A review of time-series analysis for cyber security… Page 7 of 41     3 

The amount of alerts that cyber security analysts need
to deal with often becomes overwhelming, mainly due to
the facts that attacks trigger multiple alerts at once and at
the same time false positive alerts resulting from unusual
but otherwise benign normal behavior are frequent [5]. To
counteract this issue, analysts leverage TSA to identify alerts
that stand out from regularly occurring alert patterns as they
are likely more relevant and thus require higher attention by
operators [128]. The application domain alert filtering and
prioritization (AFP) deals with the identification and scoring
of such relevant alerts.

On the other hand, analysts may be interested in forecast-
ing the numbers and patterns of alerts that can be expected to
occur in the near future based on the current stream of alerts
observed in their local infrastructure. This is accomplished by
alert forecasting and trends (AFT), which focuses on short-
term forecasts and the detection of attacks that cause bursts of
alerts, e.g., brute force attacks that trigger a high number of
alerts in a short period of time for every failed login attempt.

Successful attacks that are relevant to a broader com-
munity are eventually distributed through threat intelligence
platforms, which provide another source of information that
is suitable for time-series analysis. We identify the domain
of vulnerability analysis (VA), which crawls vulnerability
databases storing the dates when vulnerabilities were found
for certain software versions. Analysts apply TSA to predict
the number of expected vulnerabilities up to several months
into the future [135]. On the other hand, publicly available
information on the dates and scales of large-scale attacks
is used to predict the frequencies and severities of attacks
in the future. To this end, the cyber situational awareness
(CSA) research domain leverages threat intelligence such as
attack reports aswell as open-source feeds such as news items
to estimate the probability and severity of upcoming cyber
attacks.

In the following, approaches that have been proposed by
the scientific community to address each of these application
domains are reviewed and summarized. Tables 1, 2 and 3
provide an overview of all reviewed approaches focusing
on anomaly detection as well as modeling and prediction
of time-series respectively, where the columns in the tables
correspond to the features described in Sect. 4.

5.2 Failure detection

If configured correctly, almost all actively used IT compo-
nents produce log data or network traffic in one or another
way. A main motivation to create and store these perma-
nent records of system activities is to provide operators a
verbose source of information during problem investigations
where logs are analyzed in hindsight, in particular, when it
becomes necessary to identify root causes by tracing back
at what point in time and under which circumstances cer-

tain erroneous states occurred [31, 66]. Anomaly detection
also aims to disclose any undesired states, but is generally
applied in an onlinemanner where logs are analyzed continu-
ously almost at the same time as they occur, thereby enabling
timely detection of system problems and alleviating the need
for manual and purely forensic analysis. Approaches rely-
ing on machine learning techniques have proven itself as a
highly useful concept for anomaly detection as it is able to
efficiently process large amounts of data and derive complex
behavior patterns that enable the detection of rare or unusual
activities that stand out from the log events corresponding to
normal system behavior [81].

Failure detection is often closely related to cyber secu-
rity. In particular, security-relevant incidents may produce
artifacts that are also encompassed by common failures and
only later on recognized as the result of malicious activities
[66], such as unexpectedly crashing processes, unusual sys-
tem behavior after accidental misconfiguration of services,
over-utilization of system resources, etc. Failure detection
can thus be regarded as the first line of defence when it comes
to technical detection of intrusions, before more advanced
and specialized solutions come into play.

5.2.1 From logs to time-series

Log events generally contain a time stamp that indicates their
time of generation and allows to order them chronologically
[65]. As such, log data effectively forms time-series, even
though data points are usually not spaced equally in time. In
addition to the time stamp, log lines usually comprise a set
of continuous, categorical, and discrete parameters extracted
from the events as well as information on the type of event
itself. Note that determining the event type as well as extrac-
tion of parameter values generally requires log parsing, i.e.,
matching of each log line to a set of templates that specify the
syntax of log messages and provide a mapping for parameter
values to variables [66, 139].

One of the most widely used methods to transform logs
into an evenly spaced time-series with purely continuous
values is to generate event count vectors. Thereby, a time
window of fixed size is moved in regular step sizes over
all data points and distinct events within that window are
counted [46, 61, 67, 128, 141]. Ohana et al. [89] apply this
approach on parsed cloud logs and leverage the resulting
event count vectors for unsupervised anomaly detection. In
particular, they apply ExponentiallyWeightedMoving Aver-
age (EWMA) and standard deviation to predict the mean and
expected deviation of expected counts for log events from
historic data. In addition, they also compute the deviation
of predictions based on two different time window lengths
in order to recognize when the prediction capability of their
model deteriorates. They also present an anomaly score that
is based on the deviation of expected and actually observed
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event counts aswell as themodel prediction capability.While
this approach is fully unsupervised, they also discuss a super-
vised prioritization scheme that is based on the occurrence
time and location of the event, which is matched against
events from historic tickets with known relevance.

5.2.2 Clustering and outlier detection

Jain et al. [56] point out that a single failure in the network
may trigger logs in multiple different components, which
are difficult to relate as the event types and contents of logs
from diverse applications usually do not coincide. Other than
Ohana et al. [89] who conduct prediction separately for each
host, they create event counts across all components and
apply Agglomerative Hierarchical Clustering (AHC) with
the Jaccard metric as a similarity function to identify cor-
relating event types from the individual time-series. Another
approach that clusters event count vectors is presented by Du
et al. [31]. Even though they also consider multiple different
event types, each of them is analyzed separately and thus cor-
relations between event types are neglected. They analyze the
time-series of event count occurrences for spikes, i.e., sud-
den increases of log frequencies in single time windows in
comparison to nearby windows. To this end, they apply a
sliding window approach on the time-series of count vectors
for each event and cluster the resulting sub-sequences using
Euclidean distance. They also compute an anomaly score for
log segments comprising several event types, which bases on
the dissimilarity of sub-sequences of all involved event types
aswell as the anomaly score of themost similar sub-sequence
from the training data.

5.2.3 Neural networks

There also exists a significant number of publications that
leverage neural networks for anomaly detection in log data;
we refer to the survey by Landauer et al. for a detailed investi-
gation of this research area [65]. In addition to count vectors,
neural networks are also capable of ingesting sequences of
categorical log event occurrences directly; Recurrent Neural
Networks (RNN) such as LongShort-TermMemory (LSTM)
RNNs are designed to learn sequential patterns, whichmakes
this kind of neural network architecture especially suited for
chronologically ordered data with strong sequential depen-
dencies such as logs. For example, Meng et al. [81] use
a combination of count vectors and sequential features for
detection of anomalies with LSTM RNNs. In particular,
given a sequence of events, the neural network predicts the
probabilities of subsequently following event and raises an
anomaly if the actually observed event is not among the
expected ones.

While the time stamp is most often only used to ensure
chronologically correct ordering of events but not fed into

neural networks, some approaches also leverage the inter-
arrival time of events for the purpose of detecting temporal
changes of event occurrences, such as delays. For example, Li
et al. [73] generate a time-series for event inter-arrival times
and feed the embedded time-series togetherwith transformed
event sequences into an LSTM RNN. Moreover, Zhou et
al. [143] point out that log events often occur periodically,
causing that count vectors form seasonal time-series. They
derive some statistics on seasonal logs and use them together
with event counts as features for an LSTM RNN.

5.3 Host-based intrusion detection

In the previous section, anomalies correspond to traces of
system failures in log data that stand out from traces occur-
ring during normal behavior in terms of event occurrences,
frequencies, sequence orders, etc. Generally speaking, most
anomaly detection techniques applied for the purpose of
intrusion detection monitor and analyze the same features
as approaches for failure detection do, because attack man-
ifestations are assumed to have similar effects on log data.
Accordingly, generation of event count vectors is still the pre-
ferred way to convert categorical event logs into time-series.
However, while approaches for failure detection primarily
leverage application logs that contain failures of the respec-
tive applications, intrusion detection approaches leverage
data sources that are known to be affected by certain types
of attacks. In the following, we go through some of the most
common data sources that have been used for this purpose in
existing works. Note that data sets other than log data that are
commonly used by host-based intrusion detection systems,
such as searches for hashes in file systems, databases, or reg-
istries, as well as forensic memory analyses, usually do not
involve time-series and are thus not included in our review.

5.3.1 Access logs

Access logs are one of the most common data sources when
it comes to the detection of attacks on IT infrastructure. The
logs usually document which user requests which resource at
what point in time, andwhether this attemptwas successful or
not. The latter information is usually provided via categorical
status codes, which are a focus point of several publications.
Granlund et al. [44] create count vectors of these status codes
analogous to event count vectors as discussed in the pre-
vious section. They apply several clustering algorithms on
the count vectors, but treat them as independent instances
so that their times of occurrence or temporal dependencies
are neglected for detection. Nonetheless, the approach was
able to detect time windows where some status codes were
changed or their frequencies increased as part of a manual
injection procedure.
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Anastasiadis et al. [7] present another approach that ana-
lyzes status codes, among other data sets on topics such as
fraud detection and server monitoring. They apply various
anomaly detection techniques, including methods specifi-
cally designed for outlier detection such as Local Outlier
Factor (LOF) and Isolation Forests (IF), but also neural net-
works. Other than status codes, web logs also contain the
size of transmitted objects, which is relevant for cyber secu-
rity as oversized payloads are a common method to achieve
Denial of Service (DoS), brute-force, spoofing, or flooding
in web applications. Shirani et al. [107] therefore use an
ARIMA model to forecast the payload size in the Simple
Object Access Protocol (SOAP) and detect outliers if the
actually observed size is outside of the expected confidence
interval.

Other approaches consider the number of access logs
rather than specific parameters within them. Khoshnevisan
et al. [60] count the number of access logs in multiple time
windows to generate a multivariate time-series, which they
feed into a Generative Adversarial Network (GAN). They
acknowledge that real log data is usually highly seasonal
due to the cyclic nature of human work time and thus inte-
grate seasonality as an attention mechanism for their neural
network. Another approach based on the total number of gen-
erated web logs is presented by Ara et al. [9], who make use
of two error rates measured in time windows of 10 minutes.
Their bivariate βARMAmodel allows to predict the rates up
to 6 time windows or 60 minutes ahead and provides confi-
dence bounds for anomaly detection.While they focus on the
special case of two variables, they point out that theirmethod-
ology is suitable for multivariate time-series with arbitrary
many variables.

5.3.2 Application logs

Application logs are less structured than access logs; accord-
ingly, they either require parsing before event count vectors
can be generated. The approach by Landauer et al. [67] avoid
the need for parsers by clustering the logs within time win-
dows and observing the evolutions of clusters over time;
thereby, cluster sizes yield time-series that are predicted one
step ahead after every time window to identify anomalies
that are outside of the prediction interval. While multiple
evolving clusters exist at the same time, they analyze each
time-series individually in an univariate fashion, but suggest
to analyze correlation between time-series for future work.
Wu et al. [133] create a multivariate time-series by counting
events from five Linux system processes (e.g., crond or sshd)
and feed them into a RNN. An interesting variation of their
approach is that they append seasonal decompositions of the
time-series to the input of the neural network, emphasizing
that log data is often affected by multiple seasonal influences
at the same time.

5.3.3 System calls and low-level system data

Similar to approaches from failure detection such as the
one by Meng et al. [81], analysis of system calls is often
carried out with focus on sequential patterns in log data.
Čeponis et al. [21] claim to leverage univariate time-series but
omit the time stamps when feeding chronologically ordered
sequences of system calls into three distinct neural network
architectures LSTM RNN, GRU RNN, and CNN to differ-
entiate malware samples from benign ones. Kuruvila et al.
[64] detect malware through hardware performance counters
that monitor low-level events such as CPU-cycles and cache-
misses. The authors demonstrate that temporal attributes,
which are often neglected when analyzing this kind of data,
are effective for malware detection and suitable to be ana-
lyzed as sequential time-series. Specifically, they leverage
time-series forest, which splits time-series into intervals,
computes statistical data such as the mean, slope, standard
deviation, etc., and trains machine learning models on the
chunks. Another source of data are resource monitoring logs
as shown by Tiwari et al. [119]. They leverage numeric met-
rics such asCPU andmemory usage that are suitable to detect
situations where system resources are acquired by attackers,
which is a particularly relevant attack scenario in cloud com-
puting environments.

Wang et al. [130] also focus onmalware samples classified
with LSTM RNNs; however, the application of time-series
comes from the fact that outbreak times are included in their
training data, which allows them to predict the times of day
where malware occurrences are expected. The main reason-
ing behind this is that more resources can be allocated to
scanning activities during these hours in comparison to time
intervals that are considered safe. For an in-depth survey on
time-series analysis for malware classification, we refer to
the study by Finder et al. [39], whose framework incorpo-
rates conventional machine learning methods for temporal
pattern mining as well as neural networks that are used to
process categorical events.

5.3.4 Generic log data

Naveiro et al. [86] present a generic approach that is applica-
ble to many features found in network monitoring logs, such
as resource utilization metrics. They cover continuous fea-
tures for which they use combinations of linear and seasonal
terms, and discrete features for which they suggest Markov
chains. On top, they have a separate model that is able to
predict outbursts, i.e., rapid increases of event counts. Their
mainmotivation for selecting these techniques for time-series
analysis is that commonly applied methods such as ARIMA,
neural networks, or statistical models do not adequately sup-
port scalable and automated analysis as manual adjustments
are almost always required. Another unusual attribute of their
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approach is that it is designed to produce both a short-term
forecast for the detection of point outliers as well as long-
term forecasts to estimate values in future time intervals.

Finally, we also mention two commercial products for log
data analysis that leverage time-series analysis for anomaly
detection. IBM’s QRadar2 involves so-called behavioral
rules that monitor event frequencies over a manually defined
period of time (e.g., 1 week) and then predict ranges in which
event frequencies are expected, reporting alerts when newly
observed frequencies are too far outside of the intervals,
which is steered with another manually defined thresh-
old parameter. Computing the forecast is simple and only
depends on a base value, the current trend of the time-series,
and the seasonal adjustment. DataDog3 provides a basic
model without seasonality, a robust seasonal-trend decom-
position model that adjusts for seasonality but takes longer
to adjust to long-term shifts, and an agile model that relies
on SARIMA to quickly respond to level shifts.

5.4 Network-based intrusion detection

The next most common approach in time-series analysis in
security analytics is network-based intrusion detection. This
type of intrusion detection approach typically analyses net-
work traffic and packet captures in enterprise network ICT
environments. The original raw network data consists of raw
IP packets with various headers based on higher network
stack protocols. Due to its size and variability, the use of
this raw format in automated IDS approaches is impracti-
cal. Consequently, most published methods use time based
feature construction as a critical pre-processing step.

Constructed features not only speed up detection, but also
improve the discriminative power compared to the origi-
nal raw network data. This significant improvement benefits
machine learning algorithms, making their use feasible. Fea-
ture constructionmethods includemanual approaches or data
mining techniques such as sequence analysis, association
mining and frequent episodemining [11].Network based fea-
tures are usually categorised by type: binary (e.g. flag state),
numeric (e.g. number of bytes) and nominal (e.g. protocol
type). Regardless of the final choice of features, the com-
mon characteristic is that these features are always sampled
in time and contain time stamps, making them time series.

Intrusion detection systems can be divided into two
main categories: classification-based and anomaly-based.
Classification-based IDSs use machine learning algorithms
to categorise incoming data based on defined characteris-
tics. While they are effective against known attacks, they
may struggle with new, unknown attacks that have no cor-
relation to the training dataset. Conversely, anomaly-based

2 https://www.ibm.com/qradar.
3 https://docs.datadoghq.com/.

approaches use statistical models to establish a baseline of
normal behaviour and identify deviations. This allows them
to detect unknown attacks, but may yield lower results when
encountering packets from a previously unseen class [94].

When it comes to IDS approaches addressing specif-
ically time-series, most publications aim at Time Series
Classification (TSC). TSC is a subset of machine learning,
characterised by its requirement for ordered data samples, in
contrast to traditional classification tasks [77].

When addressing intrusion detection as a time series
challenge, many Deep Learning (DL) approaches focus on
recurrent network architectures such as Gated Recurring
Units (GRUs) and Long Short-Term Memory (LSTM) [12,
74]. These networks inherently capture temporal information
from data. For example, Mahdavisharif et al. [79] introduced
a model that uses the LSTM architecture to detect complex
intrusion patterns in a massive amount of traffic.

Although methods using recurrent network architecture
can achieve good results, they are notable for their complex-
ity and have certain limitations in detection performance,
as indicated by Li et al. [74]. Ahmad et al. [2] conducted a
comparative study of DLmethods, including RNNs, LSTMs,
GRUs, and CNNs, highlighting the complexity of recurrent
architectures.

5.5 ICS intrusion detection

Other than host-based intrusion detection where analyzed
data often consists of categorical event types that require
counting and network-based intrusion detection where
approaches rely on feature construction, ICS intrusion detec-
tion generally leverages data sources recording continuous
features such as sensor readings that are suitable to be directly
used for the purpose of model building and detection. How-
ever, categorical features also appear in the form of actuator
states and need to be handled by the algorithms. Data sets
are often collected in cyber-physical test environments or
through simulations, which represent industrial processes
such as water treatment plants or gas pipelines. Since these
processes involve a high number of sensors and actuators
that are all part of the same control loop, the data sets usu-
ally involve many features with strong dependence between
them. Accordingly, approaches are usually designed for mul-
tivariate analysis of high-dimensional data.

5.5.1 Continuous sensor readings

A common use case in ICS intrusion detection is that of
SecureWater Treatment (SWaT) [43], which is a well-known
data set collected in a simulation testbed. The test environ-
ment comprises data sources such as water level sensors and
involves attacks where sensors are manipulated with the aim
of over- or underflowing tanks and damaging pumps. For
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example, Li et al. [70] propose an unsupervised approach
based on GANs and LSTM RNNs that analyzes the SWaT
data set and provides anomaly scores for time windows
of 2min. One of their main insights is that a multivariate
anomaly detection approach is clearly able to outperform
an univariate approach in terms of false alarm rates, preci-
sion, and recall. The authors also apply a similar approach
on Water Distribution (WADI) data sets [71].

In addition to the SWaT data set, Yuan et al. [137] also
make use of a data set collected from a gas pipeline data
testbed, which involves sensors for gas pressure as well as
pumps as actuators [84]. The authors also employ a GAN for
the detection of anomalous behavior patterns in the data set,
which are caused bymultiple attacks such as command injec-
tion attacks that aim to interrupt the process flow. Filonov et
al. [38] present a data set that they collect froma simulation of
a gasoil heating loop, where adverse changes of temperatures
or frequencies are injected as attacks. In the same publica-
tion, they show how a LSTM RNN is able to predict faults
in the collected multivariate time-series data.

Seong et al. [104] point out that a majority of approaches
focus on point outliers, i.e., a data point that deviates from
others that are in close temporal proximity, but ignore sub-
sequence anomalies, i.e., collective anomalies that deviate
from normally repeating patterns. To address this gap, they
experiment with a GRU RNN and evaluate their approach
on four different cyber-physical proccesses, including boiler,
turbine, water treatment, and a simulation that combines
these processes. Aforementioned approaches are either unsu-
pervised or semi-supervised, meaning that the detection of
anomalous system states is only based on the deviation of the
system behavior during these periods of time in comparison
to the normal behavior used for training.

Mahmoud et al. [80] on the other hand propose to run
supervised and unsupervised detection in parallel to combine
the advantages of both strategies, which they demonstrate
in a data set collected from a water distribution system.
They state that supervised methods such as support vector
machines (SVM) and k-nearest-neighbors enable fast and
adaptive detection of anomalous states, while unsupervised
methods such as isolation forests are useful for accurate con-
firmation of attacks.

Stojanovic et al. [114] propose a deep learning based
method for detection of attacks in water distribution envi-
ronment, utilising BATADAL [116], a collection of sensor
readings. This paper proves the applicability of AutoEn-
coders in this environment and outperforms state-of-the-art
approaches.

5.5.2 Categorical system statuses

While most of the data sets used by previously discussed
approaches involve categorical or binary features, they are

usually not explicitlymodeled as such. To address this aspect,
Hong et al. [49] propose an approach based on Hidden
Markov Models to model system behavior with latent states
and detects anomalous transitions between states as poten-
tial attacks. They test the detection algorithm in two different
test environments, one where communication bus messages
with purely categorical features are analyzed for noise and
DoS attacks, and another one where continuous sensor and
actuator values are logged from a consumer robot.

5.6 VANET detection

Attack detection in vehicular ad-hoc networks (VANET) is
related to ICS intrusion detection in the sense that sensor
measurements play an essential role in data collection. How-
ever, due to the fact that the monitored systems are vehicles
rather than industrial machines, the collected data features as
well as attack vectors are rather different to other application
domains. For example, Yu et al. [136] collect a multivariate
time-series from logs that specify speed and acceleration of
a given vehicle as well as distance, count, average speed, and
average acceleration of other nearby vehicles measured in
time windows. They train an LSTM RNN in a supervised
manner to classify time-series into four classes, namely nor-
mal traffic, accident, poor road condition, and congestion.
This prediction is used to verify the authenticity of messages
received from other vehicles and specifically to identify false
emergency messages purposefully sent out by one or even
multiple collaborating adversaries.

Suda et al. [115] also employ RNNs to detect data falsi-
fication in messages sent within VANETs, but additionally
consider flood attacks, i.e., transmission of a large number
of messages in the network. The authors point out that one
of the main issues with conventional detection is the need
to set a suitable threshold, which is often difficult to deter-
mine. To address this matter, they design the output layer of
their network to comprise two nodes—one for normal, the
other one for attacks—to enable detection without the need
for thresholds.

5.7 Alert filtering and prioritization

Alerts origin from intrusion detection systems, such as the
anomaly-based approaches outlined in the previous sections.
In addition, signature-based approaches that rely on sim-
ple pattern- or string-matching are widely used to recognize
known attacks that create specific artifacts in log data, e.g.,
the presence of a domain name that is known to relate to
malicious activities. In Security Operations Centers (SOC),
alerts are frequently collected from many devices, e.g., all
servers and user machines within an enterprise, and involve
a significant number of false positives. As a result, security
operators often need to deal with an endless stream of high-
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volume alerts; a situation often referred to as alert flooding
that is known to cause fatigue [5].

Researchers have therefore proposed methods to filter rel-
evant alerts that stand out from regularly occurring alerts that
are assumed to be echoes of normal system use [128]. When
alert counts are considered, this means that operators should
be notified about abrupt changes of the resulting time-series,
while smooth changes are considered to relate to noise of
normal activities or concept drift. Note that from a method-
ological point of view, this is similar to how anomalies that
possibly relate to attacks are identified within otherwise nor-
mal events as outlined in the previous sections.

5.7.1 Conventional time-series analysis

Viinikka et al. [127–129] propose several approaches based
on conventional time-series modeling that aim to deal with
high numbers of irrelevant alerts from the signature-based
Snort intrusion detection system collected over multiple
weeks. In alignment with the data they use for evaluation,
they assume that there is a continuous flow of alerts with
somewhat steady frequency of incoming alerts, and that only
deviations of the normal flow behaviour should be reported
to operators. Alert frequency is measured in time windows
with various lengths from 1min to 1h. The authors state
that flows with somewhat constant frequencies often have
machine-related origins and that periodic patterns are often
the result from human activity, while random movements of
the time-series without clear structure are generally difficult
to explain. To obtain the alerts corresponding to these ran-
dom patterns, they experiment with Exponentially Weighted
MovingAverage (EWMA)models that are useful to compute
a smoothed estimation for the mean and predict a confi-
dence interval for newmeasurements [127]. Specifically, they
decide that the process generating alerts has significantly
changed when alert frequencies exceed the critical values
of confidence intervals.

In a follow-up publication [129], the authors abandon
EWMA as they found it insufficient to adequately cope with
periodic patterns and accurately detect non-drastic changes
within the alert flow. Instead, they first remove the trend
and periodicity of the time-series through differencing with
a lag of 1 and a lag that corresponds to the length of the
period. Subsequently, they use an autoregressive (AR)model
to remove the stationary structure of the time-series and
obtain the noise alerts. They acknowledge that some of these
alerts are attributed to normally occurring artifacts or model
deficiencies, and thus only report alerts corresponding to
sufficiently strong deviations to normal occurrence frequen-
cies. In their later work [128], the same authors improve on
their method and apply non-stationary autoregressive (NAR)
models rather than AR models and utilize Kalman filters
for parameter estimations. Again, confidence intervals are

used to determine whether time windows of alert frequen-
cies are anomalous or not. Their findings indicate that the
non-stationary model outperforms their previous approaches
and that the selection of the time window length for counting
the alerts is crucial.

5.7.2 Neural networks

Zhao et al. [142] show that neural networks are also an effec-
tivemethod for alert ranking andprioritization.Other than the
approaches by Viinikka et al. [127–129] who only make use
of alert frequencies, they consider additional features of time-
series such as seasonality, severity, and inter-arrival times, as
well as metrics from auxiliary sources such as response time
or CPU utilization. They feed the resulting feature vectors
into anLSTMRNNalongside some textual attributes of alerts
for the purpose of anomaly detection. However, rather than a
binary decision between anomalous and normal classes, they
design their approach to compute anomaly scores which they
deem superior due to the facts that they enable prioritization
and handle class imbalances more effectively.

5.8 Alert forecasting and trends

Even though the previous sections show that prediction of
upcoming values and estimations for confidence intervals
for time-series are elementary for anomaly detection, the
approaches themselves are reactive, that is, they only report
anomalies after some incident occurred. Cyber security ana-
lysts, however, have strong interest in proactive security that
allows to prevent or mitigate incidents before they occur.
Therefore, time-series analysis is applied to forecast the num-
ber of alerts in future time intervals aswell as their occurrence
patterns [50].

5.8.1 Prediction of normal behavior

Kohlrausch et al. [61] analyze time-series that occur in Com-
puter Security Incident Response Teams (CSIRT) or SOCs.
They differentiate between time-series based on event counts
as well as numeric indicators, such as the mean recovery
time of incidents. They select ARIMA as a suitable model
for analysis of these types of time-series due to the abilities
to predict future values, quantitatively validate the accuracy
of the model, generate stationary baselines for comparisons,
and detect trends over time. As part of their evaluation, they
fit an ARIMA model to daily security events (i.e., alerts)
collected from a threat intelligence platform and use it for
forecasting the number of alerts as well as outlier detection.

Similarly, Husák et al. [50] gather 1 week of alert occur-
rences in count intervals of 5, 15, 30, and 60min from an
alert sharing platform, which they model with ARIMA and
Error-Trend-Seasonality (ETS) models to produce up to 10-
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step-ahead forecasts, where each step corresponds to a time
interval. The authors point out that one of the downsides
of this kind of predictive analytics is that only the expected
number of attacks is predicted, but there is no detailed infor-
mation on the attacks themselves. Meanwhile, Ansari et al.
[8] use GRU RNNs to understand dependencies in secu-
rity alert sequences through sequence modeling and predict
future actions of attackers.

5.8.2 Prediction of alert bursts

Other approaches aim to predict the occurrence of burst
attacks, i.e., attacks that involve a high number of events
or alerts such as brute force attacks that are commonly used
for password guessing. The goal of Silva et al. [108] is to use
predictive analytics to detect the start of a brute force attack,
not when it is already active as this is often too late. Their idea
is to analyze the total number of brute force attacks and apply
multiple Moving Average (MA) models simultaneously on
this time-series to predict burst attacks. Specifically, they rec-
ognize that upcoming attacks affect Moving Average models
with different observation periods in such a way that their
predicted values intersect at some point in time, which can
be used as an indicator for imminent burst attacks.

Burst attacks are also the focus on the work by Bak-
dash et al. [13], who make use of malware occurrences
that are detected and manually verified by analysts. They
claim that this data is superior to IDS alerts or honeypot
data that are commonly used for this purpose, because it
involves fewer false positives and is generally of higher
quality. Their approach uses Bayesian State Space Model
(BSSM) for forecasting and ingestsweekly event counts from
a period of over 7 years. The authors find that attacks some-
times appear in systematic ways, which allows forecasting;
however, bursts are generally difficult to predict beforehand
as they can emerge without any prior indicators and can thus
often only be detected after the fact.

5.9 Cyber situational awareness

This section shifts the focus from the low-level technical
input data discussed in the previous sections, such as raw
log events or intrusion detection alerts, to more high-level
reports that enable strategic decisionmaking and risk estima-
tion rather than thedetectionof anomalies. Since the analyzed
data does not just origin from a single component or organi-
zation but instead from awide range of distinct organizations,
the results of this kind of research are relevant to wide audi-
ences and enable assessment of the state of cyber security at
large. For example, decision makers could be interested to
assess their current risk of becoming subject to cyber attack
to react accordingly in advance. To this end, analysts need to
deduce whether the number or severity of attacks on certain

types of organizations is currently increasing or expected to
do so in the future, which is feasible by applying time-series
models to cyber incidents from the past and extrapolating to
the future.

5.9.1 Prediction of the number of incidents

Werner et al. [132] aim to forecast the number of attacks
occurring within a time window of one day solely based on
the number of daily attacks in the past. For their experiments,
they use 10.5 months of attack counts for different types of
attacks, such as DoS, attacks over email, malicious URLs,
and attacks on Internet-facing-devices. They recognize that
their database is far from comprehensive—only 613 attack
reports are available for this time period—but assume that
this is a sufficiently large sample to represent the global threat
landscape. Their results suggest that the ARIMAmodel they
apply on the time-series is not able to predict exact values due
to high fluctuations in the data; however, the authors claim
that it is able to capture and predict the overall trends.

Zhang et al. [141] also predict the future number of cyber
attacks, but do so on a shorter time scale than Werner et al.
[132]. Specifically, they use both hourly and daily event count
vectors collected from a globally dispersed set of honeypots.
Using that data set, they point out the peculiar distribution of
attackoccurrences over time,which involves highnumbers of
attacks in short time intervals. To ensure that their forecasts
of attack numbers integrates this aspect, they rely on deep
learning to predict the mean values, while Extreme Value
Theory (EVT) is used to estimate the short-term bursts.

Samia et al. [100] use an even shorter time window for
event counting. They count the number of attacks in time
intervals of 5-30 minutes in a data set that spans over one
week and contains around 144 thousand entries. Each inci-
dent also includes additional features such as the type of
attack, industry of the attacked organization, and the coun-
tries where attackers and victims reside, which the authors
use to generate distinct time-series for specific countries and
attack types. Interestingly, they use a very short period of only
four consecutive data points to predict the upcoming value.
Their results suggest that approaches basedonmachine learn-
ing outperform statisticalmethods such asARIMA; however,
they also come to the conclusion that prediction is largely
limited to overall trends while exact values are difficult to
forecast.
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5.9.2 Prediction of cyber risks

Rather than time-series of attack counts, Zängerle et al. [138]
generate time-series of yearly financial losses that organiza-
tions suffered from cyber attacks based on publicly disclosed
loss events in the financial sector. They point out that the
resulting time-series are sparse since many companies did
not report any losses in several years. To predict the proba-
bility of attack occurrence as well as the financial impact on
organizations, the authors suggest to employ separatemodels
for different aspects of the prediction; specifically, they use a
marginal model for the loss, logistic regression for the attack
frequency, Extreme Value Theory (EVT) for severity, and a
copula structure for the seasonal trend. Their results suggest
that financial losses caused by cyber attacks are often not
as severe as assumed and do not reach the scales of other
risk events that are not related to security incidents. More-
over, the cyber risks appear different across industrial fields,
which thus need to be analyzed separately.

Dzhamtyrova et al. [32] also aim to predict cyber risks
through the inter-arrival times and sizes of data breaches.
Their data set comprises dates and the number of affected
accounts from more than 9, 000 breaches collected in course
of 14 years. Other than aforementioned approaches, they
process the inter-arrival times and loss sizes directly rather
than aggregating them within time windows, resulting in
fine-grained time-series. To predict the expected confidence
intervals for these time-series, they adopt quantileAR (QAR)
and competitive quantile AR (CQAR) models that are capa-
ble of modeling both occurrences of cyber incidents and their
losses as stochastic processes and allow to evaluate them for
arbitrary significance levels. Eling et al. [33] point out that
the data set used by Dzhamtyrova et al. [32] only entails
the number of affected accounts, but not the financial loss;
therefore, they evaluate theirmethodwith two additional data
sets where information on financial losses for cyber inci-
dents is present. The authors argue that exact loss amounts
are generally only known some time—possibly months—
after incidents occur, and that this delay introduces a bias in
the data which needs to be compensated for. To address this
issue, they explicitly integrate delay times as part of their
models, which assume that occurrence numbers and scales
of loss events follow statistical distributions.

5.9.3 OSINT-based incident prediction

The main idea of incident prediction based on Open-Source
Intelligence (OSINT) is to leverage information from uncon-
ventional data sources such as news feeds or posts in social
media platforms and link them to cyber incidents. Thereby, it
is sometimes possible to forecast upcoming cyber attacks that
are launched as a reaction to certain real-world events cov-
ered by new stories [90]. The obvious problems encountered

in such an endeavour include the often highly unstructured
nature of the data, which often involves natural language,
as well as a high fraction of noise in the data, i.e., events
without relevance to real-world incidents or cyber security in
general. For example, Okutan et al. [90] obtain time-series
from a global event database, news feeds, Twitter posts,
sentiment signals, etc, as well as a non-public time-series
with binary observations of attack types. They forecast the
expected number of attacks for any given day and correlate
the two time-series to find suitable aggregation time win-
dow sizes as well as delays, which allow them to train a
Bayesian classifier to forecast future occurrences of certain
attack types.

Lande et al. [68] consider event mentions in sources such
as news feeds or Internet blogs to create event count vectors.
For their experiments, they obtain 1 year of data and aim
to predict the number of events in the last month using the
first 11 months as training data. They compare four different
time-series methods, of which ARIMA turns out to yield the
best predictive performance but also require parameter fine-
tuning, while LSTMRNN is more simple to apply at the cost
of a lower accuracy of the prediction.

5.10 Vulnerability analysis

Vulnerabilities of software or cyber-physical systems pose a
high risk to organizations and individuals. Specifically, zero-
day vulnerabilities that are not knownbyvendors or operators
of affected systems have often been the entry point of some
of the largest cyber incidents in the past. Unfortunately, due
to the ever-growing complexity of software, the number of
vulnerabilities has continuously increased in the past and is
expected to continue to do so in the future [96, 135]. For
strategic decision making that concerns the security level of
software products and components it is thus vital to esti-
mate whether or how many vulnerabilities are expected to
be reported in certain time intervals [58]. Security experts
therefore leverage vulnerability data from large and open
databases such as theNationalVulnerabilityDatabase (NVD)
to analyze the patterns of vulnerability appearances over time
and extrapolate trends into the future. Note that other than the
approaches of the previous section that considered the num-
ber and severity of attacks, vulnerability analysis primarily
focuses on the first appearance of a vulnerability rather than
the instances where these vulnerabilities are exploited.

Pokhrel et al. [96] focus on vulnerabilities in widely used
operating systems, specifically, Windows 7, Mac OS X, and
Linux. They collect monthly counts of reported vulnerabil-
ities over up to 15 years and discuss how the consequences
of certain cyber incidents manifest in the data. They point
out that even though the time-series are affected by seem-
ingly random fluctuations and there are no visually apparent
evidences for seasonality, certain time periods show some
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Fig. 2 Number of publications per year separated by classes of time-
series models

sort of increasing or decreasing trends. They experiment
withARIMA, neural networks, andSupportVectorMachines
(SVM) to model each of the three time-series and predict
future appearances of vulnerabilities. In addition to operat-
ing systems, Yasasin et al. [135] consider the vulnerabilities
of software applications such as various Internet browsers.
Similar to Pokhrel et al. [96], they consider multiple years of
monthly vulnerability counts and predict up to three months
ahead. Among the many methods they experiment with,
Croston’s method and ARIMA turn out to be the most ade-
quate approaches to model the time-series. Specifically, they
are more capable of handling time-series that contain many
zero values than othermodels such as neural networks, which
is an important aspect in vulnerability analysis since some
software have no reported vulnerabilities for several months
at a time. Kalouptsoglou et al. [58] experiment with a sim-
ilar selection of vulnerability time-series and an even more
diverse set of modeling techniques. They found that the there
is no optimal model for all time series; overall, their results
suggest that statistical models usually outperform neural net-
works when it comes to fitting to the time-series, while
approaches from both categories are on-par regarding the
ability to predict up to 24 months ahead.

6 Time-series models

The literature review presented in the previous section high-
lighted the diversity of time-series methods applied on
security data. This section thus summarizes the main tech-
niques for modeling time-series that we encountered during
our review.We identify four different classes of models, each
comprising several sub-classes, that we use to structure this
section: statistical models, conventional machine learning,
neural networks, and state-basedmodels. Figure2 shows how
many publications using each class of time-series models
appeared per year. It is apparent that statistical models and
neural networks are the two most frequently used techniques

for time-series analysis; however, all classes of models are
still employed by 2022, indicating the need to consider awide
range of models when dealing with detection and forecasting
of security time-series.

6.1 Statistical models

This section summarizes statistical models for time-series
analysis, including exponential smoothing, autoregressive
and moving average models, and Croston models. In addi-
tion, we provide some insights on correlation analysis and
state methods to capture the seasonality of time-series.

6.1.1 Exponential smoothing

Exponential smoothing is a local method for time-series pre-
diction andhasmultiple implementations: Single exponential
smoothing (SES) usesweighted averages of preceding obser-
vations for forecasting, where weights decrease for observa-
tions that lie further in the past. A parameter α is used to
adjust the weights, where smaller values of α correspond to
higher weights to observations that are in the distant past,
and vice versa. The prediction depends on a linear parameter
lt (cf. Eq. 2); due to this definition, every value predicted for
an arbitrary horizon h into the future is identical (cf. Eq. 1)
[50, 58, 86, 108, 119, 127, 135].

ŷt+h = ŷt+1 = lt (1)

lt = αyt + (1 − α)lt−1 (2)

Double exponential smoothing (DES) extends SES with a
linear trend component. To this end, the slope of the time-
series (cf. Eq. 5) is added to the equations for the level (cf.
Eq. 4 and the prediction (cf. Eq. 3), where parameter β is
used to weigh the slope between two successive observations
[135].

ŷt+h = lt + hbt (3)

lt = αyt + (1 − α)(lt−1 + bt−1) (4)

bt = β(lt − lt−1) + (1 − β)bt−1 (5)

Triple exponential smoothing (TES), which is also known
as Holt-Winters exponential smoothing, extends DES with
a seasonal component. To this end, another parameter γ is
introduced toweigh the seasonal effect over themmost recent
time periods (cf. Eq. 9) and added to the level (cf. Eq. 7) and
the prediction (cf. Eq. 6), where hm = ((h−m) mod m)+1
ensures that the correct season is used for computing the
estimates [58, 135].

ŷt+h = lt + hbt + st+hm−m (6)

lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1) (7)
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bt = β(lt − lt−1) + (1 − β)bt−1 (8)

st = γ (yt − lt−1 − bt−1) + (1 − γ )st−m (9)

6.1.2 Autoregressive (AR) models

The most simple models have global characteristics, i.e.,
even the oldest data point influences the prediction. The
autoregressive (AR) model is a counter-design to the global
approach: according to this model, the next value depends
only on the p-last values. Values further back in time are
not taken into account, where p is called the order of the
model. Moreover, the AR model consist of model parame-
ters φ1, ..., φp and an error term εt as stated in Eq. 10 [54].

yt =
p∑

i=1

φi yt−i + εt (10)

Note that once the parameters to adequately model a time-
series have been identified, it is possible to leverage these
parameters to extrapolate over the most recent time point and
produce forecasts for future observations ŷt+h . The model
can further be used to detect anomalies by checking deviating
values against the usual variance of the error term. Viinikka
et al. [128] use a non-stationary ARmodel (NAR) with time-
varying parameters to allow the model to adapt to changes of
normal behavior.Other variations are the quantile autoregres-
sivemodel (QAR),whichmodels each quantile of time-series
values with a separate autoregressive process, and compet-
itive quantile autoregressive model (CQAR), which allows
incremental updates and does not require training data [32].

TheAR(1)model, i.e. the autoregressivemodel with order
1, is commonly called aMarkov process and is written math-
ematically as in Eq. 11, where μ is the mean level of the
process, φ1 is the AR parameter, εt is the white noise term
at time t that is identically independently distributed with a
mean of 0 and a finite variance [48].

yt − μ = φ1(yt−1 − μ) + εt (11)

In the literature, the notation of the autoregressivemodel is
not always the same—in some cases the meanμ of the series
is explicitly specified, in others it is not. Another significant
difference concerns the usage of the backward shift operator
B, which is defined by Eqs. 12 and 13 with a positive integer
k.

Byt = yt−1 (12)

Bk yt = yt−k (13)

By using the backward shift operator B, and by treating B as
an algebraic operator and factoring, the Markov process in

Eq. (11) becomes the expression in Eq. 14, where Bμ = μ

since the mean level is a constant at all times.

(1 − φ1B) (yt − μ) = εt (14)

The AR model only depends on a few previous values
to compute the next step. Therefore, short-term effects can
be modeled in an easier way, but the global structure of the
model is not obvious. Nevertheless, the global structure of
the AR model can be determined [124].

6.1.3 Autoregressive moving average (ARMA)

The autoregressive model described above determines the
value at time step t based on the p-last values (cf. Eq. 15).

yt = φ1 · yt−1 + φ2 · yt−2 + . . . + φp · yt−p + εt (15)

The inaccuracies of the model and external influences are
modeledwith statistical noise εi . However, if these influences
not only affect one point in time, but have an impact over
several time steps, this must be taken into account in the
model. The autoregressive moving average (ARMA) model
follows exactly this approach by extending the autoregressive
model.

The autoregressivemoving averagemodel describes a pro-
cess using a linear combination of several previous values (cf.
Eq. 16) [17].

yt = μ + εt +
p∑

i=1

φi · yt−i +
q∑

j=1

ψ j · εt− j (16)

The signal yt to be modeled is composed of

– a constant μ describing the base level,
– a noise term εt to model inaccuracies,
– a weighted sum of the p preceding signal values, and
– a weighted moving average of noise terms εt−1,…, εt−q .

This model is abbreviated ARMA(p, q), where p and q
indicate the autoregressive and moving-average order of the
process, respectively. Special ARMA models with p = 0 or
q = 0 are the autoregressive model and the moving average
(MA) model.

The parameters of an ARMA model can be determined
in many ways. The approach to the solution can be numer-
ical or stochastic-statistical; i.e. in most cases an algorithm
according to Yule–Walker [40], maximum likelihood [19] or
two-step-regression is implemented. Each approach has its
justification; however, they may lead to different results.

In the reviewed literature, specialized versions of ARMA
models are employed. For example, Dzhamtyrova et al. [32]
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use Generalized AutoRegressive Conditional Heteroscedas-
ticity (ARMA-GARCH) models, where the GARCH part is
used for modeling the voltatility of the time-series, which
depict breach sizes in their application case. Ara et al. [9]
use a βARMA model, which is specifically developed for a
random variable with beta distribution. More precisely, they
use a bivariate βARMA model for multiple variables and
leverage a copula to create a joint distribution for both vari-
ables.

6.1.4 Autoregressive integrated moving average (ARIMA)

The autoregressive moving average model is the basis for
various, extended models. An obvious extension is to con-
vert scalar time series to vector-based time series; formally,
this difference is relatively small. Other extensions address
effects that are difficult to model without the corresponding
extensions.

If a time series does not describe “fluctuations” around a
value, but a summed series, then this behavior can rather be
described with an autoregressive integrated moving average
(ARIMA) model. The summation (respectively the integra-
tion) is considered in this particular model. The integrating
aspect can be removed by difference transformation, so that
the transformed model corresponds to an ARMA model.

In detail, the transformation takes the initial values (cf.
Eq. 17) and transforms them into a sequence of differences
(cf. Eq. 18).

y−N+1, y−N+2, y−N+3, . . . , y−2, y−1, y0, (17)

y−N+2 − y−N+1︸ ︷︷ ︸
z−N+2

, y−N+3 − y−N+2︸ ︷︷ ︸
z−N+3

, . . . ,

y−1 − y−2︸ ︷︷ ︸
z−1

, y0 − y−1︸ ︷︷ ︸
z0

(18)

An ARMA(p, q) model is then created for the sequence of
zt , which can be used to determine a forecast z1, z2, z3, etc.
Using the inverse differences, the zt can be used to determine
the corresponding yt (cf. Eq. 21).

y1 = y0 + z1 (19)

y2 = y1 + z2 = y0 + z1 + z2 (20)

...

yk = yk−1 + zk = y0 +
k∑

i=1

zi (21)

This difference scheme is a so-called ARIMA(p, 1, q)

model. Differences of higher order (differences of differ-
ences) lead to an ARIMA(p, d, q) model. The integer d
corresponds to the order of the differences. First order dif-

ferences are computed as in Eq. 22 whereas higher order
differences are defined recursively as in Eq. 23.

Δ1yi = Δyi = yi − yi−1 (22)

Δm yi = Δm−1yi − Δm−1yi−1 (23)

To differentiate between AR and MA models and deter-
mine model parameters, authors usually make use of the
autocorrelation function (ACF) and partial autocorrelation
function (PACF) [107, 142]. Moreover, authors use the
Akaka’s information criterion (AIC), the AIC corrected
(AICc) criteron, and the Bayesian information criterion
(BIC) [9, 32]. While this is often carried out visually, some
authors also rely on autofitting methods that automatically
find suitable parameters [50].

ARIMA models are among the most commonly used
methods for time-series analysis in the reviewed litera-
ture and applied on various data sources for prediction
and anomaly detection, including log event counts [60,
67], generic event counts [68, 90], alert counts [50, 61],
attack counts [100, 132], vulnerability counts [96, 135], and
numeric event parameters [86, 107]. Even IBM’s QRadar4

and DataDog5 rely on ARIMA models for log analysis and
intrusion detection.

6.1.5 Seasonal models

If a time series has a seasonal pattern, it is not sensible to
describe the complete sequence of values yt using onemodel.
For example, in amonthly time series itmaymakemore sense
to base the forecast of next month’s value on the previous
year’s value than to base it on the previous month’s value.
In detail, a sequence of values is broken down into several
sequences (cf. Eq. 24) and each subsequence yt , yt+k , yt+2k ,
yt+3k , . . . handled individually using a non-seasonal model
(ARIMA, ARMA, …).

y1 y2 y3 . . . yk
yk+1 yk+2 yk+3 . . . y2k
y2k+1 y2k+2 y2k+3 . . . . . .

(24)

The value k is called seasonal lag and describes the number
of intermediate values until a seasonally equal value occurs
again. Determining the seasonal lag is often based on domain
knowledge in the reviewed literature. One exception is the
work by Wu et al. [133], who make use of a framework that
relies on Fourier series to extract seasonal terms.

4 https://www.ibm.com/qradar.
5 https://docs.datadoghq.com/.
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6.1.6 Croston models

One of the issues with aforementioned models is that they
are not designed to work with time-series that contain a
high fraction of zeros, which may be the case when deriving
time-series from unevenly distributed count data. An alterna-
tive method that tackles this problem is provided by Croston
models, which decompose the original time-series into two
new time-series, one without the zero values (cf. Eq. 26)
and another one that captures the durations between intervals
comprising only zeros (see. Eq. 27). Then, single exponential
smoothing is applied on each of these two time-series sepa-
rately. Finally, the estimate of the mean of non-zero values
is computed as stated in Eq. 25 [58, 135].

ŷt+h = ẑt+h

v̂t+h
(25)

ẑt+h =
{
zt if yt = 0

αyt + (1 − α)zt if yt �= 0
(26)

v̂t+h =
{

vt if yt = 0

αyt + (1 − α)ŷt if yt �= 0
(27)

6.2 Conventional machine learning

Other than aforementioned statistical models that are specif-
ically designed to handle time-series, most machine learning
techniques used in the reviewed literature are originally not
conceptualized for such data. Instead, most machine learn-
ing techniques usually process independent data samples and
neglect order or temporal dependencies. Nonetheless, some
authors have managed to adapt the techniques or integrate
temporal aspects in the data samples in such a way that the
models are able to capture time-dependent information. In
the following,we go through differentmachine learning tech-
niques and outline how theywere employedwith time-series.

6.2.1 N-grams

N-grams are a common modeling technique in natural lan-
guage processing, where contiguous sequences of words are
used to predict the probabilities of subsequent words. The
same idea can be applied to time-series, where similar sub-
sequences of values are located in the time-series to estimate
the subsequent value, following the assumption that the same
pattern that occurred in the past repeats [68]. The authors find
that the limited number of past values deteriorates the perfor-
mance of the prediction and point out that models based on
n-grams are generally criticised for not being able to incor-
porate long-term dependencies of the data.

6.2.2 Decision trees

There are three models based on decision trees in the
reviewed literature. First, isolation forests operate by par-
titioning data into tree structures using randomly selected
features. The idea is that anomalous instances have more
distinguishable values in some of the features and thus yield
shorter paths in the resulting trees, compared to normal
instances that are less likely to be isolated and thus yield
longer paths [7, 80]. Second, random forests that similarly
rely on ensembles of decision trees but use labeled data for
supervised training [80, 89, 100]. Third, Extreme Gradient
Boosting (XGBoost) is another supervised approach that uses
decision trees for ensemble learning and is a specifically pop-
ular choice inmachine learning due to its performance-driven
nature.

6.2.3 K-nearest neighbors

The K-nearest Neighbors (KNN) supervised classification
technique uses majority voting of the closest instances (e.g.,
in a numeric space) to determine the class of an unknown
instance, e.g., whether it is normal or anomalous. Thereby,
instances that are further away from the instance in ques-
tion may receive lower weights [80]. The K-nearest neighbor
regression (KNR) is a related technique that uses continuous
values rather than classes of the closest instances to forecast
numeric properties of instances, for example, by taking the
average of the values in the K-nearest neighbors [100]. Since
the approach is designed to handle numeric data, it is primar-
ily used with sensor values collected from cyber-physical
systems.

6.2.4 Support vector machines

Support Vector Machines (SVM) is a class of supervised
learning models capable of performing linear and non-linear
classification by drawing boundaries between instances that
are mapped to high-dimensional feature spaces [80]. One-
class SVM is a semi-supervised alternative that is trained
on normal data and fits a boundary that encompasses these
instances. Then, instances with unknown class are deter-
mined as normal if they are within these boundaries, and
anomalous otherwise. Note that authors do not necessarily
feed time-series directly in the SVM, but properties such as
percentiles, standard deviations, skew, seasonality, etc [119].
SupportVectorRegression (SVR) is based onSVMsandused
for the prediction of continuous values, including time-series
[96, 100].
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6.2.5 Local outlier factor

Local Outlier Factor (LOF) is a density-based technique for
anomaly detection that is based on the local density of an
instance in relation to the densities of its neighbors. LOF has
been applied on time-series by dividing the data sets into
time windows of numeric and one-hot encoded categorical
features [7].

6.2.6 Clustering

Clustering groups instances based on a similarity metric,
often with the goal to find outliers that do not fit into any
cluster. For example, Du et al. [31] cluster sub-sequences of
event count vectors and compute an anomaly score based on
the similarities. Jain et al. [56], on the other hand, pursue
temporal clustering of log data where the similarity of event
count vectors is measured with the Jaccard metric for the
purpose of correlation analysis.

6.3 Neural networks

In recent years, neural networks have gained high popular-
ity in the research domains of image classification as well as
natural language processing. Given that some neural network
architectures have been developed specifically for sequential
data, it stands to reason to apply them for the purpose of
time-series analysis. Other types of neural networks are capa-
ble of operating in semi-supervised manner and thus support
anomaly detection. Some authors that conduct comparative
studies find that methods based on neural networks slightly
outperform conventional machine learning methods and by
far outperform statistical models [100]. In the following, we
summarize the most common neural network architectures
and their application in the reviewed literature.

6.3.1 Feedforward neural network

The architecture of feedforward neural networks comprises
multiple layers with varying numbers of nodes, in partic-
ular, an input layer that ingests the raw data, one or more
hidden layers that connect nodes across each layer, and an
output layer [101, 102]. Several authors forecast time-series
using such a neural network with a single hidden layer [96,
135]. Yasasin et al. [135] point out that feedforward neural
networks are more suitable to handle time-series with many
zeros than other models.

6.3.2 Recurrent neural networks

Other than feedforward neural networks, the architecture of
Recurrent Neural Networks (RNN) involves loops so that
the output of some nodes affects their own input. Since these

feedback mechanisms are designed to retain certain states of
the model over time, RNNs are inherently capable of learn-
ing sequential information from raw data and thus a natural
choice for processing time-series [100–102]. Accordingly,
RNNs present one of the most used techniques for time-
series analysis in the reviewed literature. Thereby, the most
common implementation is the Long Short-Term Memory
(LSTM) RNN, which enable long-term storage of states and
comprise input, output, and forget gates [38, 68, 119]. Gated
Recurrent Units (GRU) are neural network cells that only
use update and reset gates. They are generally considered as
alternatives to LSTM RNNs in cases where high computa-
tional efficiency is required. Some authors compare different
architectures, e.g., Zhang et al. [141] experimentwith LSTM,
GRU, and multiplicative LSTM to learn patterns from event
counts, and Kalouptsoglou et al. [58] benchmarks various
statistical methods and neural network architectures.

Interestingly, there are many different ways how data is
fed into and derived fromRNNs. Samia et al. [100] design the
input layer of their RNN to have the same dimension as the
length of the time-series sub-sequence they want to analyze.
The output layer, on the other hand, consists of a single node
that predicts the next value in the time-series.

RNNs are also used with categorical event data, where
sequences of event types are fed into the neural network.
Čeponis et al. [21] then use a binary output for attack detec-
tion, while Meng et al. [81] try to predict the most probable
next event types in the sequence and thereby detect anoma-
lies. Wang et al. [130] use a different strategy and predict the
time-of-day where attacks start or stop.

Several approaches use multivariate data as input to the
RNN, for example, Seong et al. [104] use 89 observations
of 79 numeric features to predict the upcoming observation.
Yu et al. [136] use a multivariate time-series of road traffic
measurements and use four output nodes corresponding to
four traffic situations that they consider relevant. Suda et al.
[115] use two output nodes and use the difference between
their output values as a measure for attack detection.

The work of Wu et al. [133] specifically focuses on multi-
seasonality of time-series data. For this reason, the authors do
not only providewindows ofmultivariate time-series as input
to the neural network, but also their seasonality. The output
of the neural network corresponds to future time windows,
which they convert to an anomaly score. Zhao et al. [142] use
time windows of event counts and additionally use features
such as seasonality and inter-arrival times as input. They use
the prediction error of the network output as a measure for
the degree of an anomaly. Finally, Anastasiadis et al. [7]
combine an RNN with an AutoEncoder neural network to
conduct anomaly detection.
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6.3.3 Generative adversarial networks

Generative Adversarial Networks (GAN) comprise two neu-
ral networks that compete against each other. The generator
is trained to produce new samples that resembles training
data, while the discriminator is trained to determine whether
the generated data is taken from the training data, which is
in turn used to improve the generator. In the reviewed publi-
cations, these neural networks are realized with RNNs [101,
102].

GANs have been used to generate missing data that is
suitable for interpolation [137]. Moreover, GANs enable
anomaly detection since the discriminator is trained to distin-
guish fake data from real samples anyway and the generator
can be used to derive an anomaly score from the reconstruc-
tion error of the test samples [70, 71].Khoshnevisan et al. [60]
propose to use a Robust Seasonal Multivariate Generative
Adversarial Network (RSM-GAN) that adopts convolutional
LSTM RNNs and attention mechanisms, which they specif-
ically select to handle seasonal and noisy data.

6.3.4 Convolutional neural networks

Convolutional Neural Networks (CNN) extend on the archi-
tecture of feedforward neural networks by adding con-
volutional and pooling layers, which facilitate dimension
reduction and allow the network to capture more abstract
features [101, 102]. For event data, CNNs have been applied
on univariate time-series of count vectors [58], sequences
of event types [21], and word-embedding of alert messages
[89].

6.3.5 Attention mechanisms

Attention mechanisms are used to assign higher weighs to
relevant features than to irrelevant ones [101, 102]. Khosh-
nevisan et al. [60] use an attention layer to compensate for the
fact that older data pointsmay bemore suitable for prediction
than the most recent ones, and to incorporate holiday effects,
i.e. days with unusual behavior, from the past. They then
compute the reconstruction error and use it as an anomaly
score for analyzed points in time.

6.4 State-basedmodels

Most of the aforementioned time-series models assume that
the input data is numeric and continuous. However, event
types and parameters are often discrete or categorical, which
cannot be processed directly. In the following, we summa-
rize state-based models, which offer an alternative approach
suitable for such features.

6.4.1 Hidden Markov models

When dealing with discrete time-series, for example, where
observed values are integers rather than real numbers,
Markov chains present a suitable method for analysis and
forecasting. Naveiro et al. [86] specifically use Markov
chains to estimate the transition probabilities between differ-
ent states (i.e., observed values), forecast upcoming values,
and compute upper and lower bounds of one-step-ahead pre-
dictions. Hong et al. [49] show that Hidden Markov Models
(HMM) are also applicable on categorical features where
values do not follow any order as it is the case with discrete
data.

6.4.2 Bayesian state space model

Bakdash et al. [13] use the Bayesian State Space Model
(BSSM) to predict the number of cyber attacks in a given
time interval, based on the previously observed attack fre-
quencies. In short, themodel considers that the systemmoves
in different states and allows to generate predictions for future
observations based on the current state. The authors point out
that BSSM has several advantages over statistical models,
specifically, BSSM is capable of incorporating different sta-
tistical distributions, multiple sources of variability, changes
of long-term trends, and non-stationary patterns in the data.

7 Evaluations of scientific approaches

Evaluations are crucial to validate anddemonstrate approaches
and thus a vital part of publications. However, designing
experiments for sound evaluations requires critical deci-
sions regarding the selection of data sets, methods for data
pre-processing and parameter tuning, and evaluation met-
rics. This section therefore summarizes common evaluation
strategies in the reviewed publications.

7.1 Common security data sets for time-series
analysis

The quality of data sets is essential to enable sound eval-
uations. When data sets are flawed or in any way not
representative for data that is encountered in practice, evalua-
tion results may not generalize to real-world applications and
derived insights may be misleading. Moreover, the develop-
ment of analysis techniques is often driven by data properties,
for example, data sets containing multiple relevant dimen-
sions may require approaches for multivariate time-series
analysis. Unfortunately, useful data sets are often difficult
to find as publicly available resources. In this section, we
therefore summarize open data sets used in reviewed pub-
lications. Table 4 shows an overview of data sets used to
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Fig. 3 Frequencies of data sets in the reviewed literature

evaluate anomaly-based approaches, where we also provide
some information on relevant properties such as features,
dimensions, anomaly types, and labels. Table 5 presents data
sets used for analytical approaches that focus on time-series
modeling rather than anomaly detection; accordingly, the
data sets do not involve anomaly types or labels. Figure3
visually summarizes the popularity of data sets, i.e., the rel-
ative number of times a data set is used in the reviewed
publications. Note that “Private” refers to data sets that are
not publicly available (e.g., data sets collected in productive
environments that cannot be shared for privacy reasons) and
“Other” refers to data sets that are either not directly linked to
time-series, not available anymore, behind paywalls, or only
partially available. This figure shows that a more than a quar-
ter of all approaches are only evaluated on private data sets,
whichmeans that the presented results cannot be reproduced.
In the following, we briefly describe each data set and refer
to the references provided in the table for further reading.

7.1.1 Log data

Log data differs from common time-series in two crucial
ways. First, log data generated by applications or operating
systems generally comprises unstructured event messages,
which require parsing. Accordingly, the number of dimen-
sions, that is the number of discrete event types that these
unstructured messages correspond to, depends on the gran-
ularity of log templates used for parsing. Second, log events
appear at arbitrary points in time rather than fixed time inter-
vals, whichmeans that event occurrences are usually counted
in time windows in order to obtain numeric time-series.

The Hadoop Distributed File System6 (HDFS) data set
that is generated by an application for storing and processing
large files is such an example. The data set is a commonly
used data set in log-based anomaly detection as it involves
a high number of normal and anomalous event sequences,
which are formed by file block identifiers present in all
events.Anomalous sequences thereby relate to abnormal exe-
cution flows that indicate incorrectly processed files. Similar
to HDFS, BlueGene/L and Spirit data sets (both available
at the Computer Failure Data Repository7) contain unstruc-
tured log messages and thus require parsing and counting
of events. They stem from high-performance computing
clusters and involve anomalous events that correspond to sys-
tem faults that are subject of detection. The Attack-caused
Windows OS System Calls Traces Data set8 (AWSCTD)
comprises sequences of event types that are already in pre-
processed form, meaning that only discrete event sequences
without timestamp information are available. Other than
aforementioned data sets, however, the anomalous events in
the AWSCTD actually relate to security incidents rather than
system faults that may also occur without malicious intent.
Specifically, the authors of the AWSCTD executed several
malware samples and exploits when collecting the data.

The Credit Card Fraud Detection9 (CCFD) data set com-
prises a list of credit card transactions, of which a small
fraction (492 out of 284,807) aremarked as fraudulent. Aside
from the time and amount of the transaction, the data set com-
prises 28 numeric values that are known to be the output of
a principal component transformation, but not explained in
any more detail by the authors for confidentiality reasons.
According to the authors, the Server Machine Data set10

(SMD) was collected from 28 different machines at a large
Internet company. Unfortunately, there is no other informa-
tion on the meaning of the 38 numeric features as well as the
nature of the anomalies provided by the authors.

Several authors resort to private log data sets that are usu-
ally collected at their own premises. For example, Landauer
et al. [67] use logs from the MySQL application and Wu et
al. [133] use logs from a Linux server with manually labeled
attacks. Another common source of log data are web applica-
tions, for example, Ara et al. [9] use web server data that they
obtain from a corporation, Granlund et al. [44] use Apache
Access logs, Ohana et al. [89] use logs from IBM cloud data
centers, and Khoshnevisan et al. [60] use request logs.

6 http://people.iiis.tsinghua.edu.cn/~weixu/sospdata.html.
7 https://www.usenix.org/cfdr-data.
8 https://github.com/DjPasco/AWSCTD.
9 https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud.
10 https://github.com/NetManAIOps/OmniAnomaly.
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Table 5 Public data sets used to
evaluate analytical approaches

Name Reference Data source Features Dim. Duration

IDEA [52] Intrusion alerts from
sharing platform

Time, port, IP, protocol,
alert category, etc.

– 1 week

DDS DDS Honeypots Date, host, protocol,
type, port, location

9 6 months

NVD NVD National Vulnerability
Database

Date, name, status,
description, references

– Since 1999

Hackmageddon Hackmageddon Cyber attack statistics Date, target, description,
attack type, references,
etc.

– Since 2013

PRC Privacy
Rights

Data breaches reported
in the US

Date, company, indus-
try sector, location,
attack type, breach size
(affected accounts), etc.

13 Since 2005

OSF [13] Reports of manually
detected and verified
incidents

Date, weekly count,
average report length

3 7 years

7.1.2 Network traffic

Prominent IDS datasets include KDD-9911 and its deriva-
tive NSL-KDD.12 KDD-99 holds 41 features from 5 million
connection records over 7 weeks, with additional packet
and flow-based formats and labeled entries for four attack
types. NSL-KDD was generated by removing redundant
and duplicated records in the KDD-99 and resampling the
records for a more challenging classification [117]; how-
ever, the data set is currently not available on the platform
where it was originally hosted. The UNSW-NB1513 dataset,
established in 2015, comprises 49 features from normal and
malicious packet-based network traffic, covering nine attack
types in packet and flow-based formats. The NGIDS-DS14

dataset, created in 2016, features 7 packet-based and 9 log
file-based attributes, encompassing seven attack families.
Proposed in 2017, theTRAbID15 dataset includes 16 scenar-
ios capturing 30 minutes of emulated environment traffic for
evaluation. The latest additions, CICIDS201716 and CSE-
CIC-IDS2018,17 offer network and log data with 80 features
extracted from traffic, covering seven different attack scenar-
ios each. Also, IoT-Botnet 202018 dataset presents one of the
important benchmarkdatasets in this field. It is offered in both

11 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
12 https://www.unb.ca/cic/datasets/nsl.html.
13 https://research.unsw.edu.au/projects/unsw-nb15-dataset.
14 https://unsworks.unsw.edu.au/entities/dataset/fa64cd6b-4a80-
49bb-80fe-23549a60d695/full.
15 https://secplab.ppgia.pucpr.br/?q=trabid.
16 https://www.unb.ca/cic/datasets/ids-2017.html.
17 https://www.unb.ca/cic/datasets/ids-2018.html.
18 https://sites.google.com/view/iotbotnetdatset/home.

packet based format, and extracted features, and includes
traces of different types of attacks.

7.1.3 Cyber-physical data

The Secure Water Treatment19 (SWaT) data set contains
sensor readings and actuator states collected from a cyber-
physical test environment that represents a water treatment
plant and is capable of simulating common processes such
as assessment of water quality, chemical dosing, filtration,
dechloration, etc. As part of their study on secure water
treatment systems, the authors launch 36 attacks against the
test environment that aim at damaging the infrastructure and
maliciously affecting the treatment process, e.g., by causing
tank overflows or altering the settings of actuators. Accord-
ing to the authors, the test environment where they collect
the Water Distribution (WADI) data set is an extension of
the SWaT testbed; the data is available on the same website.
Again, the authors collect data both during normal operation
of the plant as well as during several attack scenarios. The
same team of researchers curating the SWaT andWADI data
sets hosted a competition called Battle of the attack detec-
tion algorithms (BATADAL), as part of which a data set
emerged that is hosted on the same website as SWaT. While
also focusing on water treatment and attacks on the involved
cyber-physical systems, the data set spans over a significantly
longer duration of more than one year.

The Skoltech Anomaly Benchmark20 (SKAB) aims to
provide anomaly detection data sets for physical experiments
of water circulation systems. The authors collect data from
various sensors, including acceleration, current, pressure,

19 https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/.
20 https://github.com/waico/SKAB.
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temperature, etc. In addition to normal scenarios, they also
run the experiments with several anomalous settings, such as
partly closed valves that affect the circulation process. Other
than the previous data setswhere labeling is based on the time
of attacks, the data set provides two types of anomaly labels
on the granularity of single events, one to mark outliers, i.e.,
single point anomalies, and another one for change-points,
i.e., anomalies that are made up of multiple data instances
and indicate changes of long-term trends.

The Gas Pipeline21 data set was collected from a virtual
testbed representing a gas pipeline that involves simulations
for the physical processes, the network, programmable logic
controllers, and human–machine interfaces. Similar to the
water treatment systems, the authors collect various sensor
values from the simulated cyber-physical systems and design
attack scenarioswhere the componentsmaking up the testbed
are maliciously modified.

The Gasoil heating loop22 (GHL) data set stems from a
simulation where gasoil is heated and transferred between
tanks. The authors carry out several runs of normal and
expected behavior of the heating loop and consider unau-
thorized changes of certain settings such as the maximum
temperature of pump frequency as anomalous, which they
label based on the entire simulation run.

The HIL-based Augmented ICS23 (HAI) security data
set comprises data from four different processes: a boiler
process, a turbine process, a water treatment process, and a
HIL simulation that combines the three other processes. The
data is collected from multiple sensors and actuators such as
valves. Several attack scenarios are designed by the authors,
most of which assume that an attacker manipulates the con-
troller and algorithms that steer the process loop.

Some authors evaluate their approaches with data sets that
are not publicly available. For example, Hong et al. [49]
describe an avionics testbed that generates categorical data
as well as a robot with physical sensors and actuators that
generates continuous data.

7.1.4 OSINT and intrusion alerts

The SANS Internet Storm Center provides an openly acces-
sible interface to gather the daily number of attacks recorded
by the DShield24 sensor network. The data has been used to
detect unexpected spikes in the time-series as anomalies that
possibly indicate emerging cyber threats. We point out that
this is the only alert data set that is used for the purpose of
anomaly detection, and the only one among them that lacks

21 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-
sets.
22 https://kas.pr/ics-research/dataset_ghl_1.
23 https://github.com/icsdataset/hai.
24 https://www.dshield.org/data/port.html.

labels. The remaining data sets discussed in this section are
primarily used to evaluate approaches for modeling and fore-
casting.

For example, the IDEA25 data set comprises intrusion
alerts collected from an alert sharing platform. The alerts
are provided as JSON objects that hold diverse but detailed
information on involved IP addresses and ports, nodes, and
the type of identified attack.Compared to other alert data sets,
this one only spans over one week and is unusually short, but
at the same time provides a fine-grained view on the collected
alerts since each alert can be analyzed individually.

Data Driven Security26 (DDS) provides an alert data set
that is collected from a collection of honeypots that are dis-
persed across the globe. The data set has been analyzed by
counting the number of attacks in daily and hourly time win-
dows. Thereby, it has been found that many alerts appear in
very short time intervals, meaning that hourly aggregation is
a good choice to capture these extreme attacks.

A vulnerability data set used by several reviewed publi-
cations is provided by the National Vulnerability Database27

(NVD), which ismaintained by theNational Institute of Stan-
dard and Technology (NIST). Entries in the data set follow
the Common Vulnerabilities and Exposures (CVE) system
and provide several references to external resources as well
as a human readable description. The data set is JSON for-
matted with diverse fields; thus, there is no obvious number
of dimensions. The popularity of this data set is explained by
its completeness and long duration [58].

Hackmageddon28 provides daily statistics on reported
cyber attacks, including some attributes such as the type of
attacks. As pointed out in literature [132], the data set is not
complete since many attacks are not reported and may even
involve incorrect information. Nonetheless, the data set does
provide a sample of the threat landscape and is thus useful
for certain types of analyses.

PrivacyRightClearinghouse29 (PRC) provides a database
of reported data breaches in the United States of America,
wheremany details such as the affected company, its location
and industry sector, as well as attack types and breach sizes
(i.e., number of affected accounts) are available. The original
data set is available online behind a paywall, however, some
authors have also provided openly accessible excerpts from
that data set.30

25 https://data.mendeley.com/datasets/p6tym3fghz/1.
26 https://datadrivensecurity.info/blog/pages/dds-dataset-collection.
html.
27 https://nvd.nist.gov/.
28 https://www.hackmageddon.com/category/security/cyber-attacks-
statistics/.
29 https://privacyrights.org/data-breaches.
30 https://github.com/alan-turing-institute/dynamic_cyber_risk/.
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The Open Science Framework31 (OSF) hosts a data set
of weekly counts of cyber reports. The data set also includes
the average lengths of reports from each week, but according
to Bakdash et al. [13], this information does not contribute to
fitting time-series models. The original reports have been
manually verified at a large Computer Security Service
Provider for the U.S. Department of Defense. The authors
point out that their data set is of high value since it is unlikely
to contain false positives, however, also state that they are
unable to provide the original data containing more fine-
granular information on the reports due to security reasons.

7.2 Data pre-processing

The data sets discussed in the previous section come
in highly different formats, ranging from highly structured
numeric data that is straightforward to represent as time-
series to unstructured eventmessages or semi-structured alert
objects that require pre-processing to derive data that is suit-
able for time-series analysis. Figure4 depicts sample data
for these two extremes. The sample in the top of the fig-
ure shows simplified log events from the HDFS data set,
which comprise a timestamp (note that 081109 203518 is the
encoded timestamp for 2008-11-0920:35:18) and anunstruc-
tured event message that corresponds to a certain type of
event, e.g., all lines starting with “Receiving block” could
belong to the same event type. Parsing the events this way
yields sequences, i.e., discrete data points that are temporally
and chronologically ordered. At this point, authors generally
apply analysis techniques that neglect the exact timestamp
and only consider the sequential information conveyed by
the event occurrences, such as LSTMs.

An alternative to that strategy is to run time-windows on
the parsed event data and to count the number of occurrences
for each event type, resulting in a a sequence of so-called
event count vectors. Thereby, time-windows can either be
moved in fixed time intervals where the step size is the same
length as the time-window itself, or in smaller step sizes to
achieve a sliding window effect, whichmeans that events can
be part of multiple time-windows [46]. Either way, this pre-
processing strategy yields regular time-series where the step
size determines the granularity of data observations, making
it straightforward to analyze the time-series with most tech-
niques, such as statistical approaches. Based on our review,
counting is the preferred method to handle all sorts of dis-
crete data, such as alert data sets that involve categorical alert
types as well as other discrete features.

When it comes to sensor readings from cyber-physical
application areas, data sets often already contain numeric
features that form time-series without any need for pre-
processing. For example, the sample in the bottom of Fig. 4 is
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taken from the SKAB data set, which contains a timestamp
and several numeric features that yield multi-variate time-
series. Note that in this case, the time-series may possibly
irregular when measurements are taken in varying intervals
or missing, for example, the sample from the SKAB data set
lacks the timestamp 2020-02-08 13:30:50. One way to over-
come this issue is to apply run time-windows on the data,
which is analogous to event counting except that aggrega-
tion techniques suitable for numeric data are applied. For
example, Kohlrausch et al. [61] suggest averaging of numer-
ical values in time-windows and Li et al. [70] down-sample a
data set containing an observation for each second by taking
the median of the features in 10s intervals. Especially for
long-term data sets such as observations of cyber incidents
or vulnerability occurrences, events may appear in irregular
intervals and include lengthy time spans that lack any events.
These sparse time-series are often difficult to process even
with time-window aggregation strategies (cf. Sect. 5.9.2).

The types of features that are most commonly processed
by the approaches proposed in the reviewed literature are
linked to the application domain. This is reflected in Fig. 5,
which shows the relative frequencies of the various types of
features that are considered in each of our identified applica-
tion domains. As visible in the plot, detective approaches
for ICS, VANET, and network intrusions, mostly rely on
numeric, binary, categorical, and discrete features that are
directly extracted from the analyzed events. On the other
hand, host-based intrusion detection as well as failure detec-
tion are generally applied with unstructured data and thus
more often used with event counts. Analytical approaches
that process alert, incident, or intelligence data aremost often
applied to predict the frequencies of these instances in the
future and thus also mostly rely on count data.

Several of these pre-processing strategies are sometimes
also used in combination. Meng et al. [81] uses event counts
but additionally relies on sequential information of event
occurrences for anomaly detection. Other pre-processing
strategies that are sometimes applied on the data sets include
one-hot encoding to transform categorical features into
binary ones [7], normalization of continuous features [7, 38],
correction of delayed timestamps [33], dimension reduction
[44, 70], removal of outliers [136], and noise reduction [80].

7.3 Evaluationmetrics

This section outlines common evaluation metrics used in
scientific evaluations. We differentiate between metrics to
evaluate the performance of anomaly detection approaches
and the prediction performance in analytical approaches.
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Fig. 4 Overview of common pre-processing strategies to derive time-series from discrete or continuous input data

7.3.1 Detective approaches

The evaluation of anomaly detection techniques usually
focuses on their ability to correctly recognize expected
changes of time-series while at the same time maintaining
a low false alarm rate. Accordingly, authors count the true
positives (TP) as correctly detected anomalous instances,
false positives (FP) as incorrectly detected non-anomalous
instances, true negatives (TN) as correctly undetected non-
anomalous instances, and false negatives (FN) as incorrectly
undetected anomalous instances.

Based on these counts, it is then common to compute pre-
cision (cf. Eq. 28), recall (cf. Eq. 29), false positive rate (cf.
Eq. 30), and false negative rate (cf. Eq. 31). The F1-score (cf.
Eq. 32) is a combined metric that considers both precision
and recall and accuracy (cf. Eq. 33) as well as classification
error (cf. Eq. 34) combine all counts. Since anomaly detec-
tion is usually conducted on highly imbalanced data where
the normal instances outnumber the anomalous ones, some
authors suggest to use Matthews correlation coefficient (cf.
Eq. 35) that is more robust against this bias than aforemen-
tioned metrics [21].

P = T P

T P + FP
(28)

R = T P

T P + FN
(29)

FPR = FP

FP + T N
(30)

Fig. 5 Relative frequencies of processed data features in application
domains

FN R = FN

FN + T P
(31)

F1 = 2 · P · R
P + R

(32)

ACC = T P + T N

T P + T N + FP + FN
(33)

CE = FP + FN

T P + T N + FP + FN
(34)
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MCC

= T P · T N − FP · FN√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

(35)

Hwang et al. [53] state that when dealing with time-series
data, it is necessary to consider both how many different
attacks a detector is able to recognize in addition to how well
each of these attacks are detected. They therefore suggest two
new metrics, time-series aware recall (TaR) that combines
the fraction of detected anomalies among all anomalies and
the average ratio of detected parts in each anomaly, and time-
series aware precision (TaP) that combines the fraction of
correct predictions and the average ratio of the correct part at
each prediction.We refer to their publication for more details
on these metrics.

When detecting anomalies in aggregated data using tech-
niques from time-series analysis, there is sometimes a certain
delay until a change of the baseline is reported. Hong et al.
[49] therefore define a timewindow that starts after the attack
time in which detections are expected. In addition, they use
another time window to aggregate multiple alerts that occur
close together. In general, the time-to-detect is another rele-
vant metric for evaluating anomaly detection systems [80].
Other than that, also the time it takes to train and run a model
is a metric worth investigating [21].

7.3.2 Analytical approaches

Several metrics that evaluate the quality of time-series fore-
casts have been proposed in the past [55]. These are suitable
to evaluate prediction approaches that aim to forecast the
number of vulnerabilities or alerts occurring in a given time
interval. Using the predicted value ŷt and the actual value
yt of any such time-series of length N at time t , the most
widely used error metrics in the reviewed literature are the
mean absolute error (cf. Eq. 36), root mean square error (cf.
Eq. 37), mean absolute percentage error (cf. Eq. 38), and
symmetric mean absolute percentage error (cf. Eq. 39) [13,
86, 96, 100, 132, 141].

MAE = 1

N

N∑

t

∣∣yt − ŷt
∣∣ (36)

RMSE =
√√√√ 1

N

N∑

t

(
yt − ŷt

)2 (37)

MAPE = 1

N

N∑

t

∣∣∣∣
yt − ŷt

yt

∣∣∣∣ (38)

SMAPE = 2

N

N∑

t

∣∣∣∣
yt − ŷt
yt + ŷt

∣∣∣∣ (39)

As pointed out by some authors, MAE and RMSE are
better choices than other metrics when it comes to handling
outliers [58] and zero-inflated time-series [135], i.e., time-
series where many values are 0, which is frequently the case
in security data. A more complex metric that considers mul-
tiple periods is the mean absolute scaled error (MASE) [50].

Zängerle et al. [138] point out that standard metrics such
as the ones mentioned before are not applicable for proba-
bilistic prediction. They therefore suggest to use the ranked
probability score, which is defined as the sum of squared dif-
ferences between the cumulative forecast probabilities and
the observations.

7.4 Reproducibility

In course of reviewing the publications included in this study,
we checked whether authors make use of publicly available
data sets and ensure access to artifacts such as source code
in order to facilitate reproducibility of their work and allow
others to validate and extend their approaches or use them
for benchmarking. Unfortunately, we found that hardly any
publications provide replication packages or links to external
resources such as online repositorieswith instructions onhow
to reproduce the reported results [50]. In addition, more than
30% of the reviewed publications do not use at least one
publicly available data set for their evaluations, meaning that
even though the approach could be reimplemented based on
the descriptions in the papers, it remains infeasible to validate
and assess the presented results.

There are somenotable exceptions to this trend, such as the
work by Dzhamtyrova et al. [32], who provide both scripts
and data that were used for their study. Bakdash et al. [13]
state that they cannot publish the raw data for confidentiality
reasons, but they do provide a modified version of their data
set as well as the source code for partial reproduction of their
results.

8 Discussion

In this section we answer our research questions based on
the insights from our literature review and state recommen-
dations for future work.

8.1 Answers to research questions

This section answers our research questions RQ1–RQ3.

8.1.1 RQ1: Which domains of cyber security analytics
involve time-series analysis?

We discovered through our broad review of scientific lit-
erature dealing with time-series analysis in cyber security
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contexts that there are several relevant application domains,
each with their own techniques, goals, and requirements.
Table 6 summarizes our findings. We noticed that it is pos-
sible to place application domains on a spectrum where fast
and automated approaches for the immediate detection of
attacks on local data sources are on one end while manually
designed long-term forecasts of the overall threat landscape
for strategic planning are on the other end.

Detective approaches may be further categorized based
on the location where they are deployed, such as hosts, net-
works, cyber-physical systems, or vehicles. Failure detection
that goes beyond the detection of cyber attacks and aims to
recognize any anomalous behavior usually analyzes software
applications. All of these approaches have in common that
time-series analysis techniques are applied for the purpose
of anomaly detection, where time-seriesmodels representing
the previously observed normal behavior are used to check
the currently observed system activities using a short time
horizon of only seconds to minutes, which aligns with the
need to discover attacks and adjust to changes of normal
behavior patterns as quickly as possible.

The approaches on the other end of the spectrum do not
assume that there are anomalies in the data; instead, they
aim to fit a time-series model as closely as possible to time-
series that stretch over many months or years. Two main
domains are apparent. First, analysis of vulnerabilities that
is concerned with the the emergence of potential weaknesses
in software applications. Second, cyber situational awareness
that considers attack cases and aims to assess and predict their
frequencies, damage, and associated risks. In either case, the
predicted time horizon is usually in the range of months of
even years.

In between the two ends of the spectrum are approaches
that analyze alert data, i.e., the output of intrusion detec-
tion systems. We differentiate between two domains. The
first domain involves approaches that deal with the detection
of unusual alerts that are of potential interest to operators.
Similar to the detection of anomalies in raw event data, this
requires efficient algorithms that usually analyze streams of
alert data with a time horizon of some minutes to multiple
hours. Rather than identifying anomalies, the second domain
is only concerned about the prediction of the number of alerts
in the future, which usually involves much longer time hori-
zons of several hours to multiple weeks.

8.1.2 RQ2: What are suitable sources of security-relevant
data for time-series analysis?

Table 6 provides an overview of common data sources for
each application domain. Detection of failures and host-
based intrusions both operate on log data that is generated
by or on systems, such as operating system logs, audit logs,
syslog, application logs, etc. These are usually unstructured

event messages that require parsing or some kind of deriva-
tion of event types in order to obtain data in amore structured
format. While it is possible to consider the resulting data
as chronologically ordered sequences, most approaches then
apply time-window based counting in order to derive reg-
ular time-series. Thereby, each event type may be regarded
as a feature and the obtained time-series is thus suitable for
multivariate analyses. Less commonly, numeric values from
single events, such as message sizes, or across events, such
as event inter-arrival times, are used to derive time-series.

Similarly, alert data contains discrete features such as alert
types, IP addresses, host names, etc. Sequential patterns of
alert occurrences are usually not considered in approaches
that focus on the application of methods from time-series
analysis. Instead, the creation of count vectors is the default
method to derive time-series from data sources such as alert
sharing platforms or collected IDS output.

Network traffic, sensor readings from ICS and cyber-
physical systems, and messages sent by vehicles involve
structured numeric features that naturally form time-series.
However, binary or categorical features such as status codes
as well as missing data may still require pre-processing in
order to apply methods from time-series analysis that require
complete and numerical data.

While data from aforementioned sources are usually col-
lected once from a controlled environment to obtain an
evaluation data set, databases of vulnerability and incident
reports comprise entries from real threats with global rel-
evance. Again, count vectors are the most popular way to
derive time-series from these data sources. However, also
additional information such as breach sizes or financial
impact are suitable inputs for analysis.

8.1.3 RQ3: What constraints and challenges do data and
use-cases impose on the application of time-series
analysis and how are they overcome by approaches?

There are several challenges that arise from the application
of time-series analysis in cyber security domains. In par-
ticular, the nature of the data used to generate time-series
appears to make application of common techniques from
time-series analysis non-trivial, often requiring analysts to
explicitly model certain aspects to achieve adequate fitting
and prediction accuracy. Our review shows that there is no
clear tendency towards certain analysis techniques for any
of the identified application areas; on the contrary, statistical
approaches, neural networks, as well as approaches based on
conventional machine learning and state-based methods are
all used across various domains and data sources. In the fol-
lowing, we summarize the challenges that are encountered
by authors in the reviewed publications and propose solu-
tions. We point out that the mentioned solutions are mere
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Table 6 Overview of cyber security application domains using time-series analysis techniques

Domain Method Time horizon Data sources

Failure detection Anomaly detection Seconds-Minutes System and application logs

Host-based intrusion detection Anomaly detection Seconds-Minutes System and application logs

Network-based intrusion detection Anomaly detection Seconds-Minutes Network traffic and packet captures

ICS intrusion detection Anomaly detection Seconds-Minutes Cyber-physical sensor readings and
actuator statuses

VANET detection Anomaly detection Seconds-Minutes Vehicle sensor readings and com-
munication data

Alert filtering and prioritization Anomaly detection Minutes-Hours IDS alerts and system metrics

Alert forecasting and trends Prediction Hours-Weeks Alert sharing platforms

Cyber situational awareness Prediction Hours-Years Incident reports and open-source
intelligence

Vulnerability analysis Prediction Months-Years Vulnerability databases

suggestions derived from the reviewed literature and cannot
be regarded as definitive or exhaustive.

– Data types. Challenge: Collected data sets do not only
comprise continuous features, but often involve categor-
ical or discrete features that correspond to event types,
status codes, etc. In addition, data points often correspond
to event occurrences with irregular-spaced time intervals
andmay also involve simultaneous occurrences.Unfortu-
nately, many common time-series methods are designed
to operate only on time-series with numerical features
measured in regular intervals, and are thus unable to han-
dle security data sets [137]. Solution: As discussed in
Sect. 7.2, categorical values are transformed into contin-
uous time-series by measuring their occurrence counts in
time windows [46]. When these windows are moved in
regular intervals, this strategy also resolves the issue of
dealing with events occurring in irregular time intervals
as the resulting time-series is evenly spaced.

– Time window sizes. Challenge: The aforementioned
strategy for the generation of count vectors introduces an
additional parameter—the length of the time window—
which is critical for prediction and detection accuracy,
but often difficult to determine [89, 128]. Specifically, the
window should be short enough to capture fine-granular
patterns and enable timely detection, but large enough
to avoid the generation of spars time-series with many
gaps [61]. Solution: Most authors address this problem
by evaluating with multiple time windows and compar-
ing the results in terms of detection or prediction accuracy
[80, 108, 128]. Alternatively, it is possible to usemultiple
window sizes that are applied in parallel and processed
by the model simultaneously [60].

– Zero-inflated time-series.Challenge:Zero-inflated time-
series, sometimes also referred to as sparse time-series,
have an overabundance of zeros and exhibit high volatil-

ity when values occur. They are common in security
data and may be generated when time window sizes
used for event counting are large enough so that no
events occur within that interval [50, 56]. Many models
are not designed to process such time-series, for exam-
ple, ARIMA models rely on a Gaussian noise process,
which is commonly violated by zero-inflated time-series
[61]. Some evaluation metrics are also undefined in case
that no observations occur within a time window [135].
Solution: Use models that are known to adequately han-
dle zero-inflated time-series, such as Croston’s method
(cf. Sect. 6.1.6), neural networks (cf. Sect. 6.3) [135],
GARCHmodels [97], or extensions towell-knownmeth-
ods such as autoregressive models [82]. For evaluation,
rely on metrics that are well-defined for empty time win-
dows, such as the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE) (cf. Sect. 7.3.2).

– Imbalanceddata sets.Challenge:Event occurrences are
often highly imbalanced, meaning that some event types
occur more frequently than others. Similarly, the number
of anomalous data instances is usually far smaller than
the set of normal or benign instances in the data sets
[142]. Solution: Specifically during evaluation, it is vital
tomake use ofmetrics that are known to be robust against
imbalanced classes and suitable for evaluation of tasks
such as anomaly detection (cf. Sect. 7.3.1). In addition,
resampling of the data set is a common way in machine
learning tasks to obtain more balanced data sets [35], and
some resampling strategies that have been specifically
designed for time-series data could be useful for security
data [83].

– Multiple features. Challenge: Multivariate data sets
often involvemore than one featurewith inter-correlation
between channels [60] or non-linear relationships [70].
While it is always possible to resort to univariate analysis
that considers each feature separately [16], incorporat-
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ing these dependencies could be important for prediction
and detection accuracy and should thus not be ignored
[9]. Solution: Resort to time-series analysis techniques
that support multivariate data, such as Recurrent Neural
Networks (RNN; cf. Sect. 6.3.2) or Generative Adver-
sarial Networks (GAN; cf. Sect. 6.3.3). Other suitable
techniques suggested by state-of-the-art surveys include
Variational AutoEncoders, Hidden Markov Models, or
similarity-based models [16].

– Seasonality. Challenge: Event occurrences are often
linked to scheduled or human activities that have period-
ically recurring behavior [60]. In fact, data may involve
multi-seasonality, i.e., periodic behavior with several
interval times that act simultaneously on the data such
as monthly and yearly patterns [133]. Moreover, dif-
ferent channels or event types may also be affected
by different seasonality in the same data set [142] and
correlations within the data may involve short-term to
long-term dependencies [132]. Solution: Utilization of
models that integrate seasonality or explicitlymodel peri-
odic patterns (cf. Sect. 6.1.5), such as Triple Exponential
Smoothing (TES) (cf. Sect. 6.1.1) or neural networks
(cf. Sects. 6.3.2 and 6.3.3). Other techniques for model-
ing of seasonal patterns that we did not encounter in the
reviewed literature include seasonal ARIMA (SARIMA)
models [28], the Prophet forecasting model that inte-
grates multi-seasonality through Fourier analysis [118],
as well as decompositions of time-series with additive or
multiplicative seasonality components [28].

– Bias. Challenge: Delays between occurrences of events,
such as cyber incidents, and their appearance in data sets,
such as attack reports, introduce a bias that may deterio-
rate prediction or detection performance. Solution: This
situation can be alleviated by estimating the delay based
on past examples and incorporating it in the model [33].

– Data contamination.Challenge:The generation of real-
world data can hardly be controlled. Accordingly, the
collected data is often affected by contamination, i.e.,
anomalous patterns that randomly occur in data that is
supposed to comprise only normal or benign behavior.
Training machine learning models with such data may
deteriorate the prediction or detection performance. Solu-
tion: Neural networks have been used to counteract the
influence of contamination in the data [60, 133]. More-
over, signal processing provides several techniques for
noise removal in time-series, includingfilters andwavelet
thresholding [34].

– Missing data. Challenge: Data sets may be incomplete
when errors occur during the collection process or sen-
sors fail to produce or transfermeasured values. Solution:
As discussed in Sect. 6.3.3, GANs have been shown to
be able to reconstruct data from the remaining data set
[137]. Several other techniques to handle missing data

have been investigated in literature, including Kalman
Filters, expectation-maximization, dynamic time warp-
ing, SARIMA, RNNs, and many more [4].

– Lackof labeleddata.Challenge:Supervised approaches
require labeleddata for training. Semi-supervised approaches
only require anomaly-free data for training, but labeled
data is still necessary to evaluate semi-supervised or
unsupervised approaches [70, 133]. Solution: Some
authors consider pseudo labeling, i.e., labeling using a
machine learning model, to obtain labeled data for their
evaluation [10, 80].

– Explainability of results. Challenge: Some machine
learning models suffer from low explainability, meaning
that it is non-trivial or even infeasible to comprehend the
factors that influence the results of predictions or detec-
tions [49]. Unfortunately, poor explainability of models
or results may lead to reluctance of using or relying on
the methods [50]. Solution: Explainability is an actively
researched field in machine learning; recently, some
methods to improve explainability even for complex clas-
sifiers such as neural networks have been proposed [14,
75].

– Diverse anomaly types. Challenge: Anomalies in time-
seriesmay takemany forms [49]. For example, anomalies
could be single data points that are outliers such as bursts
[44], changes of periodically occurring behavior, collec-
tions of data points that are only considered anomalous as
groups but not individually [104], changes of long-term
trends [67], as well as changes in sequential patterns of
event types [81]. Solution:Some detection techniques are
designed for generic types of anomalies, such as neural
networks that recognize all sorts of unusual patterns (cf.
Sect. 6.3). Alternatively, reported anomalies of several
detection methods, each focusing on a specific type of
anomaly, may be combined.

– Scalable and automatic algorithms. Challenge: Ana-
lyzed data sets are way too large and versatile to be
analyzed manually and require solutions that operate in
an automatic manner. Moreover, data should be moni-
tored continuously as real-world applications are often
expected to run indefinitely and enable real-time detec-
tion [44, 60, 67, 80, 86, 133]. Solution: Ensure that
developed algorithms are efficient in processing data
points and support online analysis, i.e., processing only
takes a single pass over the data such as incremental algo-
rithms [16].

8.2 Future directions

The challenges of applying time-series in security applica-
tions stated in our answer to RQ3 are only partially resolved
by the solutions proposed in the reviewed literature and thus
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leave several research opportunities for future work. For
example, running time-windows over the data to generate
event counts is difficult when groups of related events and
seasonal patterns have high variances in terms of duration,
because relevant time intervals could either only make up a
small fraction of the entire-time window or be split in chunks
by the edges of time-windows. Rather than only relying on
count data, authors could thus consider additional methods
to identify anomalies, in particular, using techniques from
change point detection [6, 121].

Another interesting analysis method that is capable of
processing event data that occurs in irregular intervals is
Bayesian Binning [103], which aims to find optimal seg-
mentation of the time-series with respect to local variability.
Advantages of this method include the fact that it does not
rely on predefined time window sizes and its robustness to
noise, e.g., normal background behavior that makes it diffi-
cult to identify anomalies.

During our review, we noticed that approaches using neu-
ral networks suffer from low explainability in comparison to
conventional methods.Whilemodels such as ARIMA enable
to compute prediction intervals based on simple statistical
measures, the output of an LSTM RNN is not as trivial to
understand given some complex input values. It could there-
fore be beneficial if authors that apply neural networks on
time-series also employ methods for Explainable Artificial
Intelligence (XAI) that have been specifically developed for
that kind of data [99]. Other challenges are also not suffi-
ciently addressed by the current state-of-the-art. In particular,
we suggest to search for time-series models applied in other
research fields that could resolve prevalent issues with prop-
erties of security time-series, such as patterns corresponding
to multiple seasonal periods, data sets that contain missing
events, or the influence of noise on the capabilities of models
to fit relevant data patterns.

Our review of common data sets in Sect. 7.1 shows that
there exist multiple publicly available data sets from various
security domains that are suitable for time-series analysis.
Data sets that are used to evaluate anomaly-based approaches
usually contain traces of several attack cases, which are sub-
ject of detection. To the best of our knowledge, there is no
structured overview that analyses the various manifestations
of different types of attacks in the monitored data. Accord-
ingly, it is difficult to estimate which attacks are the most
relevant when it comes to detection with time-series models,
such as attacks that produce highnumbers of events that could
be recognized through event counts or attacks that affect
numeric event parameters that are suitable to extract time-
series. We therefore propose to create such an overview of
attack manifestations that considers diverse attack strategies
and log sources to better understand what types of detection
strategies can be effectively deployed against certain types
of attacks.

Recently, researchers have started to investigate adversar-
ial attacks against various types of machine learning models
for time-series analysis. Thereby, time-series are modified
with small perturbations to influence the classification or
detection output of a model [36, 59, 98]. In general, more
complex models such as deep neural networks are consid-
ered to bemore susceptible to adversarial attacks thanmodels
based on conventional machine learning or statistics [88].
Given the rising trend of employing neural network mod-
els in time series analysis in combination with the growing
complexity of model architectures, adversarial attacks pose
an increasingly significant threat. Some defense strategies
include training on adversarial samples that are included in
the training set [78], randomization of training samples that
is achieved by adding noise [25], and projecting the input to
the neural network on a lower dimensional vector to filter out
the noise added during the generation of adversarial samples
[57]. In addition to further research on the generation and
mitigation of adversarial samples, we consider it interesting
to investigate how perturbations of time-series can take place
in data sets comprising security event data in real-world set-
tings, e.g., through the injection of certain event types.

9 Conclusion

Time-series analysis provides a versatile set of techniques,
including statistical methods, neural networks, conventional
machine learning, and state-based models, which are highly
useful for many applications across diverse cyber security
domains. In course of the literature review presented in this
paper, we identified the following relevant security applica-
tion areas and suitable data sources: (i) failure detection in
system log data, (ii) host-based intrusion detection in system
log data, (iii) network-based intrusion detection in network
traffic, (iv) ICS intrusion detection in cyber-physical data,
(v) VANET detection in vehicle sensor data, (vi) alert fil-
tering and prioritization in IDS alert data sets, (vii) alert
forecasting and trends in shared alert databases, (viii) cyber
situational awareness on incident data sets, and (ix) analysis
of software vulnerabilities. Our review suggests that most
scientific approaches leveraging TSA fall in one of two cat-
egories: detective approaches that aim to automatically and
timely disclose anomalies in event or alert data and predictive
approaches that rely onmanual modeling of long-term trends
to forecast future occurrences of alerts, attacks, or vulnera-
bilities. Several properties of security data sets emerged from
our review as challenges for time-series analysis, includ-
ing mixtures of numerical and categorical features, sparse
time-series with high volatility, high-dimensional data, and
seasonality. Our analysis suggests that it is vital that analysts
consider these issues, for example, by applying models that
are particularly designed to adequately handle certain data
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properties or transforming discrete data into numeric count
vectors. For future research,we recommend to analyzewhich
attack types are the most relevant ones for anomaly detection
with time-series models, work on new pre-processing strate-
gies that do not rely on time-windows but are more generally
applicable, and propose methods that address specific prop-
erties of security time-series such as irregularity, sparsity,
multi-seasonality, noise, and incompleteness.
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