
Computational Social Network Management in Crowdsourcing Environments

Florian Skopik, Daniel Schall, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria

{skopik|schall|dustdar}@infosys.tuwien.ac.at

Abstract—Flexible interactions in complex social and service-
oriented collaboration systems increasingly demand for au-
tomated adaptation techniques to optimize partner discovery
and selection. Today, applications of complex service-oriented
systems can be found in crowdsourcing environments. In
such environments, collaborations are typically short-lived
and strongly influenced by incentives and actor behavior. As
actors prove their reliable and dependable behavior in jointly
performed activities, they become increasingly considered as
invaluable partners. A social network builds a strong basis to
enable successful collaborations between crowd members. In
order to keep track of the dynamics in such systems, it is
inevitable to apply an autonomous approach to manage social
network structures automatically using captured interaction
data. Thus, we introduce an adaptation concept that accounts
for emerging social relations based on varying interaction be-
havior of collaboration partners. We describe the foundational
concepts for dynamic social link management in Web-based
collaborations. We highlight major concerns of computational
models in highly dynamic networks and deal with temporal
aspects such as supporting the emergence of relations, efficient
update mechanisms, and aging of relations.

Keywords-computational social network management; emer-
gence of social relations; service-oriented crowdsourcing

I. INTRODUCTION

Over the past years, the Web has transformed from a

pool of statically linked information to a people-centric Web.

Various Web-based tools and services have become available

enabling people to communicate, coordinate, and collaborate

in a distributed manner. Crowdsourcing has emerged as an

important paradigm in human problem solving techniques

on the Web. More often than not, programs outsource tasks

to humans which are difficult to implement in software.

Applications range from enterprise environments [1] to open

Internet based platforms such as Amazon Mechanical Turk

(MTurk1). These online platforms distribute problem-solving

tasks among a group of humans. Crowdsourcing follows the

‘open world’ assumption allowing humans to provide their

capabilities to the platform by registering themselves as ser-

vices. Some of the major challenges are monitoring of crowd

capabilities, detection of missing capabilities, strategies to

gather those capabilities, and tasks’ status tracking [2].

Service-oriented architecture [3] (SOA) enables the design

of applications that are composed from the capabilities of

1MTurk: http://www.mturk.com/

distributed services that are discovered at runtime. Unlike

traditional SOA-based approaches, we consider complex

service-oriented systems that are established upon the ca-

pabilities of human and software services [4]. The inte-

gration of human capabilities in a service-oriented manner

is motivated by the difficulties to adopt human expertise

into software implementations. Instead of dispensing with

human capabilities, people handle tasks behind traditional

service interfaces. In contrast to process-centric flows (top-

down compositions), we advocate flexible compositions

wherein services can be added at any time exhibiting new

behavior properties. Hence, our service-oriented approach

to the design and implementation of flexible collaboration

networks enables the realization of versatile application

scenarios. However, especially the involvement of and de-

pendencies on humans as a part of flexible compositions

has a major impact on all aspects of the system since

dynamics and evolution are driven by software services and

human behavior [5]. We propose an interaction mining and

self-adaptation approach of service-oriented collaboration

networks. In crowdsourcing environments, where people and

services dynamically interact to perform activities, reliable

and dependable behavior promotes the emergence of social

relations and trust [6]. We argue that relations from a social

perspective can neither be reliably identified in advance

nor defined statically. They rather emerge dynamically upon

interaction behavior of humans and services, and evolve over

time. Sophisticated social network management models need

to account for these properties to reflect real situations as

close as possible. Moreover, in highly flexible environments,

interaction behavior may alter quickly and, therefore, the un-

derlying model has to be updated in sufficiently short cycles.

However, in large-scale networks with potentially thousands

of participants, updating relations in short intervals is not

feasible due to limitations of computational power. Hence,

relations have to be updated and altered selectively.

Here, we mainly address two issues of computational

social network models resulting from interaction flexibility:

• Efficiency in terms of performance is realized by care-

fully selecting the most critical relations in a network

to be refreshed in adaptive update cycles. Scheduling of

updates fundamentally depends on the actors’ interac-

tion behavior, and the community’s utility of frequent

updates.

• Effectiveness in terms of functionality deals with the

application of algorithms to let a model reflect the

dynamically changing environment as close as possible.

Our approach accounts for the different lifecycle phases

of relations: emergence-, update-, and aging phase.

The remainder of the paper is organized as follows.

Section II covers important related work. Section III shows a

motivating scenario and deals with previous work that builds

the basis for our approach. In Section IV we discuss novel

concepts to cope with behavior dynamics and its temporal

properties regarding emergence, update and aging of social

relations. Then, we evaluate the applicability of the proposed

model in Section V. Finally, Section VI concludes the paper

and gives an outlook of our future work.

II. BACKGROUND AND RELATED WORK

Adaptation of system behavior is introduced by estab-

lishing a cycle that feeds back environmental conditions.

The MAPE cycle [7] is considered as one of the core

mechanism to achieve adaptability through self-* proper-

ties. While autonomic computing allows for autonomous

elements and applies these principles to distributed systems,

current research efforts left the human element outside the

loop. Based on the observed context of the environment,

different adaptation strategies can be applied [8] to guide

interactions between actors and actions to prevent inefficient

use of resources and disruptions. Studies on distributed

teams focus on human performance and interactions [9], [10]

as well as Enterprise 2.0 environments [11]. Socio-technical

(mixed) service-oriented systems target flexible interactions

and compositions of Human-Provided and Software-Based

Services [4]. This approach is aligned with the vision of

the Web 2.0, where people can actively contribute services

[12]. Crowdsourcing is an important paradigm in distributed

problem solving involving human actors in the Web. Some

of the major challenges have been discussed in [2].

Trust in service-oriented systems has become a very

important research area. SOA-based infrastructures are typ-

ically distributed comprising a large number of available

services and huge amounts of interaction logs. Therefore,

trust in SOA has to be managed in an automatic manner

[13]. Depending on the environment, trust may rely on the

outcome of previous interactions [14] and interest similarity

[15], [16]. In our approach, metrics express social behavior

influenced by the context in which collaborations take place

[6]. For instance, reciprocity [14] is a concept describing

that humans tend to establish a balance between provided

support and obtained benefit from collaboration partners.

Many of today’s social networks are declared by people

manually in static lists. This work proposes the automated

management of social relations based on interaction moni-

toring. Aging models for the WWW [17] describe common

characteristic change rates of Web pages. Similar principles

have been applied in social network analysis to update

user profiles. For example, sliding window filters have

been studied [18] to construct network approximations from

interactions. Interaction behavior, interest similarities and

joint group memberships, social relations, such as trust,

can be predicted to some extent automatically [16], [19].

Here, we study the emergence of social relations not only

from a trust perspective, but consider a multitude of social

interaction metrics and behavioral styles.

III. SERVICE-ORIENTATION IN CROWDS

We motivate our work with a concrete scenario and outline

fundamental principles that have been discussed in earlier

work, building the basis for this paper.

A. Scenario

Let us consider a mixed service-oriented crowdsourcing

environment to introduce our concepts. The environment

consists of professionals and experts who interact and

collaborate by the means of information and communica-

tion technologies to perform work. The actors, i.e., the

community network members, that are both humans and

software services (i.e., autonomous agents), provide help

and support on requests of each other. In such a mixed

service-oriented environment actors have to register at a

central community management service to become part of

the network. Humans can register themselves by provid-

ing their profiles, including their education, employment

status, certified skills and project experience. Services can

be registered by their vendors or third party persons that

offer information about service features and capabilities.

In the described environment, network members perform

activities. Activities are a concept to structure information

in ad-hoc collaboration environments, including the goal of

the ongoing tasks, involved actors, and utilized resources.

They are either assigned from outside the community, e.g.

belonging to a higher-level process, or emerge by iden-

tifying collaboration opportunities. Such opportunities are

for instance writing a scientific paper because of having

the required skills, and knowing and trusting the right

trusted

selection

trusted

interactions

WS
DL

WS
DL

a 1

trusted

compositionCrowd

Community

Symbols:

human

software service

activity

interaction
context

interaction

trust relation

trust scope

WS

DL

aa 2

h1

h2

h3

h4

s

h

s1

s2

Figure 1. Mixed service-oriented crowdsourcing (color online).

supporting actors in a community (i.e., humans with the

required knowledge, services that provide scientific data).

In the scenario depicted by Figure 1, the two humans h1

and h2 are the owners of activities a1 and a2 respectively.

We assume activity a1 is a software implementation activity

and a2 is a software testing activity in some higher-level

software development process (not depicted here). The hu-

man h1, requests support from the Web service s1, that is

a software implementation knowledge base, providing code

examples and FAQs2 about software implementation. The

dashed arrows represent interactions (requests for support

(RFSs)), such as retrieving articles from the knowledge base.

Interactions are performed by traditional SOAP calls. Even

the capabilities of humans are described by WSDL and com-

munication takes place with SOAP messages (see Human-

Provided Services [4]). The interaction context, described by

activity a1 (reflected by the blue-shaded area), holds infor-

mation about involved actors, goal of the activity, temporal

constraints (start, duration, milestones), assigned resources,

planned costs, risk with respect to the whole software

development process and so on. The detailed description is

out of scope of this paper, however, we conclude, that an

activity holistically describes the context of an interaction in

our environment model.

Human h2, the owner of activity a2, performs his/her

activity (software testing) jointly with the help of h1 and s1.

For that purpose, s/he interacts with all activity participants,

such as requesting help and assigning sub-activities. Trust

emerges from interactions and is bound to a particular

scope. Therefore, we aggregate interactions that occurred

in a pre-defined scope, calculate metrics (numeric values

describing prior interaction behavior), and interpret them to

establish trust. The scope of trust is reflected by the green

dashed ellipse in Figure 1. In the given scenario, the scope

comprises trust relations between crowd members regarding

help and support in ‘software development’. So, regardless

of whether interactions took place in context of activity a1 or

a2, interactions of both contexts are aggregated to calculate

metrics, because both interaction contexts adhere to the

scope of software development. Finally, interaction metrics

are interpreted using rules, and the degree of trust between

each pair of previously interacting members is determined.

B. Fundamental Principles

We extensively studied flexible interactions [4], metrics

[6], [20], and monitoring [5] of service-oriented collabo-

ration environments in our previous work. We overview

the main principles that are the basis for the proposed

adaptive social network management model. We previously

investigated models and techniques to cover:

• Context-aware Interaction Models. Usually, interac-

tions on the Web are easily observable. In particular,

2frequently asked questions

service-oriented systems allow for context-aware log-

ging of SOAP-based interactions.

• Mining of Interaction Metrics from SOAP Logs. Metrics

describe the interaction and collaboration behavior of

users (e.g., in terms of reliability, openness, contribut-

ing behavior) and can be determined through advanced

log analysis.

• Inference and Interpretation of basic Social Relations.

Rule engines and fuzzy inference approaches allow for

a situation-based interpretation of interaction metrics.

• Interaction Patterns spanning numerous Actors. Inter-

action patterns support the emergence of social relations

by introducing (i.e., connecting) previously unknown

actors; for example, by enabling delegations of requests

to third parties.

IV. COMPUTATIONAL LINK MODEL

Reliable social trust relations in dynamic (crowd) envi-

ronments typically cannot be statically defined, but evolve

over time. An efficient social trust management model must

frequently refresh its data to keep track of the real situation.

A. Challenges

We model the following fundamental lifecycle phases of

social trust relations to account for their dynamic nature and

temporal aspects: (i) Emergence deals with introducing new

relations upon ongoing interactions; (ii) Update deals with

refreshing existing relations based upon experiences made

in recent interactions; (iii) Aging deals with degrading and

deleting outdated relations.

Trust Emergence. Several concepts of link prediction

exist to introduce new relations between actors. Recent

research shows, that there is a strong dependency between

interest similarities and trust [15], [19], [20]. Furthermore,

there are approaches to recommend collaboration partners

due to required expertise and reliable working styles. How-

ever, there is no evidence that collaboration partners will

behave trustworthy according to predictions. Thus, in our

model social trust relations are only built upon personal ex-

periences from recent interactions and, hence, only if there is

a sufficient amount of interactions to reliably infer trust. We

enable the application of this concept through delegations,

where unconnected actors start interacting within triadic

closures [21] that support the emergence of trust relations.

Trust Update. Since the behavior of actors in a network

may change due to various reasons, e.g., shift of interests,

work overload, and search for new work opportunities, trust

relations will alter as well. Hence, frequent synchronization

with the real world is critical to computational trust models.

For that purpose, the behavior of actors is sampled (i.e.,

observed through monitoring) in subsequent intervals and

results are used to update the strength of social trust re-

lations. A major challenge is to determine the appropriate

sampling intervals (e.g., see also [22]). Figure 2 visualizes

two fundamental challenges of trust update mechanisms:

• Interaction Sparsity. In different scopes s1, s2 occur

varying types and amounts of interactions. Since a

larger amount of interactions is needed to detect trends

in an actor’s behavior (e.g., responsiveness, availabil-

ity), it is a challenging task to set the right size of

sampling intervals (ts). Intervals that are too short

prohibit reliably behavior analysis; however, if intervals

are too long, sudden changes of behavior cannot be

detected accordingly. The length of ts mainly depends

on the scope and the regular interaction behavior of

actors therein.

• Actor Uniformity. The uniformity describes the consis-

tency of an actor (i) towards the same partner over time;

(ii) towards different interaction partners. In Figure 2(b)

v behaves consistently trustworthy towards u, therefore,

the level of trust τ(u, v) remains high over several

sampling intervals. However, v alters dynamically his

behavior toward w, and hence, w’s trust in v changes

rapidly over time3. Intuitively, in the second case of

quickly changing behavior, smaller sampling intervals

are required to capture v’s behavior changes, while in

the first case, the sampling interval to refresh already

well-known constant behavior can be longer. Apart the

actors’ interaction behavior, external adaptation require-

ments may influence the determination of appropriate

sampling intervals; e.g., in the case of pre-defined upper

time limits to quickly react on sudden changes.

I (u,v)

I (u,v)

ts

ts
s1

s2

u v

Scope s1

Scope s2

discrete

ticks

discrete

ticks

s1

s2

(a) Interaction sparsity.

1

u

 (u,v)

 (w,v)

0

discrete

ticks

v

w

(b) Actor (non-)uniformity.

Figure 2. Challenges for interaction-based social relation update mecha-
nisms in dynamic environments.

Trust Aging. If the amount of interactions between

two actors falls below a certain threshold, or two actors

completely stop interacting, trust relations undergo an aging

process. Since in this phase no further evidence occurs for

reliably interaction behavior, relations are not updated any

longer. Therefore, trust relations (i.e., their strength) will

degrade to a neutral state and are finally removed from the

3Here, one could argue that oscillating interaction behavior is not
trustworthy at all. However, we apply an optimistic point of view and
appreciate recovery from unreliable behavior by increasing trust levels
accordingly.

graph G. Intuitively, well established and consolidated long-

term relations mature slower compared to fragile short-term

relations. Hence, strengthened long-term relationships are

able to bridge longer ‘interaction gaps’, while short-term

relations disappear faster.

B. On the Emergence of Trust

In contrast to a common security perspective, we define

(social) trust to rely on the interpretation of previous collabo-

ration behavior [23] and additionally consider the similarity

of dynamically adapting interests [15], [20]. Especially in

collaborative environments, where users are exposed to

higher risks than in common social network scenarios [24],

and where business is at stake, considering social trust is

essential to effectively guide interactions [25]. Hence, we

define trust as follows [14], [23], [26]:

Trust reflects the expectation one actor has about

another’s future behavior to perform given activ-

ities dependably, securely, and reliably based on

experiences collected from previous interactions.

Not only service interactions, but also human interactions

may rely on SOAP (e.g., see Human-Provided Services [4]

and BPEL4People [27]), which is the state-of-the-art tech-

nology in service-oriented environments, and well supported

by a wide variety of software frameworks. This fact enables

the adoption of various available monitoring and logging

tools to observe interactions in service-oriented systems.

Various metrics can be calculated from analyzing interaction

logs. These relation metrics describe the links between

actors by accounting for (i) recent interaction behavior,

(ii) profile similarities (e.g., interest or skill similarities),

(iii) social and/or hierarchical structures (e.g., role models).

However, we argue that social trust relations largely depend

on personal interactions.

We model a community of actors with their social rela-

tions as a directed graph, where the nodes denote network

members, and edges reflect (social) relations between them.

Since interaction behavior is usually not symmetric, actor

relations are represented by directed links.

An outline of our approach to automatic interaction-based

trust inference is depicted in Fig. 3. As motivated in the

introduced use case, people interact to perform their tasks.

This work is modeled as activities, that describe the type

WS

DL

A
2

A
1

(a) Interactions.

………
Relation Metrics:
- Behavior
- Interests
- Social Links

(b) Relation metrics.

WS

DL

Scope

(c) Scoped trust.

Figure 3. Trust emerging from interactions: (a) interaction patterns
shape the behavior of actors in context of activities; (b) (semi-) automatic
rewarding of behavior and calculation of interaction metrics; (c) trust
inference in scopes by interpretation of metrics.

and goal of work, temporal constraints, and used resources.

As interactions take place in context of activities (Fig.

3(a)), they can be categorized and weighted. Interaction

logs are used to infer metrics that describe the relation of

single actors (Fig. 3(b)), such as their behavior in terms of

availability and reciprocity.

We support the diversity of trust by enabling the flex-

ible aggregation of various interaction metrics that are

determined by observing ongoing collaborations. Finally,

available relation metrics are weighted, interpreted, and

composed by a rule engine [6]. The result describes trust

between the actors with respect to scopes (Fig. 3(c)). For

instance, trust relations in a scope ‘scientific dissemination’

could be interpreted from interaction behavior of actors in

a set of paper writing activities.

C. Adaptive Trust Update and Aging Models

In our model, the selection of relations to be updated

and update intervals rely on two influential factors (i) the

variance of user behavior, reflected by the dynamics of

interaction metrics, (ii) the sparsity of interaction, i.e., a

certain amount of interactions is required to reliably deter-

mine interaction behavior. Note, for the initial establishment

of social trust relations interactions are not mandatory, but

relations can be introduced manually. This is a sufficient

assumptions, as in real environments actors are selected

based on recommendations or reputation values. However,

once established, manually introduced relations are automat-

ically updated by the system considering update and aging

parameters. The advantage of manually introduced relations

is the reduced effort when processing interaction logs. In

this case, only interactions between actors who are already

linked in the social network need to be handled.

Fundamental Update Mechanisms. Figure 4 summa-

rizes the fundamental mode of operation of our temporal

social trust management approach. Interactions from u to

v (a), occurring between two sampling instants (in this

example every 20 ticks), are utilized to calculate interac-

tion metrics M(u, v) (b). These metrics describe actor v’s

behavior toward u in scope s, and is inferred in consecutive

sampling intervals ts; for instance, v’s availability to u’s

requests and its reciprocity [14]. In the given example, the

availability remains high, while v’s reciprocity toward u is

unsteady. We assume the level of trust τs(u, v) relies on both

metrics. Therefore, in (c), recent trust, grounded in previous

interaction behavior of v toward u in time interval ts, is

inferred. This τ̂s(u, v) is visualized in Figure 4(c) at the

sampling instants.

The strength/weight of evolving long-term relations τs
i

(see Figure 4(d)) is updated periodically in successive time

intervals ti (e.g., days in mid-term collaboration scenarios),

numbered with consecutive integers starting with zero. We

denote trust values in scope s (context) calculated at time

step i as τs
i

. As the strength of relations is evolving over

0 20 40 60 80 100
0

2

4

6

8

10

time

in
te

ra
c
ti

o
n

 p
ro

p
e
rt

ie
s

support requests
activity delegations
event notifications

(a) Capture interactions.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

n
o

rm
a
li
z
e
d

 m
e
tr

ic

availability

reciprocity

(b) Calculate metrics.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

re
c
e
n

t
tr

u
s
t

recent trust

(c) Interpret trust.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

e
v
a
lu

a
te

d
 t

ru
s
t

evaluated trust

recent trust

(d) Support trust evolution.

Figure 4. Illustrative example: update of trust relations based on captured
recent interactions.

time, we do not simply replace old values, i.e., τs
i−1, with

newer ones, but merge them accordingly. For this purpose we

apply the concept of exponential moving average (EMA), to

smoothen the sequence of calculated values as shown in Eq.

1. Using this method, we are able to adjust the importance

of the most recent behavior (leading to τ̂s) compared to

historical values. The smoothing factor α ∈ [0, 1] can

be dynamically adapted. The impact of the most recent

values τ̂ on well established long-term relations might be

lower than on recently emerged and still fragile short-

term relations. Long-term relations are normally based on

large sets of previous experiences and sporadic short-term

behavior changes, e.g., sporadic unreliability, may not have

major impact. Indeed, this behavior is subjective, and our

model can not dictate the application of this feature, but

provides the means to cover such situations appropriately.

τs
i
= α · τ̂s + (1− α) · τs

i−1 (1)

Adaptive Sampling. The fundamental approach simply

updates τi at each time tick ti, and the interval between

instant ti and ti+1 is constantly ts. However, in most

real situations an adaptive sampling interval ts is desired

due to two reasons: (i) interaction sparsity, and (ii) actor

(non-)uniformity (see Section IV). Intuitively, relations to

erratic actors that change their behavior quickly and dynam-

ically have to be updated more often, than the relations to

actors with stable/consistent behavior. From a performance

perspective, longer update cycles of stable connections al-

lows the system to focus on unstable connections. Hence,

while in the fundamental case we set the update interval

in a particular scope s to tsu = ts (equal to the system

sample interval), we introduce now an approach to adapt ts
u

dynamically within the limits according to Eq. 2.

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

time

n
o

rm
a
li
z
e
d

 m
e
tr

ic

diff

t
u

t
u

t
u

t
u

(a) Trigger metric changes.

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

time

tr
u

s
t

evaluated trust

recently sampled trust

(b) Adaptive evaluation.

Figure 5. Illustrative example: adaptive update of trust relations through
behavior triggers.

tsumin
≤ tsu ≤ tsumax

(2)

Both limits are pre-configured and determined by the

interaction sparsity. Furthermore, tsumin
= λ1 · ts and

ts
umax

= λ2 · ts and λ1 ≤ λ2 for λ1, λ2 ∈ N. The basic

challenge is to find appropriate update intervals tsu, in terms

of efficiency and effectiveness of social trust management.

Remember, although static relations do not need frequent up-

dates, sudden behavior changes must not be neglected. The

mode of operation of our adaptive approach is exemplarily

depicted in Figure 5.

We interpret actor behavior, reflected by metrics M as

a continuous ‘signal’ that is sampled from interactions in

consecutive time intervals ts. Therefore, metrics reflect the

changeability of an actor’s behavior. Figure 5(a) shows the

temporal evaluation of two interaction metrics. While the

values of one metric are nearly constant over time, the

other suddenly drops at time tick 40, remains low, and

increases again at tick 180. We detect such rapid changes

with precisely configured event triggers. Once sudden events

are detected, such as the variance of the most recent values

is above a threshold, or the number of unreplied requests is

considerably high, an update operation is triggered (see tick

40). Then, when the metric values are stable, ts
u

is extended

by one ts in each update cycle. In our examples ts = 20,

therefore, after tick 40 the next update intervals have the

lengths ts(= ts
umin

), 2 · ts, and 3 · ts. However, at tick 180

a sudden behavior change is detected and link weights are

sampled as soon as possible (instead of waiting a period of

4 · ts.

Typically rather simple and easily computable metrics that

characterize the actor behavior and can efficiently capture

behavior changes, are used to trigger update actions. While

at least this set of metrics, is calculated at each ts, the larger

amount of (typically more complex) metrics and finally trust

values are refreshed only after adaptive intervals tsu. This is

visualized in Figure 5(b). Sampled trust τ̂ is only captured

at intervals ts
u

. However, a temporal evaluation (Eq. 1) is

still applied at each ti (as in the fundamental approach), but

based on the most recent τ̂ .

Trust Aging Model. As social trust relations in the

real world degrade if people do not frequently interact,

also relations in the computational model underlie an aging

process. While it is intuitive that relations will become

invalid over time, it is quite hard – if not impossible – to

realistically reflect this aspect in a mathematical model. Our

approach, as defined in Eq. 3, provides some parameters for

tuning the aging process, while it is not too complex to be

applied in real environments.

τs
n
= τs

i
· e−(τs

n−1
·∆t)2γ (3)

The variable τs
i

represents the latest determined value

based on interactions in the update procedure that is de-

graded exponentially, configured by the decay factor γ

(γ ≤ 1). So, trust τsn at time tick tn is calculated by

degrading τs
i

depending on the time span tn−ti. The quality

of computed relationships suffers if links are not periodically

refreshed through new interactions. While immediately after

updating a relation (∆t = 0) the strength is not altered

(τn = τi), the aging process produces trust results asymp-

totic to zero with ∆t → ∞.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

tr
u

s
t

γ = 0.005

(a) Varying levels of trust w.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

tr
u

s
t

1
0.1

10
−2

10
−3

10
−5

10
−4

(b) Varying decay factors γ.

Figure 6. Illustrative example of trust aging from different strength levels
w and for different decay factors γ.

Adaptive aging refers to the dynamic adaptation of γ,

hence, the older a relation, the slower may be the applied

aging process. Furthermore, as in real life, the decay of links

can be comparably fast in the beginning, while the actual

removal of relations takes longer time. The adaptation of the

decay factor may depend on actors interaction consistency.

The configuration of the aging model (see Figure 6) is still

an open issue. On the one side domain experts could care

for this based on best practice, on the other side there exist

concepts that let systems adapt parameters autonomously

[28] to optimize the aging process. However, we design the

computational model to be flexible enough to cover various

demands on temporal properties; e.g., sampling intervals

(ts), impact of new values (α), decay factor (γ).

D. Computational Social Network Algorithm

Algorithm 1 formulates the emergence of new trust rela-

tions (Line 36), updates of existing ones (Line 10), and their

aging in case no interactions take place between connected

actors (Line 43). It manages links between a subset of nodes

N ′ ⊆ N in an existing trust network GT = (N,ET) for a

predefined set of scopes (depending on already existing links

that need to be updated – see Line 5). In case the amount of

Algorithm 1 Update algorithm executed every tick ti.

1: /* access GI = (N,EI) in interaction databases */

2: /* access GT = (N,ET) in social trust model */

3: for each u ∈ N ′ do

4: for each v ∈ N ′ do

5: for each s ∈ Scopes(edge(ET , u, v)) do

6: if |EI(u, v)| > ϑs

I
then

7: /* enough interactions to reliably infer trust */

8: eτ ← ET (u, v)
9: if ∃ τs ∈ eτ then

10: /* update of existing links scheduled */

11: if isUpdateScheduled(eτ , s) then

12: /* previously scheduled update */

13: Ms(u, v) ← calcMetrics(EI (u, v), s)

14: τ̂s(u, v) ← inferTrust(u, v,Ms(u, v))
15: tsu ← getUpdateInterval(eτ , s)

16: if tsu ≤ tsumax
then

17: scheduleUpdate(eτ , s, tsu + ts)

18: else

19: scheduleUpdate(eτ , s, tsumax
)

20: end if

21: else

22: /* trigger changing behavior */

23: Ms

T
(u, v) ← calcTriggers(EI (u, v), s)

24: if isUpdateTriggered(eτ ,M
s

T
(u, v)) then

25: Ms(u, v) ← calcMetrics(EI (u, v), s)

26: τ̂s(u, v) ← inferTrust(u, v,Ms(u, v))
27: scheduleUpdate(eτ , s, στ , tsumin

)

28: else

29: /* stable behavior, no updates */

30: τ̂s(u, v) ← τ̂s
i−1

(u, v)
31: end if

32: end if

33: /* smoothen trust values */

34: τs
i
(u, v) ← update(τs

i−1
(u, v), τ̂s(u, v))

35: else

36: /* introduce new links */

37: Ms(u, v) ← calcMetrics(EI (u, v), s)

38: τs
i
(u, v) ← setInitialTrust(Ms(u, v))

39: addLink(eτ , s, τ
s

i
)

40: scheduleUpdate(eτ , s, tsumin
)

41: end if

42: else

43: /* if too few interactions */

44: tsu ← getUpdateInterval(eτ , s)

45: if tsu ≤ tsumax
then

46: /* increase update intervals */

47: scheduleUpdate(eτ , s, tsu + ts)

48: else

49: /* age out existing relations */

50: applyAging(eτ , s)

51: end if

52: end if

53: end for

54: end for

55: end for

56: /* write back updated GT */

interactions to reliably infer behavior (and trust) is above a

predefined threshold (ϑs

I
depends on the ‘usual’ amount of

interactions in a scope), new relations are introduced and

existing ones updated respectively. New edges are added

to GT if a significant amount of interactions took place

between two actors but no trust relations exist yet (Line

36). The level of trust (τ) is inferred from measured metrics

(see [6] for details about rule-based trust inference) and

updates are scheduled as soon as possible – still accounting

for interaction sparsity in the given scope (tsumin
). Updates

are performed due to two events: (i) an update has been

scheduled for a given relation; (ii) a rapid change in an

actor’s behavior has been triggered and thus, connecting

links have to be updated to reflect this change in the model

accordingly. In the first case (see Line 11), update cycles

are extended up to tsumax
in order to optimize performance.

Hence, for longer stable interaction behavior of actors,

update intervals are increased.

However, if considerable sudden changes in behavior are

detected (e.g., someone does not reply to requests anymore)

(see Line 22), an immediate update is triggered and con-

secutive updates are performed in shorter intervals until

stable behavior (trust levels) is detected again. If the amount

of interactions drops below a given threshold ϑs

I
, update

intervals are increased to collect a sufficient number for

reliable trust determination. However, if the update interval

become too long (> tsumax
), the previously described aging

process is applied. Function applyAging() (Line 50) is

implemented as Eq. 3 that continuously degrades trust links,

and finally, removes an existing edge from the graph model.

Algorithm 1 is periodically executed to keep GT fresh.

The execution interval needs to be adapted to the inherent

dynamics of the environment. Since the algorithm processes

interaction logs and relations only for a subset N ′ of all

nodes, computational effort can be distributed over several

instances that handle only parts of the whole network GT .

V. EVALUATION AND DISCUSSION

Since we have not yet applied our approach in real large-

scale environments, we do not have sufficient real testing

data. Therefore, we generate artificial scale-free network

structures that we would expect to emerge under realistic

conditions in typical collaboration networks [29] to test and

discuss our computational social trust model.

A. Experiment Setup

Collaboration Network Generation. We utilize the pref-

erential attachment model of Barabasi and Albert [29] to

create graphs with power-law distributed degrees depicted in

Figure 7. These network structures are the basis to generate

interaction logs that follow a realistic distribution among

members. For a graph G = (N,E), we generate in total

100 · |E| interactions between pairs of nodes (u, v). In

our experiments we assume that 80% of interactions take

place between 20% of the most active users (reflected by

hub nodes with high degree). Generated interactions have a

particular type (support request/response, activity success/-

failure notification) and timestamp, and occur in one of two

abstract scopes. Through utilizing available interaction prop-

erties, we calculate three metrics (i) availability (amount of

responded support requests), (ii) interest similarity (based on

extracted tags from successfully finished activities), and (iii)

support reciprocity (ratio of served to requested support).

The actual strength (weight respectively) of a social trust

relation is determined by combining and weighting these

metrics with a rule based approach (see [6] for details).

For all experiments, we calculate the following interaction

metrics:

Interest Similarity isim. This metric determines the over-

lap of actor interests, which is an important measure to find

motivated partners in the same interest area. We manage

keywords used by actors u and v as interest profile vectors

pu and pv respectively (see [20] for details), and determine

the similarity of profiles through the cosine between their

profile vectors (Eq. 4). The result is a value between 0 (no

overlap) and 1 (full overlap).

isim(u, v) = cos(pu,pv) =
pu · pv

|pu||pv|
(4)

Reciprocity recpr. A typical social behavior metric is

reciprocity [14] that here reflects the ratio between obtained

and provided support in a community. Let REQ(u, v) be

the set of u’s sent support requests to v, and RES(u, v)
the set of u’s provided responses to v’s requests. Then we

define reciprocity in [−1, 1] as in Eq. 5; hence, 0 reflects a

balanced relation of mutual give and take.

recpr(u, v) =
|RES(u, v)| − |REQ(u, v)|

|RES(u, v)|+ |REQ(u, v)|
(5)

Availability avail. This metric describes u’s availability

for v’s requests, i.e. the amount of answered requests. The

result of Eq. 6 is a value in [0, 1].

avail(u, v) = 1−
|REQ(v, u)| − |RES(u, v)|

|REQ(v, u)|
(6)

Model Setup. As described earlier, the computational

model infers social trust by interpreting various measured

metrics; here: isim and recpr. Changing interaction be-

havior is triggered by varying availability (avail) of actors

regarding requests from other members in the network.

(a) hierarchical (avg deg=2). (b) democratic (avg deg=4).

Figure 7. Generated scale-free networks for studying adaptive social trust
models.

This means that avail is periodically sampled, while trust

relations are updated based on isim and recpr only due to

major changes of avail (or the maximum update interval has

been reached). We argue that these metrics are appropriate

examples for reflecting reliable (i.e., trustworthy) behavior

in typical activity-centric collaborations. In particular, for

successful collaboration mutual interests are of importance,

while also a cooperative behavior (expressed by support

reciprocity) is highly rewarded. In contrast to that, in an

emergency help and support environment (see [6]) fast

and reliable response behavior is of paramount importance;

thus, different metrics (responsiveness, success rate) denote

trustworthy behavior there.

B. Effectiveness of Adaptive Update Strategy

We prove the advantages of selective and adaptive updates

with several evaluations. For the following experiments, we

set up a simulation environment as follows: We directly

model different user behavior here to demonstrate the ap-

plicability of adaptive update intervals. In this round-based

simulation the metrics avail, recpr, and isim are modified

for a fixed amount of actors. In particular, 5%, 10%, and

20% of (erratic) actors change in each round (with length

ts) respective metric values randomly between 1% and 50%.

We introduce GR = (N,ER) which is a graph reflecting the

reality, and modify metrics assigned to its edges er ∈ ER.

Social trust is managed in GT = (N,ET) and its edges

eτ ∈ ET updated by Algorihtm 1 according to changing

metrics in GR (reflects basic behavior sampling). The main

goal of adaptive updates, compared to periodic intervals, is

the reduction of update cycles due to performance reasons.

However, by delaying updates a deviation (Eq. 7) between

GT and GR is introduced that has to be kept to a minimum.

The average deviation dev(GR, GT) reflects the effective-

ness of update models. The proposed update approach

in Section IV has several tuning parameters. Among the

most important ones are the settings of minimum/maximum

update intervals, configured as ts
umin

≤ ts
u
≤ ts

umax
; whereas

tsumin
= λ1 · ts and tsumax

= λ2 · ts and λ1 ≤ λ2. Hence, λ2

allows to extend the scheduled updates of stable relations

up to ts
umax

and thus, to significantly reduce computational

effort.

dev(GR, GT) =

∑
e∈E

|τ(er)− τ(eτ)|

|E|
(7)

The introduced global error due to adaptive updates

(compared to fixed interval updates) is expressed as the

average dev(GR, GT) in percent. Figure 8 depicts this

error for different λ2. In this experiment, the behavior

trigger mechanism (compare Line 22 in Algorithm 1) has

been deactivated. Instead, we decrease tsu by one ts after

each update operation. Hence, the lengths of future update

intervals directly depend on the lengths of recent update

intervals, but are only moderately influenced by sudden

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
O�

g
lo

b
a
l

e
rr

o
r

[%
]

5% erratic actors

10% erratic actors

20% erratic actors

Figure 8. Deviation of trust values (global error) between simulated
network and captured model for differently configured update strategies
(λ1 = 1).

behavior changes. It is demonstrated that even for small

λ2 considerable error rates are introduced. Since simulated

behavior relies on various randomly changed metrics, error

bars indicate the spread of results for multiple runs of this

experiment. Although λ1 determines tsumin
, there is also an

additional trigger mechanism that initiates immediate up-

dates independent from ts
umin

if actors change their behavior

very quickly. With the trigger threshold ϑt the limit of

tolerated behavior change without triggering an immediate

update can be set. This threshold is defined as the deviation

in percent of metric values in the interval ts. We trigger

behavior changes by frequently observing the metric avail.

With this trigger mechanisms, an upper limit of global error

rate can be guaranteed, because rapid behavior changes

(reflected in GR) are detected and immediate updates of GT

performed. Hence, deviations are not added up over multiple

sampling intervals (up to ts
umax

).

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20

trigger threshold [%]

g
lo

b
a

l
e

rr
o

r
[%

]

5% erratic actors

10% erratic actors

20% erratic actors

Figure 9. Deviation of trust values (global error) between simulated
network and captured model for differently configured trigger thresholds
ϑt (λ1 = 1, λ2 = 5).

Figure 9 visualizes that with the trigger mechanism in

place, the global error rates can be considerably decreased.

Typically, a higher number of erratic actors in the network

still causes a higher average global error. The reason for that

is a significant amount of actors who change their behavior

slightly below the trigger threshold. Thus, a deviation of GR

to GT is caused, but no updates triggered. However, setting

a smaller λ2 results in a smaller ts
umax

and forces frequent

updates; therefore, introduces an upper limit of global error

rates over time. Since we have now demonstrated that we

can keep the global error rate low, even when we apply

adaptive updates (especially with a behavior change trigger

in place), we demonstrate now the performance advantages.

For that purpose, we utilize a generated graph GR with

10 000 nodes and 20 000 edges (i.e., d = 4). In particular,

we investigate the average amount of update operations per

ts for different λ2. Higher λ2 cause less frequent updates

of relations. Note, updates of relations are not synchronous,

i.e., all at the same point in time, but time instants are set

for each edge individually in multiples of ts.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8 9 10

O�

n
u

m
b

e
r

o
f

u
p

d
a
te

d
 e

d
g

e
s

up to 5% triggered erratic actors

up to 10% triggered erratic actors

up to 20% triggered erratic actors

bottom limit (scheduled updates)

Figure 10. Number of processed edges after updating the trust model
according to the simulated network (|E| = 20 000, λ1 = 1).

Theoretically, without adaptive updates and behavior trig-

gers (i.e., λ1 = λ2 = 1), approximately 20 000 (= |E|)
operations per ts would be required to keep the example

graph up-to-date with an error rate virtually equal to zero.

However, since updates may be postponed until ts
umax

if no

rapid behavior changes are detected, the number of required

update operations in GT drops exponentially for higher

λ2, as shown in Figure 10. The dashed line visualizes the

number of updated edges due to scheduled updates, even if

actors do not change their behavior (then, all updates are

performed in intervals of tsumax
). The other lines show the

upper limit of performed updates, i.e., the case that the set of

relations with scheduled updates and relations with detected

behavior changes do not overlap. Usually, the number of

required updates is somewhere between these two limits.

Finally, Table I summarizes our results by comparing

introduced global errors and required update operations;

thus, demonstrating potential savings.

Table I
SUMMARY OF UPDATE STRATEGY EVALUATION (λ1 = 1,

ϑt = 10%, amount of erratic actors = 10%).

λ2 global error [%] average number of updates

1 0 20 000

3 1.7 8 666

5 3.8 6 000

10 5.1 4 000

VI. CONCLUSION AND FURTHER WORK

In this paper we highlighted the application of the widely

adopted MAPE approach for adaptations in complex in-

teraction networks. Adaptation techniques, accounting for

contextual constraints and emerging social relations (e.g.,

trust) are among the key research areas in flexible service-

oriented collaboration environments. The evaluation of our

model discovered important design issues, such as the mode

of operation and configuration of dynamic update models.

Our approach has important implications on adaptations in

complex systems, because it reduces configuration burdens

for the users and permits self-regulation of collaborations.

Our future work includes the deployment and evaluation

of the implemented framework in the EU FP7 project COIN.

There, business end-user evaluations will discover the usabil-

ity of self-managed social networks in real environments.

Furthermore, we plan to extend our work in the area of

crowdsourcing with the focus on incentive schemes, price

negotiation, and rewarding. As business is more and more

performed online, the application of self-managed social

network models, relying on collected interaction data, user

actions, and personal profiles, in large-scale crowdsourcing

environments seems to be a promising research field.

ACKNOWLEDGMENTS

This work is supported by the EU through the projects

COIN (FP7-ICT-216256), and SM4ALL (FP7-ICT-224332).

REFERENCES

[1] M. Vukovic, “Crowdsourcing for enterprises,” in Congress on
Services, 2009, pp. 686–692.

[2] D. Brabham, “Crowdsourcing as a model for problem solving:
An introduction and cases,” Convergence, vol. 14, no. 1, p. 75,
2008.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Ser-
vices - Concepts, Architectures and Applications. Springer,
October 2003.

[4] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying human
and software services in web-scale collaborations,” Internet
Computing, vol. 12, no. 3, pp. 62–68, 2008.

[5] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behav-
ior monitoring in self-healing service-oriented systems,” in
COMPSAC. IEEE, 2010.

[6] F. Skopik, D. Schall, and S. Dustdar, “Modeling and mining
of dynamic trust in complex service-oriented systems,” Inf.
Syst., vol. 35, pp. 735–757, 2010.

[7] IBM, “An architectural blueprint for autonomic computing,”
Whitepaper, 2005, 2005.

[8] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou, and
K. Pohl, “A journey to highly dynamic, self-adaptive service-
based applications,” Autom. Softw. Eng., vol. 15, no. 3-4, pp.
313–341, 2008.

[9] P. A. Balthazard, R. E. Potter, and J. Warren, “Expertise,
extraversion and group interaction styles as performance
indicators in virtual teams,” DATA BASE, vol. 35, no. 1, pp.
41–64, 2004.

[10] N. Panteli and R. Davison, “The role of subgroups in the
communication patterns of global virtual teams,” IEEE Trans.
Prof. Com., vol. 48, no. 2, pp. 191–200, 2005.

[11] J. Breslin, A. Passant, and S. Decker, “Social web applications
in enterprise,” The Social Semantic Web, vol. 48, pp. 251–267,
2009.

[12] C. Petrie, “Plenty of room outside the firm,” Internet Com-
puting, vol. 14, pp. 92–96, 2010.

[13] Z. Malik and A. Bouguettaya, “Reputation bootstrapping for
trust establishment among web services,” Internet Computing,
vol. 13, no. 1, pp. 40–47, 2009.

[14] L. Mui, M. Mohtashemi, and A. Halberstadt, “A compu-
tational model of trust and reputation for e-businesses,” in
HICSS, 2002, p. 188.

[15] J. Golbeck, “Trust and nuanced profile similarity in online
social networks,” ACM Tran. Web, vol. 3, no. 4, pp. 1–33,
2009.

[16] Y. Matsuo and H. Yamamoto, “Community gravity: Measur-
ing bidirectional effects by trust and rating on online social
networks,” in WWW, 2009, pp. 751–760.

[17] B. E. Brewington and G. Cybenko, “How dynamic is the
web?” Comp. Netw., vol. 33, no. 1-6, pp. 257–276, 2000.

[18] G. Kossinets and D. Watts, “Origins of homophily in an
evolving social network,” American Journal of Sociology, vol.
115, no. 2, pp. 405–450, 2009.

[19] C.-N. Ziegler and J. Golbeck, “Investigating interactions
of trust and interest similarity,” Decision Support Systems,
vol. 43, no. 2, pp. 460–475, 2007.

[20] F. Skopik, D. Schall, and S. Dustdar, “Start trusting strangers?
bootstrapping and prediction of trust,” in WISE, 2009, pp.
275–289.

[21] D. Watts, Six degrees: The science of a connected age. W.W.
Norton & Company, 2003.

[22] C. Domingo, R. Gavaldà, and O. Watanabe, “Adaptive sam-
pling methods for scaling up knowledge discovery algo-
rithms,” Data Min. Know. Disc., vol. 6, pp. 131–152, 2002.

[23] F. Skopik, D. Schall, and S. Dustdar, “Trustworthy interaction
balancing in mixed service-oriented systems,” in SAC, 2010,
pp. 801–808.

[24] C. Dwyer, S. R. Hiltz, and K. Passerini, “Trust and privacy
concern within social networking sites: A comparison of face-
book and myspace,” in Americas Conference on Information
Systems, 2007.

[25] M. J. Metzger, “Privacy, trust, and disclosure: Exploring barri-
ers to electronic commerce,” Journal on Computer-Mediated
Communication, 2004,, vol. 9, no. 4, 2004.

[26] T. Grandison and M. Sloman, “A survey of trust in internet
applications,” IEEE Communications Surveys and Tutorials,
2000,, vol. 3, no. 4, 2000.

[27] A. Agrawal et al., “Ws-bpel extension for people
(bpel4people), version 1.0,” 2007.

[28] V. Bryl and P. Giorgini, “Self-configuring socio-technical
systems: Redesign at runtime,” Int’l Trans. on Syst. Science
and App., vol. 2, no. 1, pp. 31–40, 2006.

[29] A. Reka and Barabási, “Statistical mechanics of complex
networks,” Rev. Mod. Phys., vol. 74, pp. 47–97, 2002.

