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Abstract—Social networks have emerged from niche exis-
tence to a mass phenomenon. Nowadays, their fundamental
concepts, such as managing personal contacts and sharing
profile information, are increasingly harnessed for businesses
in professional environments. Similar to service-oriented net-
works, they allow flexible discovery on demand and loose
coupling of participants. Establishing social links facilitates
cooperation and enables selective sharing of information.
Intuitively, one shares more information with his connected
neighbors and less or even none with unrelated individuals.
Today, information is one of the most important and valuable
goods in business networks. Being informed about ongoing
collaborations and upcoming trends is a key success factor.
Thus, in professional networks, participants aim at strategically
establishing connections to enable reliable information flows.
In this paper, we especially highlight an opportunistic model
that let mediators connect actually unrelated actors in order
to benefit from information mediation. We further discuss a
framework that implements this model for service-oriented
professional virtual communities.

Keywords-social networks, information mediation, strategic
link establishment, reciprocity, structural holes

I. INTRODUCTION

The Web has evolved from a distributed document reposi-

tory to an interactive medium in which people actively share

and disseminate information. Parts of this evolution is often

referred to as Web 2.0 and characterized by the emergence of

knowledge sharing communities. The way people interact on

the Web, especially in professional environments, is chang-

ing once more. Service-oriented computing takes off on

its triumphal course to permit even human-centric business

platforms [1]. Web services enable loosely-coupled cross-

organizational collaborations, and are the ideal means to

realize flexible discovery and binding of interaction partners.

In such service-oriented collaboration environments, partic-

ipants shape the availability of information and services.

Social networks typically emerge freely and indepen-

dently without restricted paths and boundaries. Research

has shown that the resulting social network structures allow

for relatively short paths of information propagation. For

example, ‘six-degrees of separation’ [2] refers to the idea

that each node in a freely emerged people network can be

reached by propagating items of information via six hops.

While this is true for autonomously forming social networks,

the boundaries of collaborative networks are typically re-

stricted due to organizational units and fragmented areas of

expertise. In order to take advantage of social preferences,

we propose social network principles to overcome limited in-

formation flows in collaborative environments. Particularly,

in service-oriented professional communities, actors perform

activities by interacting with other community members,

e.g. to inquire information, exchange ideas, and delegate re-

quests. Over time, actors establish social connections to their

collaboration partners [3], [4]. Information are propagated

along these links. Typically people share more information

with well-known partners who proved their reliability earlier;

and less or even none with unknown third parties. Hence,

to motivate two unconnected users to exchange information,

and thus, enable reliable information flows in networks, they

need a mutually known intermediate actor.

According to the structural holes theory [5], people show

the tendency to position themselves in networks as such

interaction mediators. Their main incentives are to get

valuable insights in ongoing collaboration and others’ work.

Mediating interactions between network members further

allows to influence and control partners and to build up

distinct reputation and high visibility levels. However, acting

as mediator also requires free capacities, e.g., in terms of

time and effort, and since resources are usually limited it is

a top priority to carefully decide about mediation targets.

In this paper we deal with the following contributions:

• Information Mediation Model. We design an analyti-

cal model that explains the fundamental concepts of

opportunistic information flows. Our model introduces

the notion of utility in service-oriented professional

communities.

• Social Link Establishment. We formalize the incentives

and motivation of human behavior regarding social link

establishment in virtual communities established upon

interaction analysis.

• Evaluation and Discussion. We evaluate the proposed

model and its application for virtual communities, and

derive general findings for designing applications for

socially-enhanced service-oriented environments. Also,

we discuss the application of and integration with avail-

able social network standards for open environments.



The remainder of this paper is organized as follows.

Section II describes fundamental concepts of our approach

and motivates the need for information mediation. Section

III presents an algorithmic view to describe the motivation

and incentives behind establishing social relations and deals

with an information mediation model. Then, we evaluate

and discuss our work in Section IV. Section V outlines a

technical perspective on an SOA-based implementation and

application. Section VI deals with related work and Section

VII concludes the paper.

II. SOCIAL INFORMATION MEDIATION

We discuss a layered social information mediation model

and outline utilized major concepts on each layer.

A. Overview

Basically, an actor has several passive links, such as

FOAF1 relations, that just express business/personal con-

tacts (typically emerged from previous collaborations), but

no interactions are performed along these links. An actor

can activate these links (active links) by initiating a new

collaboration, e.g., setting up a joint activity. However, due

to resource constraints, members can only participate in

a limited amount of concurrent activities, and thus, the

number of simultaneously active links is limited. Hence,

collaboration partners are selected carefully, considering

required effort and received utility.

Figure 1 shows an overview of our layered approach. On

the bottom layer, interactions are observed and collected

to determine social relations. We designed the system to

manage relations by evaluating occurring interactions and

therefore, unburden network participants – at least partly –

from managing their relations manually [3]. On the medium

layer, direct relations are established to create a typical social

network. Since single members usually build up strong rela-

tions to only a small amount of partners, reliable information

flows through collaborative networks are limited. Therefore,

on the top layer, social mediation is applied.
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Figure 1. Model for social information mediation.

1http://xmlns.com/foaf/spec/

We have studied the bottom and middle layer, as depicted

by Figure 1, already in our previous work. We briefly outline

the main principles of these layers to highlight the novelty

of the proposed utility model.

• Interaction Layer. A professional virtual community

(PVC) is a special kind of social network, where the

single actors participate to perform activities. A com-

munity is modeled as a directed graph, where vertices

V represent the actors that are connected through edges

E. A directed edge from actor vi to vj is denoted

as eij . Activities A are a fundamental part of our

model; thus, we describe the graph model of a PVC

as G = (V,E,A). The concept of an activity a ∈ A is

used to include a set of participants. Thus, in short,

activities describe the collaboration boundaries and

goals. Network members interact in scope of particular

activities (i.e., to reach certain goals). Interactions are

collected to determine (i) the center of interest of single

network members by evaluating the frequency of used

keywords [3], [6], and (ii) the strength of a social

relation by determining the similarity of the center of

interests [3].

• Social Link Layer. By issuing keyword-based queries,

each actor’s connectivity to other community members

in a particular query context Q is determined [7]. The

query context is described by a pool of keywords (e.g.,

describing certain expertise areas) picked from global

taxonomies. Using logged interaction data and manual

ratings the link strength from one actor vi to another

vj in context of Q is calculated. For that purpose,

various metrics, such as availability of actors, average

ratings, responsiveness and interest similarities can be

calculated dynamically.

B. Information Mediation

Typically, network members share information along

emerging direct relations. Sharing with known partners is

beneficial for both, the information provider who can spread

information but still knows the boundaries of potential re-

ceivers, and the receiver who directly knows the provider and

can decide on the trustworthiness of delivered information.

However, each network member does usually interact with

only a small amount of distinct partners compared to the

overall size of a large-scale system. Thus, information, such

as announcements and invitations, cannot be reliably and

also widely spread at the same time.

In order to compensate that issue, several propagation

models have been proposed to establish artificial connections

in networks that are inferred from existing ones [8]. The

most common concept is direct propagation. Here, a node

vi has a strong relation to vj which is tightly linked to vk
(see Figure 1). Propagation means that, although vi and vk
have never personally interacted with each other, a synthetic

social relation can be introduced using the existing network



structure. For instance, if these social links are considered

as trust relations [3] one could say, because vi trusts vj and

vj trusts vk, there is a high probability that vi can also trust

vk; e.g., due to their similar habits, attitudes, and values.

However, sharing information along synthetic links, has

several implications and potential disadvantages for the

involved actors. Typically, the information owner vi shares

information with the actually unknown sink vk, vk receives

information from an unknown source vi, and vj initially

supports establishing a connection between vi and vk but

is than bypassed and cannot control the actual information

propagation over that supported link. Furthermore, there

may be situations, where vi does not want to reveal its

identity to unknown network members (here: vk), however,

still wants to distribute information. Hence, additionally to

these propagation models, we further apply the concept of

active information mediation.

III. UTILITY-BASED MEDIATION MODEL

We begin with the basic mechanisms describing moti-

vation and incentives for building relations on social Web

platforms.

A. Link Establishment

Information mediation assumes that actors actively bridge

isolated components in a social network. They mediate infor-

mation to facilitate collaborations between actually uncon-

nected network members. The most fundamental questions,

however, are (i) what is a mediator’s motivation for doing

that and (ii) how do they select their interaction partners?

Reciprocity. Ultimately, each actor participates in the net-

work for a certain reason, e.g., for improving its reputation,

alleviating the access to information, or becoming a key

player. In other words, actors aim at improving visibility

and impact in the community. Intuitively, actors favor well-

known partners for collaboration and information exchange

over any unknown ones (social networking concept); i.e.,

partners who already proved their reliable and dependable

behavior. Mutual social relations are required to maximize

the probability of successful future interactions. Thus, our

model utilizes the concept of reciprocity (Figure 2(a)).
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Figure 2. Social theory models.

The reciprocity theory [9] explains the motivation for

reliable interaction behavior of actors with a mutual give and

take relationship. The more reciprocal relations an actor has,

the higher is its probability to find a reliable collaboration

partner and thus, the higher is its benefit obtained from the

participation in the network. The utility UR for an actor vi
from using existing reciprocal relations can be formulated as

given in Eq. 1. Basically, this value is composed of the sum

of weighted (w) mutually strong ties; i.e., there exist equally

weighted directed edges eij and eji between vi and vj as

shown in Figure 2(a). Hence, the utility value of node vi
increases for each reciprocal relationship that it maintains.

Utilized relations are determined by a query context Q to

determine the utility in a certain expertise area.

U
Q
R (vi) =

|V |−1∑

j=0

w
Q
ijw

Q
ji (1)

Our model uses two metrics to determine link weights w

(Eq. 2): (i) interest similarity isim [3], calculated from the

similarity of interaction contexts (determined through tags),

and (ii) the average mean of assigned ratings avgr. While

isim is a globally valid metric, avgr is bound to distinct

expertise areas. In particular, all activities whose description

match at least one of the query keywords are considered.

The function match(Q, a) determines the matching (within

the range [0, 1]) of an activity a to a query Q. Whether isim

or avgr has more impact on the final link weight w
Q
ij can

be configured through a globally valid weight α ∈ [0, 1].
Currently we employ flat keyword-based matching only,

however for more advanced ontology matching techniques

see [10].

w
Q
ij = α·isimij+(1−α)·

∑
a∈A avgrij ·match(Q, a)∑

a∈Amatch(Q, a)
(2)

Structural Holes. Another social theory based on self-

interest is the concept of structural holes [5]. This theory

states that there are actors who actively position themselves

in beneficial positions within a community network. Such

an actor filling a structural hole connects two previously

unconnected (or at least loosely coupled) actors, and gains

direct advantage by doing that. As depicted in Figure 2(b), vi
establishes an indirect link between the actually unconnected

nodes vj and vk via edges eij and eik. In general, actors

such as vi collect larger amounts of contacts and represent

the main hubs of information exchange [11]. Therefore, they

are able to collect information on ongoing collaborations

and can also exercise greater control on connected members.

In the presented information mediation use case, the utility

USH for vi results from being able to control the communi-

cation of linked actors and collect exchanged information.

U
Q
SH(vi) =

|V |−1∑

j=0

w
Q
ij

|V |−1∑

k=0

w
Q
ik(1− w

Q
jk) (3)

In an opportunistic network, the motivation of each actor

is to maximize its utility. According to aforementioned con-

cepts, well-known reliable actors are predominantly picked



and a mutual social relation is required to maximize the

probability of successful future interactions. Each additional

mediation role poses additional effort to the affected actor.

However, each actor’s mediation capacity is limited, thus

the strategic positioning in the network is still of paramount

importance.

Joint Model. Combining the concept of reciprocity and

the structural holes theory, the overall utility value U in

context of query Q is calculated as given in Eq. 4. Basically,

the joint model has the same form as the structural hole

model (Figure 2(c)), however, considers directed (and ideally

balanced) relations between single actors. In case of social

information mediation needs the utility value of each actor

is evaluated. Thus, by periodically setting up new media-

tion activities and releasing unprofitable mediation partners

(i.e, mediation targets) the utility value obtained from the

network can be optimized, i.e., increased.

UQ(vi) =

|V |−1∑

j=0

w
Q
ijw

Q
ji

|V |−1∑

k=0

w
Q
ikw

Q
ki(1− w

Q
jk)(1 − w

Q
kj)

(4)

B. Mediation Cases

We study various cases of mediation needs as shown in

Figure 3 to demonstrate the application of the proposed me-

diation algorithm. For those illustrative examples we neglect

contextual constraints Q and thus assume that connections

are established with a weight w = 1. Furthermore, assuming

w = 1 for the following examples better visualize the impact

of certain links in the network.

v0

v1 v3v2

(a) full.

v0

v1 v3v2

(b) partial.

v0

v1 v3v2

(c) limited.

Figure 3. Various mediation needs for v0.

In particular, we investigate the obtained utility of a

certain v0 in simple networks consisting of only four nodes

(Figure 3). Here, U(v0) can be calculated as given in Eq. 5.

Note, self connections are implicitly weighted with w = 1.

U(v0) =

3∑

j=0

w0jwj0

3∑

k=0

w0kwk0(1− wjk)(1 − wkj) (5)

Actually, four different cases of mediation needs exist

from an algorithmic perspective (Figure 3 depicts three of

them): (i) Full Mediation means that v0 is encouraged to

mediate information between all of its neighbors because

none of them are interconnected; (ii) Partial Mediation

means that there are some mediation needs that can be

fulfilled exclusively, e.g., between v2 and v3 in Figure 3(b);

(iii) Limited Mediation is the case when no mediation is

required exclusively, because of available alternatives, e.g.,

mediation between v1 and v3 can be performed by v0 and

v2 in Figure 3(c); (iv) No Mediation is the case, when there

are neither exclusive nor alternative mediation needs, i.e., all

neighbors of v0 are directly connected with each other.

Table I
U(v0) FOR DIFFERENT MEDIATION CASES.

case Uj=0 Uj=1 Uj=2 Uj=3 U(v0)

full 0 2 2 2 6

partial 0 1 1 2 4

limited 0 1 0 1 2

none 0 0 0 0 0

Table I shows the results of utility computation for node

v0 in all of the mentioned cases. The first sum in Eq.

5 (with index j) is split in single subresults shown for

j = 0 . . . 3. The last column shows the utility result U(v0).
Typically, every node that is exclusively connected to v0,

i.e., not connected to another one of v0’s neighbors, adds

a utility that is equal to |Nv0 | − 1, where |Nv0 | is the

number of v0’s neighbors in the network. In other words,

v0 has the opportunity to mediate between this exclusively

connected node and all other neighbors. If that exclusive

nodes becomes connected to one of v0’s neighbors, the

obtained utility is reduced by 1 (see partial mediation case).

Basically, supporting the emergence of connections between

neighbors of v0 reduces its utility in the first place. However,

allowing members to establish links may be reciprocated

by affected actors, and thus, extend the number of known

network members.

C. Utility Optimization Algorithm

Each actor in the network periodically attempts to improve

its current utility by replacing active collaboration partners

that provide only low utility with known but currently

Algorithm 1 Utility optimization algorithm.

Input: context Q, node v

Global: activities A, network G = (V, E)
V Q ←passiveNeighbors(v, Q) ⊲ passive neighbors with free capacities

V A ←activeNeighbors(v, A,Q) ⊲ actively collaborating neighbors

UQ ←calcUtility(v, V A, Q) ⊲ current utility in context Q

U
Q
max ← UQ

⊲ try to replace single active members with passive ones

V
Q
d
←determineDeLinkCandidates(v, V A) ⊲ active low-utility partners

for each v
Q
d
∈ V

Q
d

do ⊲ for each partner that can be replaced

for each v
Q
i ∈ V Q do ⊲ try all passive partners

V A
a ← V A\{vQ

d
} ∪ {vQi } ⊲ modified temporary active set

UQ ←calcUtility(v, V A
a , Q) ⊲ alternative utility

if UQ > U
Q
max then ⊲ apply changes if higher utility

U
Q
max ← UQ

V Q ← V Q\{vQi } ⊲ remove candidate from passive set

V A ← V A
a ⊲ make temporary set permanently active

end if

end for

end for



passive network members. That procedure is described by

Algorithm 1. First of all, when a node v executes this

algorithm for a given context Q (e.g., expertise area), passive

neighbors V Q and active neighbors V A are determined.

Using the set V A, v’s current utility UQ can be calculated.

This value becomes the initial maximum value. Then a list of

de-link candidates V
Q
d , e.g., actually unreliable collaboration

partners or members of low utility, is determined. Now,

the algorithm iterates through this set and tries to replace

each single de-link candidate v
Q
d with one of the passive

neighbors v
Q
i ∈ V Q. If the utility value increases with this

modification, the sets of active and passive neighbors are

adapted accordingly. Notice, the assumption is that node v

is in fact able to set up a collaboration (i.e., activity) with v
Q
i

until the next update cycle. Otherwise, this replacement does

not increase v’s utility and the current v
Q
i would become a

de-link candidate in the next update period.

IV. EVALUATION AND DISCUSSION

In this section we outline the application of our approach

and derive findings by studying various simulations.

A. Experiment Background

Resilience (robustness) of complex networks can be stud-

ied by analyzing the effects of node and edge removal.

Social networks, as studied here, are one class of a complex

networks. Other examples include the WWW, power grids,

or biological networks. Percolation analysis [12] can be used

in complex networks to understand the effects of node/edge

removal; for example, to study the attack resilience of net-

works [13]. Here we take this approach to analyze the utility

evaluation of mediators in social network under different

conditions. The question we attempt to answer is how a

mediator’s utility is influenced by decreasing connectivity of

the network. Based on gradually removed edges, we attempt

to understand the effects of our utility metric. We expect that

the utility of a mediator is particularly high if a network is

not well-connected (see metrics such as average path length,

density). Our approach is as follows:

• Take the initial network and calculate v’s utility.

• Remove edges between nodes that are highly similar,

thereby introducing potential ‘gaps’ and mediation op-

portunities. Repeat the calculation of a node’s (media-

tor) utility.

• Remove edges between nodes that are less similar

to study the impact of profile similarity (mediation

between similar nodes versus mediation between nodes

with different interests).

B. Discussion and Findings

Bootstrapping Collaboration Networks. First, we out-

line a bootstrapping mechanism for social and collaborative

networks. Our approach heavily relies on monitored inter-

actions and collected data. For instance, the intensity, i.e.,

weight, of social relations is determined through various

metrics – see Eq. 2. In particular we utilize interest similarity

(isim) to connect people with similar expertise (derived

from manually defined profiles and tagging data), and av-

erage rating (avgr) for evidence-based relations based on

previous collaborations. The parameter α controls which

one of the parameters receive higher attention and influences

the final weight more (Eq. 2). We distinguish between three

cases: (i) Bootstrapping Phase (α = 1): here, only isim is

used which describes a certain interest overlap between two

people’s profiles. Thus, potentially all nodes are connected

to all others, independent from whether they collaborated

in the past. Relations described by isim only, can be

seen as a prediction of successful future interactions. (ii)

Formation Phase (α ∈ ]0, 1[ ): here, we use a mix of isim

and collected avgr to determine the weight. In other words,

as members begin to interact, predictions based on isim lose

importance while assigned ratings due to reliable interaction

behavior mainly influence a link’s weight. (iii) Saturation

Phase (α = 0): after a while, rating-based structures emerge,

which means that only avgr is used to determine a link’s

weight. However, these structures are in a constant flux and

change due to periodic re-evaluation of personal utilities.

We use above mechanisms to create a synthetic collabo-

ration network G = (V,E) with |V | = 100 for our further

studies. In the beginning, we assume that all nodes are

connected to all others described by similarity relations

(isim uniformly distributed in [0, 1]) resulting in |E| =
1
2 · |V |(|V | − 1) = 499500. Then, we utilize the preferential

attachment model of Barabasi and Albert [14] to let rating-

based graphs emerge with power-law distributed degrees.

These structures are the basis for a realistic scenario and

edge weight distribution among members. As typcial for

scale-free collaboration networks, we assume that 80% of

interactions take place between 20% of the most active users.

Simple Percolation Analysis. Figure 4(a) depicts the

aggregated utility (the percentaged amount of the maximum

possible utility) of all nodes in the network when gradually

decreasing the number of edges in the network. We start

with a fully saturated graph (amount of edges is 100%). Two

experiments show the difference between (i) binary relations

only, i.e, weight = {0|1}, and (ii) weighted relations with
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Figure 4. Utility and number of median nodes for varying edge saturations
and weighting models (binary v.s. weighted edges).



weight = [0, 1]. In the binary case, the utility rises when

edges are removed, because at the same time mediation

opportunities emerge. At an amount of ≈ 65% the received

utility is at a maximum. In the weighted case, the utility

decreases strictly monotonic from the beginning, since there

are always mediation opportunities between neighboring

nodes, even if they are directly connected (except the case

where mediation targets are directly connected with an edge

weight = 1). Figure 4(b) demonstrates the amount of nodes

that receive a utility above the median. Both cases produce

similar results, i.e, removing 90% of edges still results in a

fair distribution with 45% to 50% of nodes having an utility

above the median.

We expect that the weights of relations have major in-

fluence on the received utility of a node. Thus, we apply

percolation strategies where (i) lowly weighted edges are

removed first (LowToHigh), and (ii) highly weighted edges

are removed first (HighToLow). Figure 5 shows again

the aggregated utility of nodes and the amount of nodes

receiving utility above the median value. Obviously lowly

weighted edges have less influence on the aggregated utility

(utility drops slower) compared to highly weighted edges

(utility drops faster). This is of particular interest, because

one might assume that removing highly weighted edges first

discovers new and better mediation opportunities. In fact,

this is the case but also highly weighted connections to

mediation targets are removed at the same time which results

in lower average utility. The importance of weak links (even

compared to strong ones) have been extensively studied by

[15].
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Figure 5. Utility and number of median nodes for varying edge saturations
and different percolation strategies (LowToHigh v.s. HighToLow).

Bounded Percolation Analysis. Until now, we neglected

the costs for maintaining relations. But in reality, keeping

relations active results in high effort for serving requests and

mediating information. Thus, usually only a small amount

of all known partners are involved in active collaborations

at the same time. We define that a node v has only a limited

amount of resources to cope with costs for serving partners.

We further define the benefit-cost factor ζ(v) = U(v)
costs(v) that

is the basis to decide whether node v should maintain or

release a partner. In other words ζ is the basis to determine

how much effort v should invest and thus its re-linking

behavior.

Typically, actors can cope with a predefined cost level,

i.e., they have a limited amount of credits or resources (e.g.,

time) which they can invest. Thus, we argue that in most

cases they attempt to keep ζ → max. Figure 6 visualizes

the relative utility (amount from the highest possible utility

when neglecting occurring costs) in a gradually disconnect-

ing graph (decreasing amount of edges). For ζ → max,

this experiment applies a cost function that allows a single

member to collaborate with a maximum of 5 neighbors at

the same time. Notice, in the beginning utility typically rises

with decreasing amounts of edges when partners become

served exclusively. Furthermore, only a limited number of

neighbors can be served when accounting for costs. So, this

curve has a shape similar to the binary weighted model in

Figure 4(a) (binary edge weighting).

0102030405060708090100
0

20

40

60

80

100

amount of edges [%]

re
la

ti
v

e
 u

ti
li

ty
 [

%
]

 

 

ζ → max

ζ → max/5

ζ → max/10

ζ → max/50

Figure 6. Utility for varying benefit-cost factors ζ .

However, in certain cases actors may try to obtain a

utility that is higher than in the case ζ → max. That

means, they decide to invest comparatively more effort in

order to obtain (even only slightly) higher utilities. Figure 6

shows the results for ζ → {max, max
5 , max

10 , max
50 }. Note, we

simplify the model and assume min ≈ max
50 ; i.e., the worst

(lowest) ζ factor means that costs are (nearly) neglected and

each user is able to invest 50 times more resources than in

the optimal case. As expected, the more effort is invested

to maintain relations, the higher utility can be obtained.

However, the amount of additional utility is comparatively

low. For instance, if the network is still connected with 65%

of the initial edges, then Uζ→max ≈ 0.5·Uζ→max/50, i.e., the

utility value can be doubled by coping with approximately

50 times higher costs.

Utility Distribution. We take the data from the previous

experiments and study the case for an amount of edges of

65% (maximum utility for ζ → max) in greater detail.

Until now, we just studied the aggregated utility in the

whole network (which possesses similar characteristics as

the average utility of a single user depending on the amount

of edges in the network). Here, we group members with

respect to their obtained utility and highlight the distribution

of actors in the single classes. Figure 7(b) depcits the

relative amount of members from the whole population in

distinct utility classes (reflecting users obtaining more than

10,20,30. . . percent of the maximum possible utility value).

Figure 7 shows the results. In particular, when (nearly)

neglecting costs (ζ → max
50 ) the distribution spans most
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(b) ζ → max (costs kept low).

Figure 7. Node distribution in different utility classes.

utility classes. In other words, there are approximately as

many actors who receive 20% of the maximum value as

members with 50%. That distribution seems to be unfair.

However, when accounting for costs, actors are not able

to claim as many neighbors as possible (based on their

structural connectivity) but need to carefully select their col-

laboratin partners. So many partners are served exclusively

and most actors are able to find a small amount of valuable

partners. Here, approximately 60% of members are located

in the 20% utility class. This demonstrates that applying

the benefit-cost factor ζ seems to be a feasible concept to

‘balance’ networks, i.e., to distribute gained utility in a fair

manner among community members.

V. SOA IMPLEMENTATION AND APPLICATION

We implemented the proposed model in a SOA-based

collaboration environment (see [3], [16] for the big picture)

to study the integration with existing standards, mainly

FOAF, and its application in end-user environments.

A. SOA-based Collaboration Environment

Figure 8 shows the basic building blocks located on three

layers of different abstraction.
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Figure 8. SOA-based Collaboration architecture.

Portal Layer. Here, we developed tools for (1) Partner

Discovery using the approach of this paper; (2) Collabora-

tion Setup, including the creation, update and deletion of

activity structures [17] that describe the context of interac-

tions; and (3) for Information Sharing and Mediation, i.e., to

forward information selectively between mediation targets.

Web Services Layer. Services implement various func-

tionalities in the back-end to enable the discovery and com-

positions of partners based on FOAF profiles, the creation

of social networks using monitored and fetched data (as ex-

plained in Section II), and communication and coordination

facilities to exchange messages and files.

Data Layer. The bottom layer manages distributed data,

including FOAF profiles, activities, SOAP logs, and artifacts

(i.e., documents – see [16]) that are mediated between

community members.

B. Social Network Management with FOAF

Various concepts and protocols have been proposed to

manage open social and collaborative networks in a dis-

tributed manner. The Friend-Of-A-Friend (FOAF) concept is

one of the most popular ones on the Web. It allows to model

user properties, interests and relations with a well-known

ontology. We apply FOAF to facilitate the discovery process

used to find potential collaboration partners and let users

mediate information (modeled as documents) by linking

them to their profiles. Listing 1 shows a simplified example

of a public FOAF profile containing name, interests

and knows-relations to other community members.

1<?xml version="1.0"?>
2<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"

3xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4xmlns:foaf="http://xmlns.com/foaf/0.1/"

5xmlns:dc="http://purl.org/dc/elements/1.1/"

6xmlns:wot="http://xmlns.com/wot/0.1/"

7<foaf:Person rdf:ID="me">
8<foaf:name>Florian Skopik</foaf:name>
9<foaf:nick>florian</foaf:nick>
10<foaf:mbox sha1sum>a4b378...</foaf:mbox sha1sum>
11<wot:haskey rdf:nodeID="KeyFS" />
12<foaf:interest rdf:resource="http://..." />
13<foaf:account>
14<foaf:OnlineAccount>
15<foaf:accountServiceHomepage rdf:resource="http://..../" />
16<foaf:accountName>florian skopik</foaf:accountName>
17</foaf:OnlineAccount>
18</foaf:account>
19<foaf:knows>
20<foaf:Person>
21<foaf:mbox sha1sum>1a4578...</foaf:mbox sha1sum>
22<foaf:name>Daniel Schall</foaf:name>
23</foaf:Person>
24</foaf:knows>
25</foaf:Person>
26</rdf:RDF>

Listing 1. Example of public FOAF file.

Due to space limitations we highlight the usage of ex-

tended FOAF tags and certain add-ons that are used besides

the basic profiles in our system:

• External Document Links (Document tags) are used

to attach mediated information to personal profiles. For

instance, one can attach a link to a document that he

received from collaboration partners to his profile after

reviewing and removing sensitive content. Friends can

then retrieve the FOAF profile containing links to this

information.

• Public Key Infrastructures are embedded in FOAF with

the Web Of Trust ontology2 to allow particular commu-

nity members access to (parts of) one’s FOAF profile

2http://xmlns.com/wot/0.1/



[18]. This way, linked documents can be encrypted for

specific mediation targets only.

• Enrichment with Collected Interaction Data, such as

manual ratings (tipjar tag) of users, similarity of

defined interest tags, and weighting of knows-

relations based on interaction data provide more se-

mantic meaning to control the mediation process (i.e.,

a kind of information sharing [16]).

VI. RELATED WORK

Nowadays, virtual organizations [4] are more and more

realized with SOA concepts, regarding service discovery,

service descriptions (WSDL), dynamic binding, and SOAP-

based interactions. A particular issue in such environments

is the mediation and selective dissemination of information

(SDI) [16]. The availability of rich and plentiful data on

human interactions in social networks has closed an im-

portant loop [19], allowing one to model social phenomena

and to use these models in the design of new computing

applications such as crowdsourcing techniques [20].

Game-theoretic models [21] allow to explain the behavior

of single actors. In coalitional games, people attempt to find

collaboration partners to increase their benefits gained from

the network. Depending on the environment, social relations

are established based on the outcome of previous interactions

[3] and interest similarity [22]. In our approach, various

metrics express social behavior influenced by the context in

which collaborations take place [3]. For instance, reciprocity

[9] is a concept describing that humans tend to establish

a balance between provided support and obtained benefit

from collaboration partners. A further important concept

in group formation is the structural holes theory [5]. This

theory states that actors actively attempt to position them-

selves in beneficial positions within a community network.

Many works have considered implications of this theory,

for instance [23] in economics, and also mapped to Web

environments [11].

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced an opportunistic approach that

explains the formation process in open collaborative net-

works on the Web. We discussed two well-known theories,

reciprocity and structural holes, and introduced a utility-

based model. Several simulations showed the application

of this model and its basic properties. Furthermore, we

highlighted a technical point of view and the implementation

and embedding of this model in a SOA-based collaboration

environment.

Our future work includes the deployment of our imple-

mented prototype in an end-user business environment to

study its performance under realistic conditions. For that

purpose we collaborate with large-scale enterprises in course

of the EU project COIN.
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