
DISSERTATION

Dynamic Trust in Mixed Service-oriented Systems
Models, Algorithms, and Applications

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Prof. Dr. Schahram Dustdar

Distributed Systems Group
Institut für Informationssysteme (E184)

Technische Universität Wien

und

Prof. Dr. Frank Leymann

Institut für Architektur von Anwendungssystemen (IAAS)
Universität Stuttgart

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Florian Skopik

Matr.Nr. 0325234
Franz Schubertstraße 43
3701 Großweikersdorf

Wien, Mai 2010

Abstract

The way people interact in collaborative and social environments on the Web has evolved
in a rapid pace over the last few years. Services have become a key-enabling technology to
support collaboration and interactions. Pervasiveness, context-awareness, and adaptiveness
are some of the concepts that emerged recently in service-oriented systems. A system is not
designed, deployed, and executed; but rather evolves and adapts over time. This paradigm
shift from closed systems to open, loosely coupled Web services-based systems requires
new approaches to support interactions.

A large amount of social networks and collaboration platforms are realized as service-
oriented systems enabling flexible compositions of services and support of interactions.
Usually, interactions between entities in such systems do not only span supporting software
services, but also human actors, participating in the network. A mixed service-oriented
system is therefore composed of human and software services. In open eco-systems where
massive collaborations between thousands of humans and services take place, flexibly join-
ing and leaving the environment, their interactions are highly dynamic and often influenced
by the role and reputation of collaboration partners. Therefore, introducing the concept of
system-managed trust in such environments helps to keep track of the dynamics and to
improve the overall benefit of social systems and people’s collaboration performance. In
this context, trust is not defined from a common security perspective, but from a social and
behavioral point of view. The trustworthiness of actors is not approved by certificates and
negotiations, but relies on the personalized outcome of previous interactions in terms of
reliability, dependability and success.

This research aims at covering, models, algorithms and applications that support the
management of trust in such mixed service-oriented systems environments. In particu-
lar, this thesis deals with (i) trust and reputation models in service-oriented architectures,
relying on behavior patterns and dealing with temporal aspects; (ii) trust mining and pre-

diction on the Web, including community mining, member clustering and ranking; and (iii)
trust-based adaptations in service-centric applications, such as context-aware discovery
and ranking of experts, selective information disclosure in collaborations, and trust-aware
group formations in large-scale networks.

Kurzfassung

Internet-basierte kollaborative und soziale Plattformen haben in den letzten Jahren grundle-
gend das Verhalten und die Interaktionsmuster von Benutzern beeinflusst. Services wurden
zur Schlüsseltechnologie um Kollaborationen und Interaktionen zu unterstützen. Mobilität
von Benutzern, Kontextabhängigkeit und Adaptivität von Systemen sind nur einige der
Konzepte, welche kürzlich in service-orientierten Architekturen Einzug gehalten haben.
Kontextabhängige Systeme werden nicht in sequentiellen Schritten entwickelt, konfiguri-
ert, und betrieben, sondern dynamisch über die Zeit an neue Anforderungen angepasst.
Dieser Paradigmenwechsel von geschlossenen Systemen zu offenen, lose gekoppelten Web
Service-basierten Systemen benötigt neue Ansätze um Interaktionen zu unterstützen.

Ein Großteil heutiger sozialer und kollaborativer Plattformen wird als Service-
orientierte Systeme realisiert und unterstützt die flexible Komposition von Services und
deren Interaktionen. In der Regel finden in solchen Systemen Interaktionen nicht nur
zwischen Software Services statt, sondern auch zwischen Personen, welche am Netzwerk
teilhaben. Ein "Mixed System" ist daher eine Komposition aus Menschen und Software-
basierten Services. In offenen Systemen, wo Kollaborationen zwischen mehreren tausend
Menschen und Services stattfinden, welche dieser Umgebung flexibel beitreten und diese
auch wieder verlassen, sind Interaktionen von Dynamik geprägt und auch meist von
Rollen und Reputation von Kollaborationspartnern beeinflusst. Die vorgelegte Disserta-
tion führt das Konzept des System-verwalteten Vertrauens ein, welches dabei helfen soll,
den Überblick und Kontrolle über die Dynamik in solchen Systemen zu behalten. In
dieser Arbeit wird Vertrauen von einem sozialen Standpunkt betrachtet; im Gegensatz zu
einer üblichen Security-Perspektive. Vertrauen in einen Akteur wird dabei nicht durch
Zertifikate und Verhandlungen hergestellt, sondern beruht maßgeblich auf den Ergebnis-
sen früherer Interaktionen und deren individuellen Nutzen, im Sinne der Zuverlässigkeit,
Glaubwürdigkeit und des Erfolgs von Kollaborationen.

Diese Arbeit beschäftigt sich mit Modellen, Algorithmen und Applikationen, welche
die Verwaltung von Vertrauen in "mixed" Service-orienterten Systemen ermöglichen. Ins-
besondere behandelt diese Dissertation (i) Vetrauens- und Reputationsmodelle in Service-

orienterten Architekturen, welche auf Verhaltensmuster aufbauen und auch temporale As-
pekte berücksichtigen; (ii) Vertrauensbildung und Vorhersage im Web, einschließlich Grup-
penbildung und dem Erstellen von Ranglisten in Internet Communities; und (iii) Ver-

trauensbasierte Adaption in Service-orientierten Applikationen, wie zum Beispiel kon-
textabhängige Suche und Bewertung von Experten, selektives Offenlegung von Informatio-
nen in Kollaborationen, und vertrauensabhängige Gruppenbildung in Netzwerken großen
Umfangs.

Acknowledgements

First and foremost, I would like to thank my adviser Prof. Schahram Dustdar for his con-
tinuous support and the chance to do a PhD thesis in the Distributed Systems Group. He
created an environment that allowed me to develop my own ideas, and reliably kept me on
track to turn them into reality. Additionally, I would also like to thank Prof. Frank Ley-
mann from the University of Stuttgart for valuable comments to improve this thesis and for
being my examiner.

I thank my colleague Daniel Schall who introduced me to the concepts of Mixed Sys-
tems and provided invaluable support during the last years. He taught me how to ask the
right questions and express my ideas. He showed me different ways to approach a research
problem and the need to be persistent to accomplish any goal. I would also like to acknowl-
edge all my colleagues in our group, especially the members of the 320er team, Christoph
Dorn, Lukasz Juszczyk, Harald Psaier, and Martin Treiber. It was a great time working
together with you on various papers, software prototypes, and – last but not least – project
proposals.

I am grateful for the constant financial support from the EU project COIN (FP7-
216256), funding the research discussed in this dissertation.

Finally, I owe special gratitude to my family for continuous and unconditional support:
To my parents for all the opportunities they made available to me, and for the support they
have given me along the way; and to Tina for her enduring patience, understanding, and
love. This dissertation is dedicated to you.

Florian Skopik
May, 2010

Vienna, Austria

For my parents and Tina

Publications

Parts of the work presented in this dissertation have been published in the following con-
ference papers, journal articles, and technical reports.

1. Skopik F., Schall D., Dustdar S. (2010). Modeling and Mining of Dynamic Trust in

Complex Service-oriented Systems. Information Systems. Elsevier. forthcoming.

2. Skopik F., Schall D., Dustdar S. (2010). Supporting Network Formation through

Mining under Privacy Constraints. 10th Annual International Symposium on Appli-
cations and the Internet (SAINT), July 19-23, 2010, Seoul, South Korea. IEEE.

3. Psaier H., Skopik F., Schall D., Dustdar S. (2010). Behavior Monitoring in Self-

healing SOA. 34th IEEE Computer Software and Applications Conference (COMP-
SAC), July 19-23, 2010, Seoul, South Korea. IEEE.

4. Skopik F., Schall D., Dustdar S., Sesana M. (2010). Context-Aware Interaction Mod-

els in Cross-Organizational Processes. 5th International Conference on Internet and
Web Applications and Services (ICIW), May 9-15, 2010, Barcelona, Spain. IEEE.

5. Skopik F., Schall D., Dustdar S. (2010). Innovative Human Interaction Services -

Final Specification. FP7-216256 COIN Technical Report D4.5.1b, May 2010.

6. Treiber M., Skopik F., Schall D., Dustdar S., Haslinger S. (2010). Context-aware

Campaigns in Social Networks. 5th International Conference on Internet and Web
Applications and Services (ICIW), May 9-15, 2010, Barcelona, Spain. IEEE.

7. Skopik F., Schall D., Dustdar S. (2010). Adaptive Information Disclosure in a Dy-

namic Web of Trust. Technical Report TUV-184-2010-03, April 2010, under review

for publication.

8. Schall D., Skopik F., Dustdar S. (2010). Trust-based Discovery and Interactions in

Expert Networks. Technical Report TUV-1841-2010-01, April 2010, under review

for publication.

9. Skopik F., Schall D., Dustdar S. (2010). Trust-based Adaptation in Complex Service-

oriented Systems. 15th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), March 22-26, 2010, University of Oxford, UK. IEEE.

10. Skopik F., Schall D., Dustdar S. (2010). Trustworthy Interaction Balancing in Mixed

Service-oriented Systems. 25th ACM Symposium On Applied Computing (SAC),
March 22-26, 2010, Sierre, Switzerland. ACM.

11. Skopik F., Schall D., Dustdar S. (2010). Trusted Interaction Patterns in Large-scale

Enterprise Service Networks. 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing (PDP), February 17-19, 2010, Pisa, Italy.
IEEE.

x

12. Skopik F., Schall D., Dustdar S. (2009). Start Trusting Strangers? Bootstrapping

and Prediction of Trust. 10th International Conference on Web Information Systems
Engineering (WISE), October 05-07, 2009, Poznan, Poland. Springer.

13. Skopik F., Schall D., Dustdar S. (2009). The Cycle of Trust in Mixed Service-oriented

Systems. 35th Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), August 27-29, 2009, Patras, Greece. IEEE.

14. Skopik F., Truong H.-L., Dustdar S. (2009). Trust and Reputation Mining in Pro-

fessional Virtual Communities. 9th International Conference on Web Engineering
(ICWE), June 24-26, 2009, San Sebastian, Spain. Springer.

15. Skopik F., Truong H.-L., Dustdar S. (2009). VieTE - Enabling Trust Emergence

in Service-oriented Collaborative Environments. 5th International Conference on
Web Information Systems and Technologies (WEBIST), March 23-26, 2009, Lisbon,
Portugal. INSTICC.

16. Skopik F., Schall D., Truong H.-L., Dustdar S. (2009). Innovative Human Interaction

Services Specification. FP7-216256 COIN Technical Report D4.5.1a, January 2009.

17. Skopik F., Truong H.-L., Dustdar S. (2008). Current and Future Technologies for

Collaborative Working Environments. Study for the European Space Agency, ESA
ITT Number AO/3-12280/07/NL/CB, May 2008.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Research Challenges and Questions . 2
1.3 Dependencies . 3
1.4 Contributions . 4
1.5 Organization of the Thesis . 5

2 Related Work 7

2.1 Flexible and Context-aware Collaborations 8
2.2 Interactions in Mixed Service-oriented Systems 8
2.3 Autonomic Service-oriented Computing 9
2.4 Behavioral and Social Trust Models for SOA 9
2.5 Expert Ranking and Reputation Models 11
2.6 Information Disclosure under Privacy Constraints 12

I Trust and Reputation Models in SOA 13

3 The Cycle of Trust in Mixed Service-oriented Systems 15

3.1 Motivation . 15
3.2 Trust Modeling in Collaborations . 17
3.3 From Interactions to the Cycle of Trust . 19
3.4 Implementation of Fundamental Trust Inference in SOA 22
3.5 Discussion . 27

4 Trustworthy Interaction Balancing in Mixed Systems 31

4.1 Motivation . 31
4.2 Interactions and Compositions . 32
4.3 Interpretative Trust Inference . 34
4.4 Delegations and Balancing . 41
4.5 Evaluation and Discussion of a PVC Scenario 42

5 Trusted Interaction Patterns in Enterprise Service Networks 47

5.1 Motivation . 47
5.2 Coordination and Composition . 48
5.3 Formalized Social Trust Model . 50
5.4 Interaction Patterns and Trust . 55
5.5 TrueExpert Architecture . 60
5.6 Discussion . 64

xii Contents

II Trust Mining and Prediction on the Web 67

6 Trust and Reputation Mining in Professional Virtual Communities 69

6.1 Motivation . 69
6.2 Trustworthy Sources of Data . 70
6.3 Trust and Roles in Virtual Community Discussions 71
6.4 Discussion Mining Approach . 72
6.5 Trust Mining Model . 75
6.6 Evaluation and Discussion . 76

7 Bootstrapping and Prediction of Trust 83

7.1 Motivation . 83
7.2 Towards Prediction of Trust . 84
7.3 Tagging Environment . 85
7.4 Similarity-based Trust Prediction . 87
7.5 Implementation . 91
7.6 Evaluation and Discussion . 93

III Trust-based Service-centric Applications 97

8 Context-aware Interaction Models in Virtual Organizations 99

8.1 Motivation . 99
8.2 Foundational Concepts . 101
8.3 Context-aware Human Interaction Support 104
8.4 Results and Findings . 107

9 Trust-based Discovery and Interactions in Expert Networks 109

9.1 Motivation . 109
9.2 Flexible Involvements of Experts . 110
9.3 Expertise Model . 112
9.4 Expert Discovery . 114
9.5 Evaluation . 119
9.6 Discussion . 122

10 Trust-based Adaptations in Complex Service Systems 123

10.1 Motivation . 123
10.2 The Science Collaboration Scenario . 125
10.3 Design and Architecture . 129
10.4 Evaluation and Discussion . 135

11 Supporting Network Formation under Privacy Constraints 139

11.1 Motivation . 139
11.2 Privacy-aware Group Formations . 141
11.3 Privacy in Collaborative SOA . 143

Contents xiii

11.4 Implementation and Application . 147
11.5 Evaluation and Discussion . 148

12 Conclusion and Future Research 153

Bibliography 155

A Collaboration Network Provider Service Specification 167

A.1 Overview of the Service . 167
A.2 Data Representation . 167
A.3 Interface Description . 168

List of Figures

1.1 The big picture of combined contributions. 4

3.1 Trust related concepts. 17
3.2 Factors influencing trust. 18
3.3 Activity model. 20
3.4 The MAPE cycle applied for dynamic trust inference. 21
3.5 VieTE architecture. 22
3.6 VieTE trust and activity management portal. 28

4.1 A mixed service-oriented PVC. 33
4.2 VieTE framework overview. 35
4.3 An example showing fuzzy trust inference. Applied interaction metrics are

response time tr = 18h and success rate sr = 75%. (a) definition of mem-
bership functions and fuzzified interaction metrics; (b) four applied fuzzy
rules following the max-min inference; (c) defuzzification by determining
the center of gravity. 39

4.4 Result space for the given rule set. 40
4.5 Delegations and their impact on trust. 41
4.6 Simulation setup (left side) compared to the intended application (right

side) of the VieTE framework. 42
4.7 Network structure after simulation round n={0, 100, 250}. Elliptic nodes

are fair players, rectangular shapes represent erratic actors, diamond
shaped nodes reflect nodes with malicious behavior. 44

4.8 Global RFS response success rate of the simulated actor network. 45

5.1 Involving experts from the Expert Web. 49
5.2 Smoothing of trust values over time. 54
5.3 From interactions to trust. 56
5.4 Triad interaction pattern. 59
5.5 Proxy and master-slave patterns. 59
5.6 System architecture enabling trusted help and support in the Expert Web. . . 60
5.7 Rewarding and punishment of trust relations according to delegation be-

havior. 64

6.1 Architectural overview of the trust and reputation mining service. 71
6.2 Mapping from a discussion thread to the interaction network model. 74
6.3 Degree distribution. 77
6.4 Link rank compared to number of posts for top1000 linked users. 79
6.5 Link rank compared to score rank for each user. 79
6.6 Link ranks in different contexts. 81

xvi List of Figures

6.7 Trust network (reduced). 81

7.1 trust(n1, n3)=?: The need for trust prediction in a Web of Trust. 85
7.2 Description of the tagging environment. 86
7.3 An approach to trust prediction based on clustering and similarity. 87
7.4 A small part of the citeulike global interests tree. 89
7.5 An example for tag mapping and ATP comparison: (a) interest tree and

actor tagging actions. (b) creating ATPs by mapping tagging actions to the
tree. (c) calculating ATP similarities on different tree levels. 90

7.6 Reference architecture enabling trust prediction in social network platforms. 92
7.7 ATP similarity in citeulike on different levels. 94

8.1 Human interactions in processes spanning organizations. 100
8.2 The COIN Framework enabling cross-organizational collaborations. 101
8.3 Flexible expert involvement in running processes. 103
8.4 Expert ranking results for Q1 and Q2. 106

9.1 Discovering and including experts for online help and suppport. 111
9.2 Hubs with different areas of expertise. 112
9.3 (a) Excerpt skill taxonomy in the software engineering domain. (b) illus-

trates an example query specifying the demanded skills as formulated by
an expert seeker. (c) gives an example of a user skill profile. 114

9.4 Interaction and discovery model. 116
9.5 Advanced interaction patterns and rating. 117
9.6 Concurrent request processing time of ExpertHITS. 120
9.7 Comparison of total processing times. 120
9.8 Impact of ExpertHITS on rankings. 121
9.9 Ratings and quality. 121

10.1 Adaptation approach for mixed service-oriented systems. 124
10.2 On the emergence of trust. 126
10.3 Trust concepts utilized for trusted information sharing. 127
10.4 Interaction context model and shared information. 128
10.5 Architectural overview of the sharing framework. 130
10.6 Mode of operation of the sharing framework. 131
10.7 Generated network using the preferential attachment model. 135
10.8 Performance tests for mapping the graph model. 137
10.9 Overall performance of the Sharing Framework. 138

11.1 Supporting the balance between collaborations and privacy. 140
11.2 Fundamental patterns for sharing profile data. 142
11.3 Advanced Web of Social Trust browsing patterns. 143
11.4 Activity-centric collaboration model. 144
11.5 Activity-centric involvement model. 145
11.6 Example applying browsing patterns from n1’s perspective. 146

List of Figures xvii

11.7 Adapted activity management and profile data model (excerpt). 148
11.8 Collaboration network browser. 149
11.9 Size of the circle of trust with respect to average number of trustees for

different network sizes n and propagation path lengths pp. 150
11.10Required trust graph operations with respect to average number of trustees

for different network sizes n and propagation path lengths pp. 150

A.1 Data model of the Collaboration Network Provider. 168

List of Tables

3.1 Symbol descriptions. 24

4.1 Metrics utilized for trust inference. 36

6.1 Overlap similarities (OSim) of top linked and top scored users in percent. . 80

7.1 Data properties for constructing the global interests tree. 94

8.1 Example rankings accounting for experience, reputation, and responsiveness.107

9.1 Hubs and authorities in the Expert Web. 118
9.2 ExpertHITS computation performance. 119

10.1 Sharing Proxy REST-style interface. 132
10.2 Trust inference performance results. 136

A.1 Collaboration Network Provider operations. 169

Listings

3.1 Service interaction log example. 23
3.2 Action log example. 23
3.3 Generic interaction log example. 23
3.4 Constraint definition example. 26
4.1 Simplified RFS via SOAP example. 36
4.2 Rules for inferring trust upon tr and sr. 39
5.1 Personalized trust aggregation. 61
5.2 Discover services upon requirements. 61
5.3 Rules for service selection. 62
5.4 RFS schema definition. 63
5.5 WSDL RFS binding. 63
5.6 RFS acceptance and delegation rules. 63
10.1 XSD for information about paper drafts. 132
10.2 Catalog entry schema excerpt. 133
10.3 Sharing rule schema excerpt. 133
10.4 Exemplary view on paper drafts. 134
A.1 Collaboration Network Provider (CNP) WSDL 169

List of Abbreviations

B4P BPEL for People (also: BPEL4People)
BPEL see WS-BPEL

BPMN Business Process Modeling Notation
COIN Collaboration and Interoperability of Networked Enterprises (EU project)
ECA Event-Condition-Action
FOAF Friend of a Friend
HPS Human Provided Services
HTML Hyper Text Markup Language
IM Instant Messaging
IP Internet Protocol
OEM Original Equipment Manufacturer
PVC Professional Virtual Community
QoS Quality of Service
REST Representational State Transfer
RFS Request for Support
SaaS Software as a Service
SBS Software-based Service
SDI Selective Dissemination of Information
SLA Service Level Agreement
SMS Short Message Service
SOA Service-oriented Architecture
SOAP originally: Simple Object Access Protocol
UDDI Universal Description Discovery and Integration
VieTE Vienna Trust Emergence Framework
VO Virtual Organization
VoIP Voice over IP
WS Web Service
WS-BPEL Web Services Business Process Execution Language
WSDL Web Service Description Language
WSMX Web Services Modelling Execution Environment
XFN XHTML Friends Network
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XPDL XML Process Definition Language
XSD XML Schema Definition
XSL Extensible Stylesheet Language
XSLT XSL Transformation

CHAPTER 1

Introduction

Trust is a social good to be protected just as much as the air we breathe or the

water we drink. When it is damaged, the community as a whole suffers; and

when it is destroyed, societies falter and collapse.

Sissela Bok, "Lying: Moral Choice in Public and Private Life"

New York, Patheon Books, 1978.

Contents

1.1 Motivation . 1

1.2 Research Challenges and Questions . 2

1.3 Dependencies . 3

1.4 Contributions . 4

1.5 Organization of the Thesis . 5

1.1 Motivation

The support of people’s interactions on collaborative and social Web platforms has evolved
in a rapid pace over the last few years. Services have become a fundamental pillar of mod-
ern Web architectures. Today’s support of pervasiveness, context-awareness, and adaptive-
ness leads to a paradigm shift from traditional closed environments to open, loosely cou-
pled, service-oriented systems. However, as these systems become increasingly complex,
they also require new approaches to support discovery of members and their interactions.

While others mainly focus on either communities of humans (that may be supported
by communication services), or compositions of pure software components, we deal with
a mixture of humans and Web Services in one harmonized environment. A Mixed Service-

oriented System comprises human- and software services that can be flexibly and dynami-
cally composed to perform various kinds of activities. Therefore, interactions in such a sys-
tem do not only span humans, but also software services. The Human-Provided Services
(HPS) framework [106] enables human interactions through standardized SOA technolo-
gies, such as WSDL, SOAP, and various WS-* protocols. Thus, humans and Web services
can be seamlessly unified in one environment using the same grounding technologies. Such
Mixed Systems may be applied in a wide range of domains. Imagine a support community,
where people can ask questions and other participants provide answers. In today’s Internet
forums there are plenty of questions that have been either already answered before or can

2 Chapter 1. Introduction

be easily answered by referencing manuals and FAQs1; and thus could be automatically
processed by Web services without human intervention. Recent efforts already try to in-
tegrate intelligence in the Web through sophisticated reasoning technologies (see Wolfram
Alpha2). The advantages of introducing services in human networks are obvious: both
humans and services can be composed to complement each other in beneficial ways. For
instance, while services are able to process and repeat simple procedures very fast, humans
are able to process more demanding requests.

However, with today’s technologies it is hard – if not impossible – to keep track of
the dynamics in such open loosely coupled large-scale systems. Therefore, introducing the
concept of trust that dynamically emerges and periodically adapts, deems to be an intu-
itive concept to address this challenge [7, 58]. Considering trust relations when selecting
people for communication or collaboration, services to be utilized, and resources to be ap-
plied leads to more efficient cooperation and compositions of human- and software services
[111]. In contrast to many others, we do not discuss trust from a security perspective. In
this work we follow another view that is related to how much humans or other systems can
rely on services to accomplish their tasks [102].

This notion of dynamic social trust is closely coupled to common concepts from the
social network domain, including behavior modeling, interaction patterns, and incentive
engineering. In this thesis, we focus on enabling and supporting these concepts, and the
creation and application of trust and reputation models in Mixed Service-oriented Systems.
However, this is no pure theoretical work. We also present the technical grounding us-
ing existing SOA technologies and WS-Standards, and evaluate their applicability through
simulations and real world data analysis.

1.2 Research Challenges and Questions

In order to establish and manage trust in mentioned Mixed Systems, we deal with the
following challenges in this work:

• Meaning and Definition of Trust in Mixed Systems.

– What are representative Mixed Systems and why is trust management required?

– Which ones of the various definitions of trust are applicable in Mixed Systems
environments?

– What are the mechanisms to manage the context of trust?

• Determination of Trust in Service-oriented Networks.

– What are the advantages of calculating trust based on objectively collected
data?

– What data needs to be collected to determine trust and how is this realized in
today’s SOAs?

1frequently asked questions
2Wolfram Alpha: http://www.wolframalpha.com

1.3. Dependencies 3

– What mechanisms are available to infer trust based on observed and collected
data?

• Enabling Cold Start and Bootstrapping of Trust Management Systems.

– How can we guarantee the usability of the system to attract a critical mass of
users, also immediately after start-up, where no or not much data has been
collected?

– How can newcomers be flexibly and quickly integrated in an existing Web of
trust?

• Investigating Advances through Trust-based Adaptations in Service-centric Applica-

tions.

– How can the management of trust relations enhance group formation processes,
dynamic collaboration partner discovery, or the selective disclosure of informa-
tion in terms of privacy?

– How can trust management capabilities be integrated into existing service-
centric applications?

1.3 Dependencies

Research is never conducted alone and independent from others. In order to address the
mentioned challenges, we rely on some preceding work. In particular, we make extensive
use of the following prerequisites:

• SOA Infrastructures. This includes the usage of fundamental SOA techniques, such
as WSDL and SOAP (and supporting frameworks); but also more advanced stan-
dards, including WS-Addressing. We do not discuss these fundamental technologies,
but assume the reader is familiar with them. For instance, see [95] for comprehensive
discussions and explanations.

• Interaction Logging and Processing in SOA. Interaction Monitoring in SOA, i.e.,
intercepting SOAP calls, their temporal correlation, and calculation of higher level
interaction metrics has been well addressed in [104]. We use these results and base
our work on top of such captured interaction networks and their data sets.

• Human-Provided Services (HPS). The HPS framework is the means to enable con-
venient human interaction logging using appropriate SOAP interceptors and logging
services. We discuss how HPSs support the emergence of trust, however, we do not
address fundamental HPS design decisions. This information can be found in the
HPS literature, for instance [106].

4 Chapter 1. Introduction

1.4 Contributions

Major contributions (with respect to discussed research challenges) and their interrelations
are depicted in Figure 1.1. In detail they comprise the following novelties:

Community Management

WS

DL

WS

DL

a

a

a

P

P

P

P

P

P

Interaction Models

Delegation Patterns

Flexible Collaboration Concepts

Trust Definition

Temporal Trust Evaluation

Trust Inference Approaches

Bootstrapping Trust

Management Systems

Trust and Reputation Mining

Approaches on the Web

WS-* StandardsSOA Frameworks and Toolkits

Collaborative Mixed Service-oriented Systems Environment

SOA Grounding

Social Trust and Reputation Models Trust Mining and Prediction

Interaction and Behavior Metrics
Interest and Expertise Profile

Mining

Trust-based Service-centric Applications

Trusted Information
Sharing in Online

Collaborations

Expert Discovery
and Ranking in

Professional Virtual

Communities

Interest Group
Formation in Large-

Scale Networks

Figure 1.1: The big picture of combined contributions.

• Collaborative Mixed Service-oriented Systems Environment. Mixed Systems have
been extensively discussed in [104]. However, we revisit flexible collaboration con-
cepts with respect to motivating research challenges, and highlight the means of
interactions and delegation patterns for trust determination.

• Social Trust and Reputation Models. Our models, presented in Part I of this thesis,
rely on previous interaction behavior in terms of reliability, dependability and suc-
cess. We establish context-awareness of trust relations, and introduce concepts for
the automatic establishment and periodic updates by applying a rule based interpre-
tative approach.

• Trust Mining and Prediction Models. These models, discussed in Part II, are ap-
plied if no interactions have been observed in the past. They deal with the cold
start problem and with bootstrapping trust management systems. We present trust
and reputation mining algorithms, as well as concepts for automatic interest profile
determination and similarity measurements to predict future trust relations.

1.5. Organization of the Thesis 5

• Trust-based Service-centric Applications. Trust-based applications are in the focus
of Part III. Flexible expert discovery mechanisms and ranking models, selective in-
formation disclosure in formation scenarios, and group formations accounting for
privacy in the Web of Social Trust are among demonstrated examples. We discuss
the integration of trust and reputation concepts in service-oriented frameworks.

• SOA Grounding. In contrast to many others, for instance in the agent domain, we
also care for the technical grounding and the realization of our concepts using state
of the art SOA technologies, such as SOAP, WSDL and various WS-* standards.
This contribution spans all chapters within this thesis.

1.5 Organization of the Thesis

This dissertation includes the accumulated contributions from original research papers that
have been published during PhD studies. The single contributions are extended, unified,
and discussed in context of a big picture. Corresponding papers are referenced in the
following structural description of the thesis.

After motivating our work in Chapter 1, this dissertation continuous with Chapter 2, an
extensive analysis of the state of the art regarding trust and reputation in service-oriented
environments. The main body is divided into three parts according to contributions de-
picted in Figure 1.1:

• Part I: Trust and Reputation Models in SOA

– Chapter 3: The Cycle of Trust in Mixed Service-oriented Systems [111]: This
work starts with establishing a detailed understanding of the notion of trust in
mixed service-oriented systems, including a first technical grounding in SOA.
We discuss a fundamental approach to dynamically determine trust from the
system’s point of view, and further outline a user perspective.

– Chapter 4: Trustworthy Interaction Balancing in Mixed Systems [113, 117]:
This chapter extends and details the notion of trust with social and behavioral
aspects. We demonstrate the applicability of social trust by simulating an ex-
ample scenario where interactions between community members are balanced
through the means of delegations.

– Chapter 5: Trusted Interaction Patterns in Enterprise Service Networks [116]:
We refine our delegation concepts, and discuss the interplay of interaction pat-
terns and trust. For that purpose, we formulate our trust model and show its
application in context of the Expert Web use case.

• Part II: Trust Mining and Prediction on the Web

– Chapter 6: Trust and Reputation Mining in Professional Virtual Communities

[119]: In the case there are no observable SOAP interactions, trust is going to
be based on other data, gathered through mining on the Web. We present an
approach to determining relations of users in online discussion forums.

6 Chapter 1. Introduction

– Chapter 7: Bootstrapping and Prediction of Trust [112]: This chapter deals
with bootstrapping, i.e., predicting, trust between actors in the case no interac-
tions from previous collaborations have been captured.

• Part III: Trust-based Service-centric Applications

– Chapter 8: Context-aware Interaction Models in Virtual Organizations [118]:
We go one step further towards the realization of the Expert Web use case, and
introduce fundamental concepts to allow flexible expert discovery and involve-
ments in process-oriented environments.

– Chapter 9: Trust-based Discovery and Interactions in Expert Networks [105]:
We deal with an advanced expert discovery approach in the previously intro-
duced Expert Web. For that purpose, we extend Kleinberg’s popular HITS
algorithm with context-sensitive personalized trust weightings.

– Chapter 10: Trust-based Adaptations in Complex Service Systems [115]: We
discuss the meaning of trust for dynamic adaptations in service-centric systems.
For that purpose, we highlight mechanisms for flexible information disclosure
in collaboration scenarios.

– Chapter 11: Supporting Network Formation under Privacy Constraints [114]:
This chapter deals with privacy issues of utilizing data mining for trust infer-
ence and profile sharing for group formations in a Web of Social Trust. We
discuss privacy concerns and investigate new models for flexibly sharing per-
sonal data in collaborative environments.

Finally, Chapter 12 concludes the paper. The appendix contains implementation details
of the Collaborative Network Provider, a central component of several of our software
frameworks presented in this thesis.

CHAPTER 2

Related Work

Contents

2.1 Flexible and Context-aware Collaborations 8

2.2 Interactions in Mixed Service-oriented Systems 8

2.3 Autonomic Service-oriented Computing 9

2.4 Behavioral and Social Trust Models for SOA 9

2.4.1 Fundamental Trust Models . 9

2.4.2 Trust in SOA . 9

2.4.3 Behavioral and Social Trust Models 10

2.4.4 Bootstrapping of Trust . 11

2.5 Expert Ranking and Reputation Models 11

2.6 Information Disclosure under Privacy Constraints 12

This dissertation deals with the meaning of trust in service-oriented mixed systems
collaborations; starting with trust inference based on actor behavior, temporal evaluation
of trust relations, the bootstrapping problem, and finally, the wide variety of trust-aware
applications.

We structure our discussion on related work in the following sections:

• Flexible and Context-aware Collaborations describes the fundamental collaboration
environment and related concepts to model context.

• Interactions in Mixed Service-oriented Systems deals with interaction types, styles,
and patterns that represent the basis for automatic trust inference.

• Autonomic Service-oriented Computing deals with run-time discovery, selection, and
adaptations of services for optimizations.

• Behavioral and Social Trust Models in SOA discusses existing trust models in SOA,
as well as from other domains, including the agent community.

• Expertise Ranking and Reputation Models highlights state of the art ranking ap-
proaches for the Web that can be adopted for our mixed systems environment.

• Information Disclosure under Privacy Constraints uses trust to enable privacy-aware
data sharing applications, e.g., to support flexible collaborations or group formations.

8 Chapter 2. Related Work

2.1 Flexible and Context-aware Collaborations

In collaborations, activities are the means to capture the context in which human interac-
tions take place. Activities describe the goal of a task, the participants, utilized resources,
and temporal constraints. People interact in the context of activities to successfully accom-
plish their goals. Studies regarding activities in various work settings are described in [48].
They identify patterns of complex business activities, which are then used to derive rela-
tionships and activity patterns; see [87, 88]. The potential impact of activity-centric collab-
oration is highlighted with special focus on the value to individuals, teams, and enterprises.
Studies on distributed teams focus on human performance and interactions [9, 20, 94], even
in Enterprise 2.0 environments [15]. Caramba [28] organizes work items of individuals as
activities that can be used to manage collaborations. For example, one can see the status of
an activity, who contributed to an activity, documents created within a particular activity,
etc. Based on log analysis, human interaction patterns can be extracted [29]. Prior work
dealing with the management of cross-organizational processes can be found for instance
in [53].

For the last years, context has been at the center of many research efforts. As a multi
disciplinary domain, multiple definitions exist, most of them fitting just a certain focus.
In computer science the definition given by Abowd et al. [3] is amongst the most adopted
ones. To get an overview, Baldauf et al. [8] provide a survey on context models, techniques,
frameworks and applications.

2.2 Interactions in Mixed Service-oriented Systems

Major software vendors have been working on standards addressing the lack of human
interaction support in service-oriented systems. WS-HumanTask [71] and Bpel4People [1]
were released to address the emergent need for human interactions in business processes.
These standards specify languages to model human interactions, the lifecycle of human
tasks, and generic role models. The relation of Bpel4People-related Web standards and
resource patterns was discussed in [101]. Role-based access models (see [71] and [82]) are
used to model responsibilities and potential task assignees in processes.

An example for a mixed system is a virtual organization (VO) using Web 2.0 technolo-
gies. A VO is a temporary alliance of organizations that come together to share skills or
core competencies and resources in order to better respond to business opportunities, and
whose cooperation is supported by computer networks [17]. Nowadays, virtual organiza-
tions are more and more realized with SOA concepts, regarding service discovery, service
descriptions (WSDL), dynamic binding, and SOAP-based interactions. In such networks,
humans may participate and provide services in a uniform way by utilizing the Human-
Provided Services (HPS) framework [106]. In HPS, we also follow a Web services-based
approach to support human interactions in a service-oriented manner. However, HPS and
mentioned Bpel4People are complementary, and not competing approaches. HPSs are ser-
vices that can be created by end-users, whereas Bpel4People defines concepts (e.g., role
model, logical people groups) to model interactions in BPEL-based application scenarios.

2.3. Autonomic Service-oriented Computing 9

2.3 Autonomic Service-oriented Computing

The problem of composition and adaptation is strongly related to organization and con-
trol. The autonomic computing paradigm [56] advocates self-* principles to reduce human
intervention in configuring systems and services. An autonomic computing environment
has the ability to manage itself and dynamically adapt to changes in accordance with objec-
tives and strategies. Inspired by the principles of control systems, the autonomic computing
paradigm aims at achieving dynamic adaption of the system based on the actual execution
context [69].

Enhanced flexibility of complex systems is introduced by establishing a cycle that feeds
back environmental conditions to allow the system to adapt its behavior. This MAPE cy-
cle [56] is considered as one of the core mechanism to achieve adaptability through self-*
properties. While autonomic computing allows for autonomous elements and applies these
principles to distributed systems, current research efforts left the human element outside
the loop. Based on the observed context of the environment, different adaptation strategies
can be applied [24] to guide interactions between actors, the parameters of those strategies,
and actions to prevent inefficient use of resources and disruptions. In the context of multi
agent systems (MAS), self-configuring social techniques were introduced in [16]. A ma-
jor challenge in adaptation and self-configuration is to dynamically find the most relevant
adaptation parameter. Research relevant to this issue can be found in [133].

2.4 Behavioral and Social Trust Models for SOA

2.4.1 Fundamental Trust Models

Marsh [74] introduced trust as a computational concept, including a fundamental definition,
a model and several related concepts impacting trust. Based on his work, various extended
definitions and models have been developed. Some surveys on trust related to computer
science have been performed [7, 44, 58, 75, 80], which outline common concepts of trust,
clarify the terminology and describe the most popular models. From the many existing
definitions of trust, those from [44, 90] describe that trust relies on previous interactions
and collaboration encounters, which fits best to our highly flexible environment.

Context dependent trust was investigated by [7, 44, 58, 74]. Context-aware computing
focusing modeling and sensing of context can be found in [3, 13, 70].

2.4.2 Trust in SOA

Recently, trust in social environments and service-oriented systems has become a very im-
portant research area. SOA-based infrastructures are typically distributed comprising a
large number of available services and huge amounts of interaction logs. Therefore, trust
in SOA has to be managed in an automatic manner. A trust management framework for
service-oriented environments has been presented in [21, 66, 72], however, without consid-
ering particular application scenarios with human actors in SOA. Although several models
define trust on interactions and behavior, and account for reputation and recommendation,

10 Chapter 2. Related Work

there is hardly any case study about the application of these models in service-oriented
networks. While various theoretically sound models have been developed in the last years,
fundamental research questions, such as the technical grounding in SOA and the com-
plexity of trust-aware context-sensitive data management in large-scale networks are still
widely unaddressed.

In particular, in our work we construct trust models that are closely connected to and
applied in the SOA domain. These trust models rely on mechanisms of SOA, such as
SOAP-based interaction monitoring, well-described communication interfaces, and WS-
enabled collaboration infrastructures. Other works in that domain, such as [66, 107, 124]
disregard the human factor in large-scale networks.

2.4.3 Behavioral and Social Trust Models

Welser et al. [129] provides interesting studies about social roles in online discussion
groups and participants’ behaviors. Furthermore, Nonnecke et al. [91] and Meyer et al.
[84] research the meaning of online communication and differences between traditional
face-to face and threaded discussions. McLure-Wasko and Faraj [81] investigate the mo-
tivation for knowledge sharing in online platforms, and Rheingold [98] comprehensively
examines the concept of virtual communities. The article [122] in The Economist draws
the importance of trust in business communication, and shows that various factors which
directly influence trust between individuals are based on communication.

While some works, including [18, 77], underline social aspects and subjective com-
ponents of trust, others research the detection of attacks and malicious behavior using
appropriate trust models [121]. Trust models highlight concepts from either an abstract
perspective, i.e., not bound to specific scenarios or environments, or show their application
in certain domains, such as behavior in agent networks [127] or service-oriented environ-
ments [79].

Depending on the environment, trust may rely on the outcome of previous interactions
[12, 90, 117], and the similarity of interests and skills [38, 78, 112, 134]. Note, trust is not
simply a synonym for quality of service (QoS). Instead, metrics expressing social behavior
and influences are used in certain contexts. For instance, reciprocity [90] is a concept
describing that humans tend to establish a balance between provided support and obtained
benefit from collaboration partners. The application of trust relations in team formations
and virtual organizations has been studied before, e.g., in [63, 85, 137]. Trust propagation
models [46, 76, 123, 135] are intuitive methods to predict relations where no personal trust
emerged; e.g., transitive recommendations. Since trust propagation provides meaningful
results, we propagate personal profile data over these trust relations.

In Chapter 4 we describe an approach to trust inference that is based on fuzzy set theo-
ries. This technique has been applied in trust models before [45, 68, 96, 109], however, to
our best knowledge, not to interpret diverse sets of interaction metrics. Utilizing interaction
metrics, in particular calculated between pairs of network members, enables us to incor-
porate a personalized and social perspective. For instance, an actor’s behavior may vary
toward different network members. This aspect is usually out of scope in Web Services
trust models, that are often closely connected to traditional QoS approaches. Moreover,

2.5. Expert Ranking and Reputation Models 11

most trust models in the SOA domain utilize trust for service selection only (for instance
see [79]), and neglect the collaborative aspects and the human factor.

2.4.4 Bootstrapping of Trust

Bootstrapping addresses the cold start problem and refers to putting a system into opera-
tion. Trust –from our perspective – cannot be negotiated or defined in advance. It rather
emerges upon interactions and behavior of actors and thus, needs a certain time span to
be built. However, until enough data has been collected, interests and skills can be used
to predict potentially emerging trust relations. Mining, processing, and comparing user
profiles is a key concept [38, 134]. In Chapter 7, we utilize tagging profiles of users to
compare their centers of interests.

Tagging and its meaning has been widely studied in [40]. Several approaches have
been introduced, dealing with the construction of hierarchical structures of tags [32, 52],
generating user profiles based on collaborative tagging [86, 108], and collaborative filtering
in general [50]. However, determining tagging profile similarities has not been addressed
well in previous works. Therefore, we apply the concepts of tailored tagging profiles,
and indirect similarity measurement. Our approach uses various mathematical methods
from the domain of information retrieval, including term-frequency and inverse document
frequency metrics [103], measuring similarities, and hierarchical clustering [99].

2.5 Expert Ranking and Reputation Models

We show in this work that models and algorithms to determine the expertise of users are
important in future service-oriented environments. The notion of service-orientation is
not only applicable to Web services. Service-orientation in human collaboration is be-
coming increasingly important. For example, task-based platforms allow users to share
their expertise [130]; or users offer their expertise by helping other users in forums or an-
swer communities [5, 59]. By analyzing email conversations, [27] studied graph-based
algorithms such as HITS [65] and PageRank [93] to estimate the expertise of users. The
authors in [110] followed a graph-entropy model to measure the importance of users. In
[62], an email analysis in enterprises, defining information flow metrics in the social in-
teraction graph was presented. The work by [132] followed a graph-based approach and
applied HITS as well as PageRank in online communities (i.e., a Java question and answer
forum). TrustRank [47] is one further approach to combine common ranking technologies
and personalized trust.

While the above cited works attempted to model the importance of users based on
interactions and information flows; they ignore the fact that interactions typically take place
in different contexts. Approaches for calculating personalized PageRank scores [49, 57]
were introduced to enable topic-sensitive search on the Web, but have not been applied to
human interaction analysis. In contrast, we propose a model where expertise analysis is
performed considering context information. Furthermore, we propose algorithms that can
be computed online, while most other approaches demand for offline calculation due to
computational complexity.

12 Chapter 2. Related Work

Reputation expresses the overall standing of community members and can be used to
rank them in terms of diverse criteria. Reputation may be built by a combination of personal
trust and further attributes, such as compliance [60], and formal constraints. Multi-criteria
decision making and ranking, as surveyed in [35], is used to identify ‘best’ available col-
laboration partners (experts) when accounting for several input metrics. In Chapter 8, we
make particularly use of the Promethee approach [14]. Trust relying besides explicit rat-
ings, on monitoring and analyzing interactions and behavior of actors, can be one criterion
to rank collaboration partners in social networks. The application of trust relations in team
formations and virtual organizations has been studied in [63, 116, 137].

In Chapter 6, we interpret previous postings in online forums as interactions between
people and rank them according to their trustworthiness in the originating network. There
are several graph based ranking algorithms, including PageRank [93], HITS [65], and
Eigentrust [61]. However, in contrast to these algorithms, which operate on top of an
existing network, our approach tackles the challenges beneath, i.e. creating the interac-
tion network based on discussion data. To this end, we develop a mining algorithm to
gather individual trust relationships based on observed communications, considering de-
tailed analysis of online discussion platforms such as Gomez et al. [42] for Slashdot and
Adamic et al. [4] for Yahoo Answers.

2.6 Information Disclosure under Privacy Constraints

The interplay of trust and privacy has been studied in the areas of social networks [30]
and electronic commerce [83]. Especially the latter work concludes that trust is strongly
related to information disclosure, and thus, privacy. As users increasingly disseminate
their information on the Web, privacy concerns demand flexible information access control
mechanisms [89]. In some recent articles on the Web, e.g., see [31, 64], the authors discuss
to what extent shared personal information of (naive) users may be exploited. Marsh dis-
cusses in an article [73] how trust models enhance information sharing among community
members. Knowledge sharing behavior in virtual communities and the relation to trust has
been investigated in [54].

There exist several works in the area of recommender systems (e.g., [125]) that use
personal trust to optimize item recommendation (that is usually based on collaborative
filtering only). One of the more related use cases is the recommendation of documents
[51]. However, while they use trust to improve document recommendations (e.g., to better
match interests of users), we restrict access based on context-aware personal relations.
Others focus on traditional trust-based access control mechanisms [11] that are based on
more static role models and relations.

The technical realization of trusted information sharing in the introduced science col-
laboration network in Chapter 10 is related to selective dissemination of information (SDI)
[6, 25]. SDI deals with questions regarding which (parts of) data are shared with others, and
mechanisms to disseminate data. We adopted concepts of SDI, such as the representation
of information through XML, or mechanisms to process XML-based data.

Part I

Trust and Reputation Models in SOA

CHAPTER 3

The Cycle of Trust in Mixed

Service-oriented Systems

Outline. This work starts with establishing a detailed understanding of the notion of trust in
mixed service-oriented systems, including a first technical grounding in SOA. We discuss
a fundamental approach to dynamically determine trust from the system’s point of view,
and further outline a user perspective.

Contents

3.1 Motivation . 15

3.2 Trust Modeling in Collaborations . 17

3.2.1 Actor Roles and Trust Relations 17

3.2.2 Context of Trust . 17

3.2.3 The Diversity of Trust . 18

3.3 From Interactions to the Cycle of Trust 19

3.3.1 Supported Interactions . 19

3.3.2 Interaction Context . 20

3.3.3 The Cycle of Trust . 21

3.4 Implementation of Fundamental Trust Inference in SOA 22

3.4.1 Monitoring . 23

3.4.2 Analyzing . 24

3.4.3 Planning . 26

3.4.4 Executing . 27

3.5 Discussion . 27

3.1 Motivation

Service-oriented architectures (SOA) were understood as environments where software ser-
vices are registered, discovered, and invoked. This limited perspective on SOA has changed
over the past years because it has been realized by researchers and industry players that hu-
mans must be part of such systems. Not only interactions between software services and
the ability to compose complex flows are important, but rather the interplay between com-
positions of human and software services. We define such environments as mixed systems

comprising software services and Human-Provided Services (HPS, see [106]).

16 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

A key requirement for the success of mixed systems is the ability to support interactions
in a flexible yet reusable manner. In this work, we focus on an activity-centric approach
to support and manage interactions between various actors including people and software
services. In contrast to many existing approaches based on workflow systems, activities are
not predefined, for example by an administrator that is responsible for the design of a work-
flow. Activities can be modeled as templates before collaborations and interactions start;
however, activities are flexible and can be reorganized by adding, removing, or delegating
activities at run-time. Hence, activities are essential to allow for dynamics in interactions
and to structure collaborations establishing the link between artifacts, services, and people.
Existing work [22, 28, 87] has studied activities as a concept to cope with the challenges
of dynamic collaboration environments.

Activity-centric collaboration is useful in many different application domains ranging
from business-centric collaboration to large-scale social networking platforms. In enter-
prises, an activity management platform can be used to deal with the increasing complex-
ity in coordination and communication. For example, an activity workspace allows people
to manage their interactions (status, task progress, or artifact changes) as well as various
services that can be used in the context of activities (e.g., communication services). On the
other hand, people using social networking platforms might use activities in a much more
informal way. Activities in a social context may depict ‘simple’ structures and flows, which
are in a manner similar to user defined data or mashups of services. Such activity-based
templates can be shared with other users to support collaborations.

We strongly believe that trust and reputation mechanisms are key to the success of
open dynamic service-oriented environments. However, trust between human and software
services is emerging based on interactions. Interactions, for example, may be categorized in
terms of success (e.g., failed or finished). Therefore, an important aspect of our approach
is the monitoring and analysis of interactions to automatically determine trust in mixed
systems.

In this chapter, we present the following key contributions:

• Definition of Trust. We establish a detailed understanding of trust in mixed service-
oriented systems, and required basic concepts, including flexible collaborations,
types of interactions, and the role of context. Besides direct trust, which is the focus
of this work, we deal with related concepts, such as recommendations and reputation
too.

• Fundamental Approach of Trust Determination. We present our approach for the
context-aware analysis of interactions to establish trust. Our approach relies on con-
cepts from the autonomic computing domain, such as feedback loops and adaptation
techniques.

• Algorithm and Application. We construct a graph-based algorithm to perform trust
mining over heterogeneous sources of captured interaction data. The Vienna Trust
Emergence Framework (VieTE) – first published in [120] – comprises the most im-
portant features for the determination and management of trust.

3.2. Trust Modeling in Collaborations 17

3.2 Trust Modeling in Collaborations

3.2.1 Actor Roles and Trust Relations

As common in the trust research literature, the roles of actors in a directed trust relation
are defined as trustor (also truster), which is the trusting entity, and trustee which is the
trusted entity [19]. Trust relations E between entities N – the actors in our mixed systems
environment – are managed in a directed graph model G = (N,E).

trusteetrustor

n1 n2

(a) Direct trust.

trusteetrustor
?

n1 n2

n3
recommender

(b) Recommendation.

trusteetrustor
?

n2n1

n4

n3

reputing

actors

n5

(c) Reputation.

Figure 3.1: Trust related concepts.

We distinguish between different kinds of trust-related social relationships in a network
of collaborating entities.

Direct Trust Relations. These relations base on first-hand experiences and are inferred
from the success and outcome of previous interactions between the trustor and the trustee
(Figure 3.1(a)).

Recommendations. These relations, based on second-hand experiences, are inferred
from the success and outcome of previous interactions between a well trusted entity and the
trustee. This case is depicted in Figure 3.1(b), where the relation from n1 to n2 is derived
by considering the relations from n1 to n3 and from n3 to n2, ultimately n3 recommends
n2 to n1.

Reputation. Reputation is a concept where trust of the trustor to the trustee is com-
pletely inferred from third party relationships as depicted in Figure 3.1(c). By considering
trust of n4, n5, and n6 in n2, n1 may derive a notion of trust in n2. Even though reputation
is the most unreliable substitute for trust (compared to first-hand experiences or recom-
mendations), it is nevertheless a useful concept, especially the more third party relations to
the trustee are considered.

3.2.2 Context of Trust

Trust is context dependent, which means trust relations cannot be determined generally,
but with respect to a particular situation [7, 19, 58]. Generally each situation, which is
determined and described by context data, is unique and consists of multi-dimensional
properties.

We developed a system for trust inference in collaborative environments; thus we are
able to reduce the complexity of context elements. We define that collaboration situations
are basically reflected by describing the actually performed activity, including the goal and
nature of work. In a simplified case, when considering only the type of activities performed,

18 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

a human trustor might trust a trustee to organize a meeting (context 1), but not to develop

a software module (context 2). In this case contexts are obviously different and not closely
related to each other. However, there are cases where contexts may be similar. For instance,
the trustor might have established trust to the trustee regarding software implementation.
This means the trustor can trust the trustee to perform assigned activities in the area of
software implementation reliably in the given time with the required quality. If the trustor
wants to know how much s/he can trust the trustee with respect to software testing activities,
trust can be inferred from the relation regarding software implementation, because both
implementation and testing are part of software development, and thus activities in both
fields will typically have similar requirements. Hence, the concept of trust context allows
(i) distinguishing trust relations with respect to different contexts and thus, expressing trust
relations more precisely and reliably, and (ii) deriving relations for new situations based
on relations in other, but similar situations. We call the second case trust propagation over

contexts. This concept permits considering trust relations established in different contexts
by taking the similarities between contexts into account.

3.2.3 The Diversity of Trust

Trust is a diverse concept and relies on various impacting factors. Figure 3.2 depicts in-
fluences, primarily discussed in the literature, on the trust relationship from a trustor to a
trustee with respect to context 1.

context 1

context 2

Profile of trustee:
education, status,

job position, ...

Recommendations
through transitive

trust relations

Interactions with respect

to other contexts

Collaboration Context,

e.g., current activity,
projects,...

Relationships
of third entities
to the trustee

utilized for

reputation

Profiles of
recommender(s)

1 2

3

6
5

4

Previous interactions used

for direct trust inference

Situation of trustor,
including risks,

expectations,...

Figure 3.2: Factors influencing trust.

The profile of the trustee, such as the educational status and job position, is utilized,
e.g., when it comes to collaboration partner selection or activity assignment. The profile
describes if the trustee owns the formal competencies to be trusted to perform a given
activity reliably.

The current situation of the trustor, such as his risks and expectations with respect to
a particular situation is a further influencing factor. Decisions about whom to trust always
depend on the risks the trustor is facing. If the trustor wants to assign the trustee a particular
activity, but the negative consequences for the trustor are high in case the activity is not
performed well, then the trustor will not trust the trustee carelessly.

3.3. From Interactions to the Cycle of Trust 19

The collaboration context, describing the activity to perform or the overall project to
realize, is used to determine which previous interactions have to be aggregated to determine
the direct trust relation. Interactions with respect to other contexts, can be utilized for trust
inference as well (however with reduced relevance), especially if previous situations and
current situation share similar contextual properties.

Furthermore, direct recommendations from well-known and trusted recommenders are
taken into account. This concept utilizes the transitivity of trust and is known as trust
propagation. Experiments have shown that this concept works well in several cases [46,
77]. The profiles of recommenders, may represent a valuable source of data to decide if and
how much someone’s recommendation can be trusted.

The reputation of the trustee, is defined as the aggregated community trust and deter-
mined by the sum of all trust relations from different entities in the trustee. Considering
reputation only is the most unreliable kind of determining trust, because it does not take
personal preferences into account. However, even if the trustor has not established relations
to the recommending entities, a reasonable notion of trust can be inferred when relying on
large sets of opinions.

3.3 From Interactions to the Cycle of Trust

Before we show our new approach for dynamic trust inference, we introduce the most
important applied concepts.

3.3.1 Supported Interactions

We define a mixed systems environment which consists of actors of different types, in-
cluding humans, services, and also humans offering their capabilities as services (Human-
Provided Services [106]), interacting with each other to perform a given set of activities
contributing towards a common goal. In this environment, we distinguish between the
following interactions : (a) Human-service interactions: services can be used to realize
collaboration functions in a flexible manner. Humans are able to use services (the repre-
sentation frontend) to perform collaborations. Typical human-service interactions include
map services, document sharing service, etc. (b) Human interactions as part of software

service compositions: many service interaction scenarios demand for human interactions.
A popular example is BPEL4People [1]. (c) Human interactions using Human-provided

Services: Our previous work included the support of service-human interactions (e.g., see
[106]), allowing humans to express and offer their capabilities as services. (d) Interactions

between software services: such interaction scenarios are found in compositions of soft-
ware services. For example, output of service A is used as input by service B. (e) Service

initiated interactions towards humans: such scenarios include notifications or news feeds,
which are pushed toward humans.

The context of interactions, e.g., their purpose and intention, has to be captured to en-
able meaningful trust determination. While the context of unstructured interactions is nor-
mally manifold, we argue that with certain assumptions, interactions can be appropriately
categorized. Imagine an online collaboration environment, where people collaboratively

20 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

define and perform activities of certain types. Typed interactions within that activities,
such as support requests, or delegations, can be rated in terms of success and impact on
ongoing work.

3.3.2 Interaction Context

Our system is based on the notion of activities. Activities represent work done and actions
performed by actors of different type. The activity model, as shown in Figure 3.3, allows
collaborations to be structured in a flexible way.

Activity

-Name

-Description

-Progress

-StartAt

-Duration

-Priority

-Tags

Actor

InvolvementRole

-Type

-Responsibilities

0..1

0..*

parent

child

GenericResource

-URI

-Type

Action

-Type

-ExecutedBy

-Receivers

-UsedResources

-Timestamp

Human

Software Service

HPS

ActivityTemplate

-Type

Requirements

-ProfileRequirements

-TrustRequirements

Capabilities

-Skills

-Features

-Competencies

*

*

HumanProfile

-Name

-Contact

ServiceProfile

-URI

-Vendor

Profile

-FOAF

*

1 *

*

applies

describes

exhibits

in

A
c
ti
v
it
y

in
v
o
lv

e
d

as

has1 1

*

*

h
a
s

Figure 3.3: Activity model.

The model supports dynamic collaborations in mixed systems because activities can be
created at runtime. This is needed to support more flexibility and agility in interactions.
An activity may comprise a set of sub-activities which can be assigned to different actors.
Activity templates describe the ’how-to’ execute a particular activity and what services
to be used to work on that activity, and are associated with requirements that are used to
control the assignment of actors. Activities can be organized in sets to assemble more
complex activities out of the simple ones. The execution of activities and services has
to be based on the context of the environment. In activity-centric collaboration, context
is any information that lets the actor understand and estimate the current situation, work
environment, and the information that is relevant given the actor’s current activity. For
example, an actor working on an activity needs to know details such as the description,
progress and start date of the activity, associated artifacts and their status; information
regarding tools, services, and available devices; and context details regarding co-actors

3.3. From Interactions to the Cycle of Trust 21

(presence status or location information), and finally discussions that are relevant for an
activity. However, services are not only used as resources to accomplish activities; instead
services play an active role in compositions. For example, services can trigger notifications
or reminders based on context information.

During the execution activities can also be delegated to change the ownership and re-
sponsibility for a specific activity. Actors perform different types of actions, such as coor-
dinating work, discussing with other actors, or executing some kinds of tasks. The com-
bination of executed actions and performed activities appropriately reflects the situation of
interacting actors for trust inference.

3.3.3 The Cycle of Trust

Our system design follows the MAPE approach [56], as depicted in Figure 3.4. MAPE,
incorporating basic concepts from the control engineering domain, describes a cycle con-
sisting of four phases, which are monitor, analyze, plan and execute. Periodically running
through these four phases establishes a kind of environmental feedback control, and there-
fore, allows to adapt to varying circumstances. Applied in our environment, we are able to
infer trust dynamically during ongoing collaborations.

xxxx
xxxx
xxxx

Con

xxxx
xxxx
xxxx

Monitoring Planning ExecutingAnalyzing

WSDL

Act
i-

vi
ty

Resources

WSDL

Observe interactions

and context

Infer trust considering

contextual constraints

Define new trust constraints

and plan collaboration

Run collaboration and

apply corrective actions

Act
i-

vi
ty

Act
i-

vi
ty

WSDL

Act
i-

vi
ty

WSDL

Resources

interaction

context 1

interaction

context 2

WSDL

WSDL

trust

scope

WSDL

WSDL

WSDL

Con

Figure 3.4: The MAPE cycle applied for dynamic trust inference.

In the Monitoring Phase our system observes ongoing collaborations, particularly the
creation of new activities, actions executed therein, and interactions taking place, accord-
ing to the previous descriptions, between humans, services, and HPSs. These interactions,
including their types and contexts, are captured and modeled as an interaction network
utilized in further trust analyzes. In the Analyzing Phase the created interaction network
is used to infer trust relationships. For this purpose, the relevance of each interaction is
graded automatically considering configurable trust constraints (Con). These constraints
define the scope of trust and depend on the purpose of trust inference, e.g., constraints dif-
fer when calculating trust in an actor to fulfill a particular activity type, or trust in an actor
to hold a particular involvement role. Direct trust relationships are calculated by evaluating
interactions and their relevance in the defined scope. Based on these direct trust relation-
ships, the concepts of recommendation and reputation are applied to establish relationships
relying on second-hand experience and collective opinions. The following Planning Phase

covers the set up of collaboration scenarios taking the inferred trust relations into account.

22 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

Furthermore, trust constraints for the next run of the cycle are configured with respect to
planned activity requirements. This means it is set up which contextual properties have
to be taken into account when calculating trust. This depends on the planning use case,
such as the composition of actors, the assignment of roles and responsibilities, the assign-
ment and scheduling of activities, and sharing of artifacts. The Execution Phase provides
support to enhance the execution of activities, including observing activity deadlines, solv-
ing activity scheduling conflicts, checking the availability of actors, and compensation of
resource limitations. Furthermore, in parallel the collaboration behavior of actors is moni-
tored, including their actions and interactions. This closes the cycle of trust.

3.4 Implementation of Fundamental Trust Inference in SOA

In this chapter, we outline the fundamental approach to automatic trust inference in SOA.
This includes the monitoring of interactions, their rating, weighting, and aggregation to
trust. A more advanced rule-based approach that interprets actor behavior is introduced in
the next Chapter.

We implemented the VieTE architecture depicted in Figure 3.5, that has been developed
utilizing the MAPE approach. Users, logged in to the management portal, can register
new humans and services by entering their profile data. Furthermore, they manage own
activities and specify trust constraint sets. On system level, interactions are monitored,
captured by software sensors, and analyzed using the configured trust constraints. Recent
analysis results lead to the formation of new trust relations, and impact existing ones. This
knowledge about existing trust relations can be retrieved through a Web service component
(Trust Provisioning). On the one side, the management portal itself uses this knowledge,
e.g., to suggest new team compositions or activity delegations based on interpersonal trust.
On the other side, further third-party collaboration tools could use this knowledge as it is
provided in a standardized manner (SOAP and REST-based versions).

VieTE – Vienna Trust Emergence Framework

Management

Portal

Trust

Constraints

Actor Profiles

Inter-

action

Data

Service Bus

Service

Lookup

Service

Registry Logging
Invocation and

Routing

Trust Inference

Configuration

Actor

Management

Activity

Management
Context Data

Trust

Provisioning

Trust

Analysis

Trust

Data

Figure 3.5: VieTE architecture.

3.4. Implementation of Fundamental Trust Inference in SOA 23

3.4.1 Monitoring

The Logging component captures interactions during activity execution, such as human
communication through services and Web service calls (Listing 3.1), e.g., through inter-
cepting SOAP calls, and explicit actions undertaken by actors through VieTE’s Manage-
ment Portal, such as the delegation of activities (see Listing 3.2). Data of both sources
are processed, including analysis of faults and interaction correlation to discover request-
response patterns [41], and converted to more generic interactions. This generic type de-
scribes in detail the type and success of an interaction between two particular actors (Listing
3.3).
� �

1 <ServiceInteraction xmlns="http://www.coin-ip.eu/ns/invocation">
2 <clientEndpoint>192.168.0.101</clientEndpoint>
3 <messageCorrelationID>000a1460-25ba-...</messageCorrelationID>
4 <messageType>Response</messageType>
5 <serviceEndpoint>http://www.coin-ip.eu/ss/IMService</serviceEndpoint>
6 <eventSourceID>AL-invoke@192.168.0.100</eventSourceID>
7 <timeStamp>1207212091812</timeStamp>
8 </ServiceInteraction>
� �

Listing 3.1: Service interaction log example.

At the end of each run through the monitoring phase, an interaction network is built
based on available generic interactions and stored in the interaction database (see Fig-
ure 3.5). We model this network as a directed graph GI = (N,EI), whose nodes N

represent the actors and multiple edges EI reflect interactions between them. An edge
eı = (ni, nj, ı, ctx) is described by the source ni of an interaction, the sink nj , the generic
interaction ı with its properties, and the interaction context ctx.
� �

1 <Action xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xmlns="http://www.coin-ip.eu/ns/action"
3 xsi:type="CoordinationAction"
4 ActionURI="http://www.coin-ip.eu/CoordinationAction#6564"
5 DescribesActivityURI="http://www.coin-ip.eu/Activity#222"
6 Timestamp="2009-03-05T15:13:21.563Z">
7 <ExecutedBy>http://www.coin-ip.eu/Actor#Daniel</ExecutedBy>
8 <CoordinationType>
9 <DelegateType>Delegate</DelegateType>

10 </CoordinationType>
11 <ToActor>http://www.coin-ip.eu/Actor#Florian</ToActor>
12 </Action>
� �

Listing 3.2: Action log example.

� �
1 <GenericInteraction xmlns="http://www.coin-ip.eu/ns/interaction">
2 <sender>http://www.coin-ip.eu/Actor#Daniel</sender>
3 <receiver>http://www.coin-ip.eu/Actor#Florian</receiver>
4 <class>human-human</class>
5 <type>Coordination</type>
6 <subtype>MeetingOrganization</subtype>
7 <numberOfConcernedCoActors>5</numberOfConcernedCoActors>
8 <success>true</success>
9 <successLevel>3</successLevel>

10 <faultLevel>0</faultLevel>
11 <faultReason></faultReason>
12 <transportService>http://www.coin-ip.eu/ss/IMService</transportService>
13 <context>http://www.coin-ip.eu/Activity#222</context>
14 <timeStamp>1207212091812</timeStamp>
15 </GenericInteraction>
� �

Listing 3.3: Generic interaction log example.

24 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

3.4.2 Analyzing

We understand trust to emerge from and to be highly impacted by the success (or faults)
and types of interactions, considered with respect to particular situations described by the
introduced context model.

Symbol Description
α impact factor of ∆τ on τ

Con set of constraints determining the relevance of ı in a scope
ctx interaction context described by activity structures
∆τ trust obtained from recent interactions captured in the last run

of the execution phase
eı, et edge in GI and GT respectively
fI fault score based on a set of ı
γ relevance of ı calculated using Con
GI interaction network modeled as graph GI = (N,EI)
GT trust network modeled as graph GT = (N,ET)
ı generic interaction between actors
ni source node of an interaction
nj sink node of an interaction
nx intermediate node between ni and nj

sI success score based on a set of ı
τ direct trust ∈ [0, 1] evolving over time
τrec recommended trust from neighbors

Table 3.1: Symbol descriptions.

For inferring trust relations, we define a second graph model, the trust network GT =

(N,ET), where the actors N are the same as in GI , but the edges eτ = (ni, nj, τ, Con)

reflect the level of direct trust τ ∈ [0, 1], emerging from interactions, with respect to the
satisfaction of given constraints Con. Algorithm 1 is used to update GT with the captured
GI , applying the given constraints Con used to weight the influence of interactions on trust
calculation.

Algorithm 1 is periodically executed by the system to update the trust network, stored
in the trust database (see Figure 3.5), considering captured interactions in pre-defined time
intervals. The basic mode of operation is as follows: (i) Retrieve GI built from recent
interactions in the previous run of the execution phase. Furthermore get current GT and
configured constraints. (ii) Extract all interactions from GI between the ordered pair of
actors (ni, nj). (iii) Determine aggregated success score (sI) and fault score (fI) for avail-
able interactions from ni to nj . These scores are based on the level of success and fault
respectively of an interaction ı, and on the satisfaction of constraints with respect to the
interaction context (γ in Equation 3.1 expresses the relevance of an interaction for given
constraints). (iv) Calculate trust (∆τ) from ni to nj only based on recent interactions. (v)
Update previous trust τ with ∆τ by applying the exponential moving average1 method

1
http://www.itl.nist.gov/div898/handbook/

3.4. Implementation of Fundamental Trust Inference in SOA 25

Algorithm 1 Periodic update of GT with recently captured GI applying Con

1: /* retrieve GI = (N,EI) from the interaction db */
2: /* retrieve GT = (N,ET) from the trust db */
3: /* retrieve Con from the constraints db (trust scope)*/
4: for each ni ∈ N do

5: for each nj ∈ N do

6: if getEdges(EI , ni, nj) 6= ∅ then

7: if getEdge(ET , ni, nj, Con) = 0 then

8: et ← createEdge(ni, nj, 0, Con)
9: else

10: et ← getEdge(ET , ni, nj , Con)

11: fI ← 0, sI ← 0
12: τ ← getTrust(et)
13: for each eı ∈ getEdges(EI , ni, nj) do

14: ı← getInteraction(eı)
15: ctx← getContext(eı)
16: γ ← satisfy(Con, ctx)
17: sI ← sI + successLevel(ı) · γ
18: fI ← fI + faultLevel(ı) · γ

19: ∆τ ← sI
sI+fI

20: τ ← ∆τ · α+ τ · (1− α)
21: updateTrust(ET , et, τ)

22: /* save updated GT in trust db */
23: /* dispose GI in interaction db */

using the weighting factor α ∈ [0, 1]. (vi) Update changed trust edge et in GT . (vii) Re-
peat steps (ii) to (vi) for each ordered pair of actors. (viii) Finally, save GT , and dispose
processed GI .

The function satisfy() applies Equation 3.1 to determine the relevance γ ∈ [0, 1]

of an interaction by comparing to which extend configured constraints Con match to the
interaction context ctx. Each single constraint is set up with a weight. The result of the
function match() is either true or false.

γ =

∑

∀c∈Conmatch(c, ctx) · weight(c)
∑

∀c∈Conweight(c)
(3.1)

On top of GT we realize algorithms for deriving recommendations and reputations.
Algorithm 2 implements the inference of a collective recommendation trust τrec from a
trustor ni to a trustee nj , by evaluating all second-hand experiences of the nodes nodeList
with respect to constraints in the given trust scope (Con not shown for the sake of brevity).
Recommendations from different nodes nx ∈ nodeList may have different impact (e.g.,
depending on the actors’ roles) reflected by im(nx). The concept of reputation can be
realized in a similar way, but without accounting for the connections to a particular trustor.

The outcome of the analyzing phase is a global view on trust relations between actors.

26 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

Algorithm 2 recommendation(ni , nj , nodeList)
1: τrec ← 0
2: sum← 0
3: for each nx ∈ nodeList do

4: if predecessor(nx) = ni ∧ successor(nx) = nj then

5: τrec ← τrec + τ(ni, nj) · τ(nx, nj) · im(nx)
6: sum← sum+ im(nx)

7: return τrec
sum

The Trust Provisioning Web service interface (see Figure 3.5) offers the ability to query
the periodically updated GT using, for example, the Management Portal. Besides directed
trust relations in GT , recommendations as well as reputations with respect to configured
constraints can be dynamically obtained.

3.4.3 Planning

Planning collaborations includes the selection of trusted actors for particular activities.
Thus, defining the constraints used to infer trust from interactions is part of the planning
phase. These constraints are configured for specific trust cases. As an example, consider
that trust in humans has to be determined regarding their management skills. Constraints
will be set up in order to parameterize the algorithm emphasizing the performance of past
organizational activities and management interactions therein.

For defining constraints we integrated the popular Drools2 engine in VieTE and utilize
the Java semantic module. Listing 3.4 shows an example constraint definition. A set of such
constraint rules build the definition of trust scopes, i.e., the situations and assumptions for
which calculated trust is valid. Furthermore, the relevance of each constraint is weighted
(ConWeight). This weight is used by the function satisfy() to determine the degree to
which constraints are fulfilled with respect to each interaction’s context.
� �

1 <rule-set name="trust_constraints"
2 xmlns="http://drools.org/rules"
3 xmlns:java="http://drools.org/semantics/java">
4 <application-data identifier="results">
5 java.util.HashMap
6 </application-data>
7 <rule name="CheckIfTypeOfActivityIsOrganizational">
8 <parameter identifier="context">
9 <class>at.ac.tuwien.infosys.viete.InteractionContext</class>

10 </parameter>
11 <java:condition>
12 context.getActivity().getType().equals("organizational")
13 </java:condition>
14 <java:consequence>
15 results.put("RuleActivityTypeIsOrg", ConWeight.MEDIUM);
16 </java:consequence>
17 </rule>
18 <rule name="...">
19 <!-- ... -->
20 </rule>
21 </rule-set>
� �

Listing 3.4: Constraint definition example.

2
http://sourceforge.net/projects/drools/

3.5. Discussion 27

3.4.4 Executing

In the execution phase the actual collaboration between actors in activities takes place. Ev-
ery collaboration system requires typical procedures such as escalations that are triggered
based on missed deadlines or limited resource availability. VieTE supports these proce-
dures by providing trust relations between affected actors and thus supporting decision
making to solve the problems.

3.5 Discussion

In this section we present an example screenshot of VieTE’s Management Portal in Figure
3.6 to demonstrate the application of the VieTE framework in a real world collaboration
scenario. We show how the end-user is supported in trust-based selection of actors to
perform a specific activity.

In the left frame (Activity Selection) an activity structure is visualized. The details
of the selected activity are shown in the lower box, including the name and type, a short
description, temporal constraints (deadlines), the current status (pending, running, paused,
finished, failed), and assigned resources (e.g., documents).

The right frame (Activity Execution Support) consists of 5 tabs:

• Actor Evaluation providing information about the user’s personal trust relations to
other actors as well as their reputation.

• Actor Composition is used for creating new ‘mixed’ teams, i.e., compositions of
humans and services.

• Resource Management enables users to manage virtual resources, such as docu-
ments, and physical resources, including conference room reservations.

• Service Operation provides facilities to dynamically interact with software services
by generating custom user interfaces and SOAP messages based on services’ opera-
tions.

• Human Communication provides facilities to dynamically interact with humans by
the means of e-mail, instant messaging or text chats.

We assume that the user has certain trust preferences, for example, selecting the most
trusted service. (However, at this stage we do not consider trade-off models to account
for multiple criteria such as costs versus trust.) Therefore, the top box of the right frame
allows the selection of a particular actor to be evaluated. The results of trust evaluation
in this co-actor (expressed as emoticons: happy, neutral, sad), based on interaction metrics
such as successful calls and availability, is visualized. It is shown that the ’Information Dis-
tribution Service’ behaves trustworthy for the logged in user (personal evaluation: happy
emoticon), however the composed actor experience from the involved activity members is
only medium (neutral emoticon). The global experience is largely negative (sad emoticon).

28 Chapter 3. The Cycle of Trust in Mixed Service-oriented Systems

Figure 3.6: VieTE trust and activity management portal.

3.5. Discussion 29

The lower box shows actors with similar features as the currently selected one, for sup-
porting fast replaceability (here: three software services and one Human-Provided service).
Furthermore, their recommendations from well-trusted actors (‘buddies’) and their global
reputation is visualized.

CHAPTER 4

Trustworthy Interaction Balancing

in Mixed Systems

Outline. This chapter extends and details the notion of trust with social and behavioral
aspects. We demonstrate the applicability of social trust by simulating an example sce-
nario where interactions between community members are balanced through the means of
delegations.

Contents

4.1 Motivation . 31

4.2 Interactions and Compositions . 32

4.3 Interpretative Trust Inference . 34

4.3.1 Interaction Monitoring . 35

4.3.2 Interaction Metric Calculation . 36

4.3.3 Interpretation and Trust Inference 37

4.3.4 Collaboration Network Provisioning 40

4.4 Delegations and Balancing . 41

4.5 Evaluation and Discussion of a PVC Scenario 42

4.5.1 Simulation Setup . 43

4.5.2 Simulation Results . 43

4.1 Motivation

Several works have previously shown [7, 44, 58] that trust and reputation mechanisms
are key to the success of open dynamic service-oriented environments. However, trust
between human and software services is emerging based on interactions. Interactions, for
example, may be categorized in terms of success (e.g., failed or finished) and importance.
Therefore, a key aspect of our approach is the monitoring and analysis of interactions to
automatically determine trust in mixed service-oriented systems. We argue that in large-
scale SOA-based systems, only automatic trust determination is feasible. In particular,
manually assigned ratings are time-intensive and suffer from several drawbacks, such as
unfairness, discrimination or low incentives for humans to provide trust ratings. Moreover,
in mentioned mixed systems, software services demand for mechanisms to determine trust
relations to other services.

32 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

In this chapter, we extend the notion and concepts of trust with social aspects, and
present an approach to infer trust through rule-based interpretation of interaction metrics.
While we highlighted the overall Cycle of Trust in the previous chapter, we focus now
particularly on trust inference itself.

We adopt common definitions of trust in collaboration environments [44, 90, 111] and
define social trust – also referred to as trust only for the sake of brevity – as follows:

Social Trust reflects the expectation one actor has about another’s future be-

havior to perform given activities dependably, securely, and reliably based on

experiences collected from previous interactions.

This definition implies several key characteristics that need to be supported by a foun-
dational trust model:

• Trust reflects an expectation and, therefore, cannot be expressed objectively. It is
influenced by subjective perceptions of the involved actors.

• Trust is context dependent and is basically valid within a particular scope only, such
as the type of an activity or the membership in a certain team.

• Trust relies on previous interactions, i.e., from previous behavior a prediction for the
future is inferred.

Much research effort has been spent on defining and formalizing trust models (e.g., see
[2, 55, 90]). We present the following novel contributions:

• Interaction-based Trust Emergence. We show the establishment of trust based on
dynamic interaction patterns [29] in mixed service-oriented environments.

• Trust Interpretation. Due to the dynamic aspects in mixed systems, we do not apply
a ‘hard-wired’ and static analytical trust model, but consider the subjective view and
nature of trust by applying a rule-based interpretative approach.

• Implementation and Architecture. We realize our theoretical concepts with existing
Web service standards, accounting for and relying on mechanisms that are typically
available in service-oriented systems, such as WSDL service descriptions, and log-
ging of SOAP-based interactions.

4.2 Interactions and Compositions

We depict a professional virtual community (PVC) environment to familiarize with our
concepts, and to demonstrate the emergence of trust. A PVC is a virtual community that
consists of professionals and experts who interact and collaborate by the means of informa-
tion and communication technologies to perform their work. Nowadays, service-oriented
technologies are used to realize PVCs. The actors, i.e., the community network mem-
bers, that are both humans and software services, provide help and support on requests

4.2. Interactions and Compositions 33

trusted

selection

trusted

interactions

WS
DL

WS
DL

a 1

trusted

composition
Web of Experts

Symbols:

human

software service

activity

interaction
context

interaction

trust relation

trust scope

WS

DL

aa 2

n1

n2

n3

n4

n5

n6

Figure 4.1: A mixed service-oriented PVC.

of each other. In such a mixed service-oriented environment actors have to register at a
central community management service to become part of the network. Humans can reg-
ister themselves by providing their profiles, including their education, employment status,
certified skills and project experience. Services can be registered by their vendors or third
party persons that offer information about service features and capabilities.

In the described environment, collaboration links are managed in a graph model
G = (N,E). Network members N are connected through social and organizational links
E. These actors of the mixed system perform activities collaboratively. Activities are a
concept to structure information in ad-hoc collaboration environments, including the goal
of the ongoing tasks, involved actors, and utilized resources. They are either assigned from
outside the community, e.g. belonging to a higher-level process, or emerge by identifying
collaboration opportunities. Such an opportunity is for instance writing a research paper
because of having required skills, and knowing and trusting the right supporting actors in a
community (i.e., humans with the required knowledge, services providing scientific data).

In the scenario depicted by Figure 4.1, the two humans n1 and n2 are the owners
of activities a1 and a2 respectively. We assume activity a1 is a software implementation
activity and a2 is a software testing activity in some higher-level software development
process (not depicted here). The human n1, requests support from the Web service n5, that
is a software implementation knowledge base, providing code examples and FAQs1 about
software implementation. The dashed arrows represent interactions (requests for support
(RFSs)), such as retrieving articles from the knowledge base. Interactions are performed
by traditional SOAP calls. Even the capabilities of humans are described by WSDL and
communication takes place with SOAP messages (see Human-Provided Services [106]).
The interaction context, described by activity a1 (reflected by the blue-shaded area), holds
information about involved actors, goal of the activity, temporal constraints (start, duration,
milestones), assigned resources, planned costs, risk with respect to the whole software
development process and so on. The detailed description is not in scope of this work,
however, we conclude, that an activity holistically describes the context of an interaction
in our environment model [111].

1Frequently Asked Questions

34 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

Human n2, the owner of activity a2, performs his/her activity (software testing) jointly
with the help of n1 and n5. For that purpose, s/he interacts with all activity participants,
such as requesting help and assigning sub-activities. As defined before, trust emerges from
interactions, and is bound to a particular scope. Therefore, we aggregate interactions that
occurred in a pre-defined scope, calculate metrics (numeric values describing prior inter-
action behavior), and interpret them to establish trust. The scope of trust is reflected by the
green dashed ellipse in Figure 4.1. In the given scenario, the scope comprises trust relations
between PVC members regarding help and support in ‘software development’. So, regard-
less of whether interactions took place in context of activity a1 or a2, interactions of both
contexts are aggregated to calculate metrics, because both interaction contexts adhere to
the scope of software development. Finally, interaction metrics are interpreted using rules,
and the degree of trust between each pair of previously interacting members is determined.

Let us assume we are able to infer meaningful trust relations between interacting net-
work members (as demonstrated later in this work). Usually, once a network member
becomes highly trusted by others (normally leading to globally high reputation), s/he is
consulted in future collaborations again and again. Hence, distinguished experts would get
overloaded with work and flooded with support requests. We aim at applying a balanc-
ing model that relies on the means of delegations. For instance, if network member n2

is overloaded, s/he may delegate incoming requests (e.g., from n1) to third, well trusted,
network members (e.g., n5) in the same scope. These third parties may directly respond to
the original requester. The delegation model has two important properties:

• Interaction Balancing. Interactions are not focused on highly reputed members only,
but load is distributed over the whole network.

• Establishment of new Trust Relations. New personal trust relations that rely on direct
interactions, emerge, leading to future trustworthy compositions.

4.3 Interpretative Trust Inference

In this dissertation, we gradually develop and extend the VieTE - Vienna Trust Emergence

Framework [111] to research and evaluate novel concepts of trust and reputation in mixed
service-oriented system environments. Briefly (see Figure 4.2), the system captures inter-
actions between network members (bottom layer), calculates metrics of member relations,
such as average response time, request success rates, and availability, performs a rule-based
interpretation of these metrics, and infers trust between each pair of interacting members
(middle layer). Finally a social network, describing collaboration- and trust relationships
is provided (top layer). While the depicted architecture follows a centralized approach,
the logging facilities are replicated for scalability reasons, and monitoring takes place in a
distributed manner. Interactions are purged in predefined time intervals, depending on the
required depth of history needed by metric calculation plugins.

4.3. Interpretative Trust Inference 35

Trust Administration WS

Scope Definitions
- Activity Constraints

- Tag Lists

Metric

Calculation

Plugins

Configuration Mgmt. WS

Scope-dependent

Metrics Calculation

Interaction Correlation

and Abstraction

Interaction Retrieval

and Pre-Processing

Trust Interpretation

and Fuzzy Reasoning

<context definitions>

<interactions@context>

<metric definitions>

<scope>

<rules@scope><trust@scope>

D
is

tr
ib

u
te

d
 I

n
te

ra
c
ti

o
n

L

o
g

g
in

g
C

e
n

tr
a
li
z
e
d

V

ie
T

E
C

o
re

P
ro

v
is

io
n

 a
n

d

C
o

n
fi

g
u

ra
ti

o
n

Social Network Provisioning WS

Members
- Profiles

- Collaboration Metrics

Relations
- Interaction-, Trust-,

 Similarity Metrics

SN and Metrics Update WS

<metrics@scope>

A
c
ti
v
it
y
 M

g
m

t.
 W

S

Activities
- Activity Structures

- Tags

A
c
ti
v
it
y
 A

d
m

in
.

W
S

Interaction Mgmt. WS

Interaction DB
- Raw Interactions

- Optional Subscribers

Logging WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions

- Optional Subscribers

Logging WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions

- Optional Subscribers

Logging WS

Figure 4.2: VieTE framework overview.

4.3.1 Interaction Monitoring

Interactions are captured by interaction sensors, stored and managed by logging services.
The requests for support (RFSs) and their responses, exchanged between community mem-
bers, are modeled as traditional SOAP calls, but with various header extensions, as shown
in Listing 4.1. These header extensions include the context of interactions (i.e., the activity
that is performed), delegation restrictions (e.g., the number of hops), identify the sender
and receivers with WS-Addressing2, and hold some meta-information about the RFS itself.
For Human-Provided services (HPSs), SOAP messages are mapped to a GUI by the HPS
framework [106].

Actors use activities to manage their work as introduced before. Activities are struc-
tures to describe work and its goals, as well as participating actors, used resources, and
produced project artifacts. A detailed description of this model, used to capture the context
of interactions, is provided in [111].

2
http://www.w3.org/Submission/ws-addressing/

36 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

4.3.2 Interaction Metric Calculation

Analyzed interactions are RFSs and responses sent by an actor ni regarding another one
nj . The context of interactions reflects the situation and reason for their occurrences, and
is modeled as activities. When interactions are interpreted, only a minor subset of all
describing context elements is relevant within a trust scope. In the motivating scenario,
such a trust scope may describe the expertise area that is required to process an RFS.
� �

1 <soap:Envelope
2 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
5 xmlns:vietypes="http://viete.infosys.tuwien.ac.at/Type"
6 xmlns:hps="http://hps.infosys.tuwien.ac.at/"
7 xmlns:rfs="http://viete.infosys.tuwien.ac.at/Type/RFS">
8 <soap:Header>
9 <vietypes:timestamp value="2009-03-05T15:13:21"/>

10 <vietypes:delegation hops="3" deadline="2009-03-06T12:00:00"/>
11 <vietypes:activity url="http://www.coin-ip.eu/Activity#42"/>
12 <wsa:MessageID>uuid:722B1240-...</wsa:MessageID>
13 <wsa:ReplyTo>http://viete.infosys.tuwien.ac.at/Actor#Florian</wsa:ReplyTo>
14 <wsa:From>http://viete.infosys.tuwien.ac.at/Actor#Florian</wsa:From>
15 <wsa:To>http://viete.infosys.tuwien.ac.at/Actor#Daniel</wsa:To>
16 <wsa:Action>http://viete.infosys.tuwien.ac.at/Type/RFS</wsa:Action>
17 </soap:Header>
18 <soap:Body>
19 <hps:RFS>
20 <rfs:requ>Can you create an ant file for projectX?</rfs:requ>
21 <rfs:generalterms>programming</rfs:generalterms>
22 <rfs:keywords>java, EE, ant, apache axis2</rfs:keywords>
23 <rfs:resource url="http://svn.vitalab.tuwien.ac.at/projectX"/>
24 </hps:RFS>
25 </soap:Body>
26 </soap:Envelope>
� �

Listing 4.1: Simplified RFS via SOAP example.

Table 4.3.2 shows some example interaction metrics suitable for trust interpretation
that can be calculated from logged SOAP calls. Note, as described before, these metrics
are determined for particular scopes. The availability of a service, either provided by hu-
mans or implemented in Software, can be high in one scope, but much lower in another
one. Furthermore, these metrics are calculated for each directed relation between pairs of
network members. Note, an actor ni might serve nj reliably, but not a third party nk.

metric name range unit description
availability [0,100] % ratio of accepted to all received RFSs
response time [0,96] hours average response time in hours
success rate [0,100] % amount of successfully served RFSs
experience [0,∞] 1 number of RFSs served
RFS reciprocity [-1,1] 1 ratio of processed to sent RFSs
manual reward [0,5] 1 optional manually assigned scores
costs [0,5] $ price for serving RFSs

Table 4.1: Metrics utilized for trust inference.

For the sake of brevity, in the following examples and evaluation we account only for
the average response time tr (Equation 4.1) of a service and its success rate sr (Equation
4.2). These are typical metrics for an emergency help and support environment, where
fast and reliable support is absolutely required, but costs can be neglected. We assume,

4.3. Interpretative Trust Inference 37

similar complexity of requests for support (RFS) in a scope s, thus different RFSs require
comparable efforts from services (similar to a traditional Internet forum).

The response time is calculated as the duration between sending (or delegating) a re-
quest (tsend) to a service and receiving the corresponding response (treceive), averaged over
all served RFSs. Unique IDs of calls (see SOAP header in Listing 4.1) enable sophisticated
message correlation to identify corresponding messages.

tsr =

∑

rfs∈RFS (treceive(rfs)− tsend(rfs))

|RFS|
(4.1)

An RFS is considered successfully served (sRFS) if leading to a result before a pre-
defined deadline, otherwise it fails (fRFS).

srs =
num(sRFS)

num(sRFS) + num(fRFS)
(4.2)

4.3.3 Interpretation and Trust Inference

On top of the interaction metrics M of ni towards nj in scope s (here: M = {tsr, sr
s}),

personal trust τ s(ni, nj) ∈ [0, 1] is inferred. Trust, describing the relationship from ni to
nj , represents recent evidence that an actor behaves dependably, securely and reliably. The
function Ψs (Equation 4.3) evaluates metrics M with a rule set R to interpret trust τ in
scope s.

τ s(ni, nj) = Ψs(ni,M(ni, nj), R, s) (4.3)

Instead of usual business rules, we utilize a fuzzy set theory approach [113] that enables
an intuitive way to combine and interpret various metrics as trust from a collaborative and
social point of view. Fuzzy set theory, developed by Zadeh [131], and fuzzy logic emerged
in the domain of control engineering, but are nowadays increasingly used in computer
science to enable lightweight reasoning on a set of imperfect data or knowledge. The
concept of fuzziness has been used earlier in trust models [45, 96, 109], however, to our best
knowledge not to enable an interpretation of trust from larger and diverse sets of metrics,
calculated upon observed interactions.

As fuzzy inference is a key mechanisms of our trust model, we introduce the fun-
damental definitions in this section. Further details are, for instance, in [136]. Zadeh
[131] defined a fuzzy set A in X (A ⊆ X) to be characterized by a membership function
µA(x) : X 7→ [0, 1] which associates with each point in X a real number in the interval
[0, 1], with the value of µA(x) at x representing the ‘grade of membership’ of x in A. Thus,
the nearer the value of µA(x) to 1, the higher the grade of membership of x in A. When A

is a set in the ordinary sense of the term, its membership function can take only two values
(µA(x) : X 7→ {0, 1}, Equation 4.4), according as x does or does not belong to A. Thus,
in this case µA(x) reduces to the familiar characteristic function of a set A.

µA(x) =

{

1 if x ∈ A

0 if x /∈ A
(4.4)

38 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

Equation 4.5 depicts an example definition of a membership function µA(x) describing
a fuzzy set. This membership function is part of the linguistic variable ‘responsiveness’
highlighted in Figure 4.3(a), left side.

µA(x) =

0 if 0 ≤ x < 12
x
12 − 1 if 12 ≤ x < 24

1 if 24 ≤ x < 48

− x
12 − 5 if 48 ≤ x < 60

0 else

(4.5)

Two or more fuzzy sets, describing the same characteristic (i.e., metric), can be merged
to a linguistic variable. For instance in Figure 4.3(a), the linguistic variable ‘responsive-
ness’ is described by three fuzzy sets: high, medium, and low.

The definition of linguistic variables (and the their single membership functions re-
spectively), has to be performed carefully as they determine the operation of the reasoning
process. Linguistic variables are defined either for the whole community, or for groups,
and even single network members, by:

• a domain expert, using his experience and expertise. However, depending on the
complexity of the rules and aggregated metrics continuous manual adjustments are
needed (especially when bootstrapping the trust system).

• the system itself based on knowledge about the whole community. For instance, the
definition of a ‘high’ skill level is determined by the best 10 percent of all network
members in certain areas.

• the users based on individual constraints. For example, a ‘high’ skill level from user
ni’s point of view starts with having more than the double score of himself.

Let XA and XB be two feature spaces, and sets that are describes by their member-
ship function µA and µB respectively. A fuzzy relation µR(xA, xB) : XA ×XB 7→ [0, 1]

describes the set X, whereas µR(xA, xB) associates each element (xA, xB) from the carte-
sian product XA×XB a membership degree in [0, 1]. Fuzzy relations are defined by a rule
base, where each rule, as shown in Equation 4.6, comprises a premise p (condition to be
met) and a conclusion c.

IF p THEN c (4.6)

Approximate reasoning by evaluating the aforementioned rule base, needs some fuzzy
operators to be defined [131]: OR, AND, and NOT.

A OR B ≡ A ∪B ≡ µ(x) = max(µA(x), µB(x)) for x ∈ X (4.7)

A AND B ≡ A ∩B ≡ µ(x) = min(µA(x), µB(x)) for x ∈ X (4.8)

NOT A ≡ µ(x) = 1− µA(x) for x ∈ X (4.9)

4.3. Interpretative Trust Inference 39

362412 48 7260

0.25

0.75

0.5

1.0

(tr)

response

time tr [h]

HIGHLOW MEDIUM

5010 100

0.25

0.75

0.5

1.0

(sr)

success

rate sr [%]

LOW HIGHMEDIUM

18 75

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

If tr is low and sr is high then trust is full If tr is low and sr is medium then trust is high

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

If tr is medium and sr is high then trust is high If tr is medium and sr is medium then trust is medium

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

a)

b)

c) Defuzzification Procedure:
Trust ’center of gravity’: 0.61

0.61

Figure 4.3: An example showing fuzzy trust inference. Applied interaction metrics are
response time tr = 18h and success rate sr = 75%. (a) definition of membership func-
tions and fuzzified interaction metrics; (b) four applied fuzzy rules following the max-min
inference; (c) defuzzification by determining the center of gravity.

The defuzzification operation [67] determines a discrete (sharp) value xs from the in-
ferred fuzzy set X. For that purpose all single results obtained by evaluating rules (see
Figure 4.3(b)) are combined, forming a geometric shape. One of the most common de-
fuzzification methods is to determine the center of gravity of this shape, as depicted in
the example in Figure 4.3(c). In general, center of gravity defuzzification determines the
component x of xs of the area below the membership function µx(x) (see Equation 4.10).

xs =

∫

x
x · µx(x) · dx
∫

x
µx(x) · dx

(4.10)

Example: Given the linguistic variables response time tr, success rate sr, and trust,
with the membership functions as defined in Figure 4.3, we provide the rulebase in Listing
4.2 to the fuzzy engine. Figure 4.4 visualizes trust inference results for different pairs of tr
and sr inputs.

40 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

� �
1 if tr is low and sr is high then trust is full
2 if tr is low and sr is medium then trust is high
3 if tr is low and sr is low then trust is low
4 if tr is medium and sr is high then trust is high
5 if tr is medium and sr is medium then trust is medium
6 if tr is medium and sr is low then trust is low
7 if tr is high and sr is high then trust is medium
8 if tr is high and sr is medium then trust is low
9 if tr is high and sr is low then trust is low
� �

Listing 4.2: Rules for inferring trust upon tr and sr.

0
20

40
60

80
1000

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

response timesuccess rate

tr
u

s
t

Figure 4.4: Result space for the given rule set.

Personal trust τ s(ni, nj) from ni in nj is updated periodically in consecutive time in-
tervals (e.g., on a daily basis). We apply a sliding window approach and process all logged
interactions within a pre-configured time frame (e.g., the last week or month). The size
of the window depends on the calculated interaction metrics. For instance, success rates
or collected experiences are inferred from interactions within the last six month, while
response times only depend on interactions in the last week. Therefore, the depth of the re-
quired interaction history relies on the utilized metrics of the environment. We demonstrate
an application of this approach in the evaluation in Section 4.5.

4.3.4 Collaboration Network Provisioning

Finally, the social network, comprising actors connected by trust relations, is provided
by VieTE through a SOAP interface (see top of Figure 4.2). A trust relation is always
asymmetric, i.e., a directed edge from one member node to another one in a graph model
G = (N,E). We call the trusting actor the trustor ni (the source of an edge), and the
trusted entitiy the trustee nj (the sink of an edge). VieTE’s provisioning interface, de-

4.4. Delegations and Balancing 41

scribed by WSDL, supports convenient network retrieval operations, such as getting the
trustors and trustees of a node in a specified scope (see Appendix).

A domain expert configures certain properties of the trust inference process that are ap-
plied for all participants of the network. For instance, s/he defines meaningful trust scopes
in the given domain and business area, configures available metric calculation plugins that
provide the metrics for personal trust rules, and sets up the general trust model behavior,
such as temporal constraints for interaction analysis and endpoints of logging facilities.

4.4 Delegations and Balancing

A common problem of trust and reputation mechanisms in online communities is that there
emerge only a minority of highly trusted actors, while the majority remains in the back-
ground. Therefore, network members tend to consult and interact with the same (already
trusted) services again and again, leading to work overloads of these service providers,
and hindering the emergence of new trust relations. We utilize the means of delegations
to compensate this load and interaction balancing problem that is often neglected, but of
paramount importance in collaborative environments. In the motivating PVC scenario of
this chapter, actors send and process requests for support (RFS). Once an actor gets over-
loaded s/he should be able to delegate requests to other actors (with potentially free re-
sources). If the receivers of such delegations behave trustworthy, i.e., respond fast and re-
liably, the original requesters will establish trust to them. Figure 4.5 visualizes this model.
In case of a successful delegation, n1 sends an RFS to n2 who delegates to n3, and n3

responds directly to n1. This interaction will positively impact the metrics that describe the
relation from n1 to n2, and finally τ(n1, n2) increases. The relation τ(n1, n2) is neither
rewarded nor punished, because on the one side n2 did not serve n1’s RFS, but on the other
side, n2 was able to successfully delegate, and thus did not harm n1. The relation τ(n2, n3)

is also not influenced, since n2 is not the original requester. If a delegation fails (Figure
4.5(b)), i.e., an RFS is not responded, metrics that describe both τ(n1, n2) and τ(n2, n3)

are negatively influenced (for instance the success rate is decreased), because of n2’s and
n3’s unreliable behavior. But in that case, we assume that τ(n1, n3) remains unchanged.
Although n3 has not served n1’s request, we do not know the reasons for that behavior. For
instance, a denial of service attack could maliciously harm n3’s reputation (the average of
trust relations), if s/he is flooded with delegated RFSs.

n2n1

n3

+

I.

II.

III.

(a) Successful delegation.

n2n1

n3-
I.

II.

-

(b) Failed delegation.

Figure 4.5: Delegations and their impact on trust.

42 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

The described delegation mechanisms and their influence on trust are configured by
a domain expert in VieTE, and are feasible for our mixed service systems PVC scenario,
where all participants in the network have similar collaboration roles (in particular to pro-
vide help and support). Other delegation and trust mechanisms, accounting for different
roles of network members and restrictions of delegations due to confidentiality reasons,
may be desirable in other domains.

One of the major challenges to enable sophisticated balancing is to determine the re-
ceivers of delegations in the whole network. Usually, the selection will rely on trust, be-
cause, as shown in Figure 4.5(b), it is in n2’s interest to delegate successfully and not to
get punished. A fundamental selection strategy randomly picks an actor from a pool of
service providers that are personally trusted above a pre-defined limit. Based on each indi-
vidual’s interaction history, every network member has his/her own pool of trusted actors.
More advanced selection models are out of scope of this work, and are subject to further
research.

4.5 Evaluation and Discussion of a PVC Scenario

We evaluate the VieTE framework that implements our approach of fuzzy trust inference
and balancing, by simulating typical scenarios in the described PVC environment. For that
purpose, we utilize the popular Repast Simphony3 toolkit, a software bundle that enables
round-based agent simulation. In contrast to researchers in the agent domain, we do not
simulate our concepts by implementing different actor types and their behavior only, but
we use a network of actors to provide stimuli for the actual VieTE framework. Therefore,
we are not only able to evaluate our new approach of fuzzy trust inference, but also the
technical grounding based on Web service standards. Figure 4.6 depicts that VieTE is used
exactly in the same manner in our simulation (highlighted left side), as it would be used by
a real mixed systems PVC (right side).

VieTE Framework

Social Network and

Trust Provisioning

Interaction Logging

agent trust information

synthetic SOAP-based interactions

Mixed Systems

PVC

Service and HPS

Middleware

Mixed Systems

Trust Lookup

Simulated Agent

Network

Artifical Agent

Interactions

Simulated Agents

real SOAP-based interactions

actor trust information

Figure 4.6: Simulation setup (left side) compared to the intended application (right side)
of the VieTE framework.

3
http://repast.sourceforge.net

4.5. Evaluation and Discussion of a PVC Scenario 43

In particular, we let the simulated network members interact (sending, responding, and
delegating RFSs), and provide these interactions to the logging facilities of VieTE. The
framework infers trust by calculating the described metrics tr and sr, and using the rule
set of Listing 4.2 for behavioral interpretation. Finally, emerging trust relations between
the simulated actors influence the selection of receivers of RFSs. Hence, VieTE and the
simulated actor network relies on each other, and are used in a cyclic approach; exactly the
same way VieTE would be used by real PVCs. To facilitate simulations, all interactions
take place in the same scope.

4.5.1 Simulation Setup

Simulated Agent Network. Repast Simphony offers convenient support to model different
actor behavior. As an inherent part of our environment, we make no distinction between
human users and software services. Each actor owns a unique id (a number), produces
SOAP requests, and follows one of the following behavior models: (i) malicious actors

accept all RFSs but never delegate or respond, (ii) erratic actors accept all RFSs but only
process (respond directly or delegate) RFSs originally coming from requesters with odd-
numbered IDs, (iii) fair players process all requests if they are not overloaded, and delegate
to trustworthy network neighbors otherwise.

We set up a network comprising 15 actors, where only one is highly reputed and fully
trusted by all others as depicted in Figure 4.7(a). This is the typical starting point of a
newly created community, where one actor invites others to join.

VieTE Setup. After each simulation step (round) seven randomly picked actors send
one RFS to its most trusted actor (in the beginning this will only be the highly reputed one
who starts to delegate). Each actor’s input queue has exactly 5 slots to buffer incoming
RFSs. A request is always accepted and takes exactly one round to be served. An actor
processes an RFS itself if it has a free slot in its input queue, otherwise incoming RFSs
are delegated to randomly picked trusted (τ > 0.8) neighbors in the network. Note, one
actor does not delegate more than one RFS per round to the same neighbor, however, an
actor may receive more than one RFS from different neighbors in the same round. Delega-
tions require one additional simulation round. There is an upper limit of 15 rounds for an
RFS to be served (deadline); otherwise it is considered failed. A request can be delegated
only three times (but not back to the original requester) (hops) to avoid circulating RFSs.
Because the simulation utilizes only two fully automatically determined metrics (tr and
sr), and no manual rewarding of responses, we assume an RFS is successfully served if
a response arrives within 15 rounds (no fake or low quality responses). After each round,
VieTE determines tr based on interactions in the last 25 rounds, and sr upon interactions
in the last 50 rounds (sliding window approach), and purges older logs.

4.5.2 Simulation Results

Interaction Balancing. We perform 250 simulation rounds of the described scenario with
the aforementioned properties, and study the network structure in certain points of the
simulation. The depicted networks in Figure 4.7 show actors with different behavior and

44 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

(a) Initial n=0 (b) Intermediate n=100

(c) Balanced n=250 (d) Balanced (reduced)

Figure 4.7: Network structure after simulation round n={0, 100, 250}. Elliptic nodes
are fair players, rectangular shapes represent erratic actors, diamond shaped nodes reflect
nodes with malicious behavior.

the temporal evolvement of trust relations between them. The size of the graph’s nodes
depend on the amount of trust established by network neighbors. Beginning with a star
structure (Figure 4.7(a)), the network structure in Figure 4.7(b) emerges after 100 rounds,
and Figure 4.7(c) after 250 rounds respectively. Note, since the behavior of the nodes is
not deterministic (i.e., RFSs are sent to random neighbors that are trusted with τ > 0.8

(lower bound of full trust; see Figure 4.3)), the simulation output looks differently for each
simulation run, however, the overall properties of the network are similar (number and
strength of emerged trust relations).

In the beginning, all RFSs are sent to actor 0, who delegates to randomly picked trusted
actors. If they respond reliably, then requesters establish trust in that third parties. Other-
wise they lose trust in actor 0 (because of unsuccessful delegations). Therefore, actors
with even-numbered IDs lose trust in actor 0 faster than odd-numbered actors, because if
actor 0 delegates requests to erratic actors, they are not replied. As an additional feature in
round 100, actors that are not trusted with τ > 0.2 by at least on other network member,
are removed from the network, similar to Web communities where leechers (actors that do
not contribute to the network) are banned. Therefore, actors with malicious behavior dis-
appear, while actors with erratic behavior still remain in the network. Figure 4.7(d) shows
a reduced view of the balanced network after 250 rounds. Only trust relations with τ > 0.8

are visualized. As expected most nodes have strong trust relations in at least one fair player
(actors who reliably respond and delegate RFSs). However, remember that erratic actors

4.5. Evaluation and Discussion of a PVC Scenario 45

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

simulation round [n]

g
lo

b
a
l
s
u

c
c
e
s
s
 r

a
te

 [
%

]

theoretical average (ud)

5 requesters per round

7 requesters per round

15 requesters per round

Figure 4.8: Global RFS response success rate of the simulated actor network.

reliably serve only requests coming from actors with odd-numbered IDs. Therefore, actor

3 and actor 9 also establish full trust in actors from this class. Note, if actor 3 and actor 9

would have re-delegated much RFSs coming from even-numbered actors to erratic actors,
than those RFSs would have failed and only low trust would have emerged. However, due
to the comparatively low load of the network (less than half of the actors receive RFSs per
round (until n = 100)), only a low amount of re-delegations occur (approx. 8 percent).

Global Success Rate. We run the simulation with different interaction rates of actors.
In particular, we let 5, 7 (as in the experiment described before), and 15 actors send RFSs
to others, and calculate the global success rate, i.e., the amount of successfully answered
RFSs from a global point of view. If requests would not be sent to trusted actors that proved
their reliable behavior before, but uniformly distributed over available actor classes (5 fair,
5 erratic, 5 malicious) – according to a primitive interaction balancing approach – than 50
percent of RFSs would be served successfully. This theoretical limit (without delegations)
is represented as a reference in Figure 4.8 by the dashed line. We study the performance of
our trustworthy interaction balancing approach compared to this primitive method.

In Figure 4.8 some results are visualized, and the following issues are worth mention-
ing. The deadline for an RFS to be served is 15 rounds. So, the success rate of round i

is available in round i + 15. We simulate the actor behavior until round 100 (where ma-
licious actors are banned). Therefore, the temporal evolution of the global success rate is
depicted until round 85. In the beginning, i.e., the very first round, the success rate is very
high, because all RFSs are sent to actor 0 (a fair player), who performs/buffers the first five
RFSs itself (and then begins to delegate). Hence, the success rate is high for the first round,
but collapses in the second round, where virtually only delegations occur. The rate slowly
recovers as new trust relations emerge, and members get connected to new potential actors
to send RFSs to.

In the simulation, where each of five randomly picked actors send one request to an-

46 Chapter 4. Trustworthy Interaction Balancing in Mixed Systems

other one, the success rate stabilizes at a high level, after new trust relations emerged, and
the network has been balanced. This process can be studied for seven actors again. How-
ever, since it comes to re-delegations, some RFSs frequently fail being processed (due to
the impact of erratic actors), and therefore, the success rate oscillates at a high level. The
case of 15 interacting network members per round shows, that actors are mainly busy with
re-delegations and the large part of RFSs miss their deadlines. This results in a much lower
success rate than the theoretical average of 50%.

Finally, note that our interaction balancing model of trustworthy delegations performs
best, if the overall amount of reliable actors is high, and the load is low to medium.

CHAPTER 5

Trusted Interaction Patterns in

Enterprise Service Networks

Outline. We refine our delegation concepts, and discuss the interplay of interaction patterns
and trust. For that purpose, we formulate our trust model and show its application in context
of the Expert Web use case.

Contents

5.1 Motivation . 47

5.2 Coordination and Composition . 48

5.3 Formalized Social Trust Model . 50

5.3.1 Personal Trust Inference . 50

5.3.2 Temporal Evaluation . 53

5.3.3 Trust Aggregation . 54

5.4 Interaction Patterns and Trust . 55

5.4.1 Service Selection Procedure . 55

5.4.2 Fundamental Interactions . 56

5.4.3 Rewarding and Punishment . 57

5.4.4 Requirements and Policies . 57

5.4.5 RFS Delegation Patterns . 58

5.5 TrueExpert Architecture . 60

5.5.1 Trust Requirements Rules . 60

5.5.2 RFS Routing . 61

5.5.3 RFS Delegation . 63

5.5.4 Rewarding Mechanisms . 64

5.6 Discussion . 64

5.1 Motivation

Collaborations on the Web and in large-scale enterprises evolve in a rapid pace by allowing
people to form communities and expertise clusters depending on their skills and interests.
The management of interactions in these networks becomes increasingly complex as cur-
rent tools only support messaging and addressing mechanisms developed for the early Web.

48 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

However, it is difficult - if not impossible - to control interactions ranging from ad-hoc
to process-centric collaborations. In Web-scale networks, partially unknown participants
might be part of processes that span multiple geographically distributed units of an organi-
zation. We argue that trusted selection of participants leads to more efficient cooperation
and compositions of human- and software services. In this chapter, we describe our novel
trust concepts, including trust inference and reputation management, in the context of an
enterprise use case. Trust is built upon previous interactions and evolves over time; thus
providing a reliable and intuitive way to support actor selection in mixed systems.

Our key contributions in this chapter are as follows:

• Formalized Social Trust Model. Based on previous work, we formulate a social trust
model for mixed service-oriented systems, including personal trust, recommenda-
tion, and reputation relying on measured interaction metrics. Furthermore, we deal
with basic temporal evaluations.

• Interaction Patterns. We utilize our trust model for trusted expert ranking and se-
lection in service-oriented communities. On the one hand we demonstrate how trust
influences interactions in mixed systems; on the other hand we show the impact of
interactions on trust.

• Delegation Scenarios. Coordination and compositions are strongly influenced by
interaction patterns. We propose models for the propagation of trust based on dele-
gations resulting in different types of patterns. We consider (i) trust referral in triad
interaction patterns, and (ii) trust attenuation in proxy patterns.

These contributions, including the interplay of interaction patterns and trust, are de-
scribed and motivated in the context of an enterprise use case. The main focus of this chap-
ter is to present above mentioned interactions patterns, an approach for trust propagation
within such patterns, and the discussion of the TrueExpert framework and its implementa-
tion (relying on VieTE’s mechanisms).

5.2 Coordination and Composition

A motivating use case for our work – referred to as the Expert Web use case – is depicted in
Figure 5.1. A process composed of single tasks assigned to humans or covered by software
services, describes the steps to produce a Computer Aided Design (CAD) drawing, and
handle its final delivery to a customer. A conceptual draft, e.g., of a mechanical part, is
designed by an engineer from the development department. In parallel a CAD assistant,
belonging to another organizational unit, defines common symbols for the final drawing
which conform to customer’s requirements and international standards. After completing
these tasks, a skilled drawer produces the drawing. In the last step an assistant cares for
printout and delivery to the customer, and a software service converts the drawing and
stores it in an archive.

We assume, that the single task owners in this process exchange only electronic files,
and interact using communication technologies. While various languages and techniques

5.2. Coordination and Composition 49

conceptual draft
printout and

delivery

symbol library

CAD drawing

Expert Web

engineer
(contributor)

CAD assistant
(contributor)

drawer
(leader)

Discussion CAD

experts

Process: CAD Drawing

virtual room

RFS response

request for
support (RFS)

trusted

selection

trusted

delegations

conversion
and archive

WS

DL

WS

DL

WS

DL

Symbols:

human

software service

expert service
(general)

expert service
prov. by human

expert service
implemented in
software

WS

DL

WS

DL

Figure 5.1: Involving experts from the Expert Web.

for modeling such processes already exist, including the Business Process Execution Lan-
guage (BPEL [92]), we focus on another aspect in this scenario: trusted online help and

support. Usually, in BPEL input and output data are rigidly specified, however, even for
carefully planned processes with human participation, ad-hoc adaptation and intervention
is required due to the complexity of human tasks, people’s individual understanding, and
unpredictable events. For instance, according to Figure 5.1 the drawer receives a drawing
draft and a symbol library. If people have not yet worked jointly on similar tasks, it is
likely, that they need to set up a meeting for discussing produced artifacts. Especially, if
people belong to different, possibly geographically distributed organizational units, a per-
sonal meeting can be time- and cost intensive. Therefore, various Web 2.0 technologies,
including forums, wiki pages and text chats, provide well-proven support for tele-work in
collaborative environments (represented by the virtual room in Figure 5.1).

However, several challenges remain unsolved. If people, participating in the whole
process, are not able to solve problems by discussion, who should be asked for support?
How can third parties be contacted and informed about the current situation? How can they
easily be involved in ongoing collaborations? Moreover, what are influencing factors for
favoring one party over others? How is information exchanged, and how can this situation
be supported by service-oriented systems?

The traditional way of discovering support is simply to ask third persons in some-
one’s working environment, the discussion participants are convinced they are able to help,
namely trusted experts. In an environment with a limited number of people, persons usu-
ally tend to know who can be trusted and what data has to be shared in order to proceed
with solving problems of particular nature. Furthermore, they easily find ways to contact
trusted experts, e.g., discovery of phone numbers or e-mail addresses. In case requesters
do not know skilled persons, they may ask friends or colleagues, who faced similar prob-
lems before, to recommend experts. The drawbacks of this traditional way are that people
need extensive knowledge about the skills of colleagues and internal structures of the or-
ganization (e.g., the expertises of people in other departments). The traditional way of
discovering support is inefficient in large-scale enterprises with thousands of employees
and probably not satisfying if an inquiry for an expert becomes a major undertaking. Even
the use of today’s computer-supported communication technologies cannot fully address

50 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

the mentioned challenges.
The Expert Web. We propose the Expert Web, consisting of connected experts that

provide help and support in a service-oriented manner. The members of this Expert Web
are either humans, such as company employees offering help as online support services, or
software services, encapsulating howtos1, knowledge bases, and oracles2 with intelligent
reasoning capabilities. Such an enterprise service network, spanning various organizational
units, can be consulted for efficient discovery of available support. Users, such as the
engineer or drawer in our use case, send requests for support (RFSs). The users establish
trust in experts’ capabilities based on their response behavior (e.g., availability, response
time, quality of support). This trust, reflecting personal positive or negative experiences,
fundamentally influences future selections of experts.

As in the traditional case, experts may also delegate RFSs to other experts in the net-
work, for example when they are overloaded or not able to provide satisfying responses.
Following this way, not only users of the enterprise service network establish trust in ex-
perts, but also trust relations between experts emerge.

5.3 Formalized Social Trust Model

In virtual communities, where people dynamically interact to perform activities, re-
liable and dependable behavior promotes the emergence of trust. As collaborations
are increasingly performed online, supported by service-oriented technologies, such as
communication-, coordination-, and resource management services, interactions have be-
come observable. We argue that by monitoring and analyzing interactions, trust can be
automatically inferred. In contrast to manual rating approaches, automatic inference is
well-suited for complex networks, where potentially thousands of network members dy-
namically interact. We demonstrated the automatic inference of trust earlier (see Chapter 4
and focus on a formalized model now.

5.3.1 Personal Trust Inference

Not only service interactions, but also human interactions may rely on SOAP (e.g., see
Human-Provided Services [106] and BPEL4People [1]), which is the state-of-the-art tech-
nology in service-oriented environments, and well supported by various software frame-
works. This fact enables the adoption of various available monitoring and logging tools
for mixed service-oriented systems. The XML-based structure of SOAP messages is well-
suited for message header extensions, such as addressing and routing information, and
annotation with contextual elements (e.g., activity identifier). These mechanisms allow
for context-aware interaction metric calculation, for instance, reliability, responsiveness,
collected experience, and costs with respect to specific situations. We apply an arithmetic
calculation of trust based on these metrics. This calculation is context dependent, so in dif-
ferent domains and use cases the impact of metrics varies. As interaction behavior changes

1
http://www.ehow.com

2
http://www.wolframalpha.com

5.3. Formalized Social Trust Model 51

over time, trust will alter too. Therefore, trust deems to be an intuitive grounding for flex-
ible adaptation techniques (for instance, service replacement) in mixed service-oriented
systems.

The interaction behavior of a network member ni toward nj is described by various
metrics M(ni, nj), such as average response time, availability, and rate of joint successful
activities. In this work, we basically deal with two different approaches to infer trust upon
these metrics:

• Arithmetic Calculation. This means, trust is calculated by weighting metrics and
building average values. However this method uses very simple models, they may be
quite effective under certain assumptions (e.g., simple interaction types and patterns).

• Rule-based Interpretation. This allows to account for more complex business rules
to actually interpret metrics. For instance, actors need to reach certain scores of
predefined metrics to be considered trustworthy.

Arithmetic Calculation. Interaction metrics are normalized to the interval [0, 1] either
according to predefined upper and lower bounds, or dynamically adapted according to
the highest and lowest values in the whole community. Furthermore, weights need to be
specified, either by users or system administrators. The weighted sum of selected metrics
build the confidence cs(ni, nj) ∈ [0, 1] of ni in nj in scope s (e.g., a certain expertise
area or particular type of activity). This confidence represents recent evidence that an actor
behaves dependably, securely and reliably. In Equation 5.1 confidence is calculated from
metrics mk ∈M(ni, nj) that are weighted by wk (

∑

k wk = 1).

cs(ni, nj) =
∑

∀mk

(mk(ni, nj) · wk) (5.1)

Rule-based Interpretation. Interaction metrics are processed by individually con-
figured fuzzy (E)CA3-rules. These rules define conditions to be met by metrics M for
interpreting trustworthy behavior, e.g., ‘the responsiveness of the trustee must be high’ or
‘a trustworthy software programmer must have collected at least average experiences in
software integration activities’. Rules reflect a user’s trust perception, e.g., pessimists may
demand for stricter trustworthy behavior, than optimists. So, these rules are again either
specified by the users, or globally by administrators. Node, only the individual definition of
rules allows the expression of personalized trust requirements. However, individual rules
highly increase the computational complexity for trust inference.

On top, again the confidence cs(ni, nj) ∈ [0, 1] of ni in nj in scope s is determined.
This confidence may rely on a wide variety of interaction-, collaboration-, and similarity
metrics M that describe the relationship from ni to nj . Besides highly dynamic interaction
metrics, information from actor profiles P may be considered during calculation, e.g., a
human actor’s education or a service’s vendor. The function Ψs

c (Equation 5.2) evaluates
n1’s personal fuzzy rule set Rc(ni) (or a general rule set Rc) to determine confidence c in
scope s in his collaboration partners (e.g., nj) (see Chapter 4 for more information on the

3(event)-condition-action

52 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

application of fuzzy set theory for trust inference). This confidence value is normalized to
[0, 1] according to the degree of rule satisfaction.

cs(ni, nj) = Ψs
c(ni,M(ni, nj), P (nj), Rc(nj), s) (5.2)

The reliability of confidence ρ(cs(ni, nj)) ∈ [0, 1], ranging from totally uncertain
to fully confirmed, depends mainly on the amount of data used to calculate confidence
(more data provide higher evidence), and the variance of metric values collected over time
(e.g., stable interaction behavior is more trustworthy). The function Ψs

ρ (Equation 5.3)
determines the reliability ρ of the confidence value cs(ni, nj) relying on utilized metrics
M(ni, nj). The specific implementation is out of scope of this paper.

ρ(cs(ni, nj)) = Ψs
ρ(ni,M(ni, nj), s) (5.3)

We infer personal trust τ s(ni, nj) ∈ [0, 1] by combining confidence with its reliability
(see operator ⊗ in Equation 5.4). This can be performed either rule-based by attenuating
confidence respecting reliability, or arithmetically, for instance by multiplying confidence
with reliability (as both are scaled to the interval [0, 1]). Since trust relies directly on confi-
dence that may be inferred by evaluating personal rules, an actor’s personal trust relation in
this model indeed reflects its subjective criteria for trusting another actor. Trust is managed
in a directed graph G = (N,E).

τ s(ni, nj) = 〈c
s(ni, nj), ρ(c

s(ni, nj)),⊗〉 (5.4)

We introduce the trust vector Ts(ni) to enable efficient trust management in the Web

of Trust. This vector is combined of single personal trust relations (outgoing edges of a
vertex in G = (N,E)) from an actor ni to others in scope s (Equation 5.5).

Ts(ni) = 〈τ
s(ni, nj), τ

s(ni, nk), τ
s(ni, nl), . . . 〉 (5.5)

The trust matrix Ts comprises trust vectors of all actors in the environment, and is
therefore the adjacency matrix of the mentioned trust graph G = (N,E). In this matrix, as
shown in Equation 5.6 for four vertices N = {n1, n2, n3, n4}, each row vector describes
the trusting behavior of a particular actor (Ts), while the column vectors describe how
much an actor is trusted by others. If no relation exists, such as self-connections, this is
denoted by the symbol ⊥.

T
s =

⊥ τ s(n1, n2) τ s(n1, n3) τ s(n1, n4)

τ s(n2, n1) ⊥ τ s(n2, n3) τ s(n2, n4)

τ s(n3, n1) τ s(n3, n2) ⊥ τ s(n3, n4)

τ s(n4, n1) τ s(n4, n2) τ s(n4, n3) ⊥

(5.6)

The trust perception psτ (ni) represents the ‘trusting behavior’ of ni, i.e., its attitude to
trust others in scope s. The absolute value of psτ (ni) is not of importance, but it is meaning-
ful to compare the trust perceptions of various actors. In case of rule-based trust interpreta-
tion, this can be performed by comparing their rule bases for trust inference (Equation 5.7),

5.3. Formalized Social Trust Model 53

e.g., if actors account for the same metrics, or if they are shaped by optimism or pessimism
(and thus have lower or higher requirements on someones behavior). Therefore, more sim-
ilar rules means more similar requirements for trust establishment. A typical application of
trust perception is the weighting of recommendations from multiple trustees based on the
similarity of the requester’s and recommender’s trust perceptions.

simpercep(p
s
τ (ni), p

s
τ (nj)) = sim(Rs

c(ni), R
s
c(nj) (5.7)

5.3.2 Temporal Evaluation

Personal trust τ s(ni, nj) from ni in nj is updated periodically in successive time intervals
ti, numbered with consecutive integers starting with zero. We denote the personal trust
value calculated at time step i as τ si . As trust is evolving over time, we do not simply
replace old values, i.e., τ si−1, with newer ones, but merge them according to pre-defined
rules. For this purpose we apply the concept of exponential moving average4, to smoothen
the sequence of calculated trust values as shown in Equation 5.8. With this method, we are
able to adjust the importance of the most recent trust behavior ∆τ s compared to history
trust values τ s (smoothing factor α ∈ [0, 1]). In case, there are no interactions between
two entities, but an existing trust relation, the reliability of this trust relation is lowered by
a small amount each evaluation interval. Therefore, equal to reality, trust between entities
is reduced stepwise, if they do not interact frequently.

τ si = α ·∆τ si + (1− α) · τ si−1 (5.8)

Figure 5.2(a) shows an example of applied EMA. The dashed line represents the trust-
worthiness of an actor’s behavior, i.e., ∆τ si , for the ith time interval, calculated indepen-
dently from previous time intervals. In this situation an actor’s behavior is evaluated as
fully reliable, then drops to zero, and finally fully reliable again. Similar to reality, EMA
enables us to memorize drops in recent behavior. If an actor once behaved untrustworthy,
it will likely take some time to regain full trust again. Therefore, depending on selected α,
different strategies for merging current trust values with the history can be realized. Ac-
cording to Equation 5.8, for α > 0.5 the actual behavior is counted more, otherwise the
history gains more importance. Figure 5.2(a) shows three smoothened time lines, calcu-
lated with different smoothing factors. There exist several other approaches to trust evolu-
tion which work with deep histories, e.g., [121], however, EMA requires less memory and
lower computational effort.

As shown in Figure 5.2(a), by applying EMA previous or current behavior is given
more importance. However, personal traits, such as being optimistic or pessimistic, de-
mands for more sophisticated rules of temporal evaluation. In our case, we define an
optimist as somebody who predominantly remembers positive and contributing behavior
and tends to quickly forgive short-term unreliability. In contrast to that, a pessimist loses
trust also for short-term unreliability and needs more time to regain trust than the opti-
mist. Examples of this behavior are depicted by Figure 5.2(b). Optimistic and pessimistic

4
http://www.itl.nist.gov/div898/handbook/

54 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25 30
time

e
v

a
lu

a
ti

o
n

Behavior

EMA a=0.2

EMA a=0.5

EMA a=0.8

(a) Evolution of trust applying EMA.

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25 30
time

e
v

a
lu

a
ti

o
n

Behavior

Pessimist

Optimist

(b) Optimistic and pessimistic perception of trust mod-
eled with adaptive EMA.

Figure 5.2: Smoothing of trust values over time.

perceptions are realized by adapting the smoothing factor α according to Equation 5.9.
Whenever the curve depicted in Figure 5.2(b) changes its sign, τ si is re-calculated with
adapted α. A small deviation ε denotes that the smoothing factor is either near 0 or near
1, depending on falling or rising trustworthiness. An enhanced version of this approach
may adapt parameters in more fine-grained intervals, for instance, by considering lower
and higher drops/rises of trustworthiness.

α =

0 + ε if optimistic and τ si < τ si−1

1− ε if optimistic and τ si ≥ τ si−1

0 + ε if pessimistic and τ si ≥ τ si−1

1− ε if pessimistic and τ si < τ si−1

(5.9)

5.3.3 Trust Aggregation

Single trust relations are combined, as several times discussed before, to realize the con-
cepts of recommendation and reputation.

Recommendation τ srec(ni, nj) is built by aggregating ni’s trustees’ trust relations to
nj . Recommendation represents therefore second-hand experiences. Potential recom-
menders of ni for nj are all Rec ⊆ {nx ∈ N |τ s(ni, nx) 6= ⊥ ∧ τ s(nx, nj) 6= ⊥}. The
recommender’s perceptions of trust will likely be different from the actor’s ni perception
(that is receiving the recommendation), because all of them may define trust upon different
rule sets. For instance, optimists generally tend to provide better recommendations of third
parties than pessimists. Considering psτ allows to account for differences in trust percep-
tions between the set of recommenders Rec and a user ni of recommendations. Thus, ni

could define to utilize only recommendations of trustees having similar perceptions of trust,
i.e., psτ (ni) ≈ psτ (nx)∀nx ∈ N . As other models [55], we weight the recommendation of
each nx ∈ Rec with the trustworthiness of ni in nx (see Equation 5.10).

τ srec(ni, nj) =

∑

nx∈Rec τ
s(nx, nj) · τ

s(ni, nx)
∑

nx∈Rec τ
s(ni, nx)

(5.10)

5.4. Interaction Patterns and Trust 55

Reputation τrep is similar to recommendation, however, an actor ni who is determin-
ing the reputation of nj does not require a personal trust relation to nj’s trustors (’reputing’
entities Repj ⊆ {nx ∈ N |τ s(nx, nj) 6= ⊥} described by a column vector of the trust
matrix Ts). Reputation represents a kind of global (community) trust, calculated on top
of each trustor’s personal relations (see Equation 5.11). If personal trust relations rely on
individually set up rules, the results of our reputation model indeed reflect someone’s real

standing, influenced by the subjective trust perceptions of his trustors. More advanced
models may account for the reputation of the trustors, leading to a Page Rank-like model
[93].

τ srep(nj) =

∑

n∈Repj
τ s(n, nj)

|Repj |
(5.11)

5.4 Interaction Patterns and Trust

According to the motivating example in Figure 5.1, leaders of tasks in a process can invite
participants of preceding tasks to a discussion in a virtual room, using Web 2.0 technologies
such as discussion forums. If people are not able to find solutions for occurring problems,
the discussion leader may consult expert services. These services are selected by consider-
ing the discussion leader’s trust requirements (e.g., a minimum personal trust or reputation)
in expert services.

5.4.1 Service Selection Procedure

We distinguish between two roles: requesters and expert services. Requesters, i.e., service
users, are humans requesting support; expert services are provided by either humans (HPS)
or are implemented in software. A human can be both a service requester and provider at
the same time.

Algorithm 3 implements the fundamental procedure for selecting a service from the
Expert Web. At first, it is determined if a scope s that sufficiently describes the current
situation (EnvDescr) already exists (i.e., context similarity is above a predefined thresh-
old ϑCtx). Otherwise, a new scope is created using available data from the environment.
This step is performed by the support requester who specifies context data that describes
the scope, such as the type of the current problem. Afterward, a support activity is created.
Then the algorithm determines if there is a sufficient number of trust relations applying
to s in GT , to reliably calculate recommendations and reputation of services. If this pen-

etration of s in GT is greater than a threshold ϑp, then the set of expert services N ′ is
discovered by evaluating predefined trust requirements specified by the requester. Other-
wise, if penetration(GT , s) < ϑp, a fallback strategy is applied and the service providers’
skill profiles are compared with the problem description and requirements in s (traditional
skill matching). From the pool of services that fulfill the requester’s trust requirements, the
system picks one based on pre-defined traditional selection rules, e.g., accounting for the
vendor or QoS. Finally, the request for support (RFS) is compiled. The definitions of trust
requirements and service selection rules are presented in Section 5.5.

56 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

Algorithm 3 Create RFS of user ni to request support from service nj

Require: trust network GT = (N,E), user ni, problem description, trust policy
1: /* determine s, create support activity */
2: Scope[]← getAvailableContextualScopes(GT)
3: EnvDescr ← collectContextElements(ni)
4: s← maxSimilarity(Scope[], EnvDescr)
5: if (sim(EnvDescr, s) < ϑCtx) ∨ (s = ∅) then

6: s← createProblemScope(EnvDescr)
7: addScopeToTrustNetwork(GT , s)

8: p← createProblemDefinition(ni , problem)
9: a← createSupportActivity(p, s, policy)

10: /* discover list of potential services */
11: if penetration(GT , s) ≥ ϑp then

12: /* discovery based on trust requirements */
13: N ′ ← evalTrustRequirements(ni , N, s)
14: else

15: /* competency coverage fallback */
16: N ′ ← evalCompetencyCoverage(N, a)

17: nj ← selectService(N ′ , rules(ni))
18: RFS ← createRequest(ni , nj , a)
19: return RFS

5.4.2 Fundamental Interactions

The fundamental interactions when requesting support are depicted in Figure 5.3. First,
the requester sends an RFS, specifying the problem and policies for treating the request.
Second, the expert service sends an intermediate answer, informing the requester that the
RFS has been accepted, rejected or delegated to other members in the Expert Web. Third,
after fully processing an accepted RFS (or treating a delegated one – see later), the final

answer, including a solution for the requester’s problem, is delivered. All performed in-
teractions are monitored and evaluated by the system. The supporting expert service gets
rewarded depending on the success and outcome of interactions, and a trust relation from
the requester to the service is established.

request

response

Directly supporting

expert service

++
Symbols

interaction:

trust relation:

service user:

expert service:

scope of trust:

requester

acc/rej/del

Figure 5.3: From interactions to trust.

5.4. Interaction Patterns and Trust 57

5.4.3 Rewarding and Punishment

We utilize observed interactions to infer personal trust as discussed in the last section of this
chapter. Therefore, we introduce the following methods for rewarding an expert’s impact
on ongoing discussions (remember the virtual room in Figure 5.1): (i) automatic: Avail-
ability of services and response behavior (e.g., rejecting RFSs) are determined through the
means of interaction mining. (ii) semi-automatic: In the RFS the requester can specify the
importance and a hard deadline for a response. Depending on whether an answer arrives
in time, trust either increases or decreases. (iii) manual: The discussion leader may rate a
service provider’s support manually (e.g., 4 of 5 stars).

Our trust model, as described before, relies on the concept of confidence. New con-
fidence values are calculated in fixed time intervals i, e.g., on a weekly basis. Based on
earned rewards, the current confidence value at time i is calculated by updating the recent
value at i−1. For all kinds of rewarding we apply again the concept of exponential moving
average (EMA) to to avoid oscillating results (see Equation 5.12). The variable rew repre-
sents the reward, given automatically by the system, or manually by the user, for support
in the last time interval; rewmax is the maximum possible amount (if all RFSs are served
reliably). EMA weights the importance of recent rewards while not discarding older ones
(smoothing factor α ∈ [0, 1]). Because we maintain relative levels of confidence and trust
(∈ [0, 1]), services can be punished for bad support by giving comparatively low rewards,
i.e., rew << rewmax.

csi = α ·
rew

rewmax
+ (1− α) · csi−1 (5.12)

Once confidence has been calculated, our previously introduced trust model is applied
to determine and update trust, recommendation, and reputation values.

5.4.4 Requirements and Policies

Usually, organizations have strict rules, e.g., introduced by international certifications, re-
garding interactions across organizational units. We support this requirement and allow
users to specify (i) trust requirements controlling the selection of services, and (ii) policies
regulating interaction behavior.

Requirements. Users of the Expert Web can influence the service selection mecha-
nism by specifying their requirements on trust in potential expert services. For instance,
one may specify to select services with high reputation only, or the level of personal trust
combined with its reliability. These configured requirements are evaluated by the system
when requesting support (see Algorithm 3: function evalTrustRequirements()). A common
problem of reputation systems is, that users tend to select only a small amount of top-rated
services. This leads to a significantly higher use of only some services, while the majority
do not receive any RFSs. Therefore, we identified the need for a trade-off model, which
encourages users not to set the strictest trust requirements, but requirements appropriate in
a given situation. For strict trust requirements, the number of potential service providers
is usually limited, and a given RFS is either (i) assigned to an expert service after waiting
for free processing time, or (ii) is rejected by the system in case there are no free ser-

58 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

vices fulfilling the trust requirements. Thus, if requesters need immediate support, they
will have to lower their requirements (similar to real life). This fact offers newcomers and
less recognized experts the opportunity to gain reputation. More complex trade-off models
account for price of service calls. For instance, experts earn rewards by providing support,
and may use these rewards as payment for service usage, whereas stricter trust require-
ments (especially, reputation of a service) take higher amounts of payment. However, such
mechanisms are out of scope of this work.

Policies. For each RFS, users may specify policies, including (i) a required interme-
diate answer, to get informed if a support request is accepted, rejected, or delegated, (ii)
temporal constraints determining hard deadlines for intermediate and final answers, and
(iii) data to be included in the request and shared with the expert service, e.g., only problem
description or also further context data (e.g., current project and its resources). Especially
this third point is closely related to dealing with privacy issues (see more in Chapter 11).

5.4.5 RFS Delegation Patterns

Expert services need not process all RFSs directly, but may delegate them to other expert
services due to various reasons. For instance, an expert may be overloaded and therefore,
not be able to process an RFS in time. Moreover, expert services may shield other services
from RFSs, e.g., only a team leader receives RFSs directly that s/he delegates then to
team members. We describe the influence on trust emergence for two different types of
delegation patterns:

• Triad interaction pattern leading to trust referral.

• Proxy pattern leading to trust attenuation.

Triad Interaction Pattern. We introduce a triad pattern in detail (Figure 5.4) realiz-
ing delegations of RFSs within the same contextual or organizational scope, e.g., between
experts in the same knowledge domain (of course, one expert may be ‘located’ in several
scopes). The triad pattern is well known as triadic closure in social networks [128]. A
triad proxy receives an RFS and forwards it to one of its well-trusted services. In case of
complex problems, an RFS can be split into sub-requests to reduce response times. Fur-
thermore, the complete RFS can be delegated to more than one expert service to increase
reliability, i.e., the chance to get a suitable response. Final responses are not handled by
the triad proxy. As all participating entities in this pattern belong to the same scope, e.g.,
knowledge domain, the expert service(s) may respond directly to the requester. A typical
use case is load balancing in teams of people with same roles.

From the requester’s point of view, the triad proxy receives reduced rewards (Symbol +)
for delegating but not processing the RFS. The actually supporting expert services receive
rewards from the triad proxy, because of accepting the delegated RFS. This reward is also
reduced, because the originator of the RFS is not the triad proxy, and the triad proxy has
limited interest in successfully processing the request (compared to one of his own RFSs).
However, the requester honors the support provided by the actually supporting expert ser-
vice(s) equally compared to directly supporting services (compare Figure 5.3, symbol ++).

5.4. Interaction Patterns and Trust 59

request

request

request

+
+

+

++

++

Triad Proxy

response

response

expert
services

requester

Figure 5.4: Triad interaction pattern.

Therefore, we understand highly weighted trust relations from the requester to the initial
expert service, acting as a triad proxy, to be referred to the actual expert services.

Proxy- and Master-Slave Pattern. We adopt the well-known proxy- and master-slave
patterns from the domain of software engineering [36], as applied in the domain of busi-
ness interactions by [29]. In contrast to the triad pattern, the initial requester does not know
the expert services an RFS is delegated to. Furthermore, the proxy may perform certain
pre-processing of the RFS. The proxy pattern (forward RFS to only one expert service) and
master-slave pattern (split RFS and forward to several ‘slaves’) are used for delegations
across contextual or organizational scopes. For instance, the requester in Figure 5.5 sends
an RFS to the proxy residing in the same scope. This proxy can rephrase an RFS (‘trans-
late’) to be understood by an expert in another scope. The response of the expert service
is processed again, before forwarding it to the initial requester. A typical example may
be a head of department who acts as contact person for external people, while the actual
members are not visible to the outside.

request

response

requestresponse

request

response

+
++

+
Proxy

expert
services

requester

Figure 5.5: Proxy and master-slave patterns.

In contrast to the triad pattern, no trust relations from the requester to the actually
supporting expert services across scopes are established. Therefore, the requester highly
rewards the proxy, similar as directly supporting services. However, because the originator
of the RFS is not the proxy (therefore, being less dependent on the response of the expert
services), rewards given from the proxy to the expert services are reduced (equally to the
behavior of the triad proxy). This leads to a trust attenuation from the expert service’s
point of view. Furthermore, the number of people or services building trust in the expert
service(s) is smaller in this pattern. This reduced visibility of services’ contributions has
negative impact on their reputation.

60 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

5.5 TrueExpert Architecture

We depict the overview of the centralized TrueExpert architecture that supports the pre-
sented concepts, in Figure 5.6. The block on the left side contains common services from
activity-centric collaboration systems (such as VieTE). On the right side, the TrueExpert
services are shown. The lower layer comprises of services supporting fundamental con-
cepts, including data access, message routing and interaction logging; on higher level ser-
vices for trust management, RFS creation, and expert ranking are located. These services
are utilized via SOAP- and RESTful Web service interfaces [34] from a user portal, imple-
mented as Java Portlets5 on top of the Liferay6 enterprise portal.

Trust Requ.

Management

User Administration

Service

Management

Activity

Management

REST/SOAP API

Social Network

Management

Interaction

Monitoring

Message

Routing

Data Access

Control

Computational

Trust Model
HPS Middleware

Rule

Management

TrueExpert Services

Expert Ranking
Expert

Reputation

Expert

Discovery

Rewarding

Service
RFS Creation

RFS Delegation

Management

Common Services

Context/Scope

Management

User Portal

Process

Visualization

Manual

Rewarding

Trust Requ.

Definition

Discussion

Forum

Expert

Involvement

Service Registry
And Profiles

Activity DB RFS Store

Rule Base

- Trust Requirements

- Service Selection

Trust Mining Data

- Interactions

- Trust and Reputation

Figure 5.6: System architecture enabling trusted help and support in the Expert Web.

We outline exemplary some implementation details, focusing on the realization of the
introduced trust concepts, including the RFS model, trust requirements for service discov-
ery and selection, and delegation rules for RFS flow control.

5.5.1 Trust Requirements Rules

The trust network is implemented as directed graph using the JUNG7 framework. In this
graph model, the edges are annotated with trust metrics, i.e., personal trust, recommenda-
tion, reputation and their reliability, and references to collections of contextual information
(scopes) describe situations for applying them.

We use the popular Drools8 engine, to let users define their own trust requirements on
potentially supporting expert services. Listing 5.1 shows an example of aggregating trust

5http://jcp.org/aboutJava/communityprocess/final/jsr168/
6http://www.liferay.com
7
http://jung.sourceforge.net

8
http://www.jboss.org/drools/

5.5. TrueExpert Architecture 61

data about services, i.e., combine personal trust, recommendation and reputation values
to myScore, which are used for ranking services in subsequent discovery operations.
Before the depicted rules are applied, a user looking for support has to provide his/her own
user profile and his/her current problem domain (scope), e.g., in form of activities [111].
Furthermore, copies of all available service profiles are loaded in the working memory
of the rule engine. After evaluation, each service profile is temporarily personalized for the
requesting user.
� �

1 global TrustGraphDAO tgDAO;
2 rule "calculate score of services (without reliability)"
3 salience 100
4 no-loop true
5 when
6 service:Service() // all potential services
7 user:User() // myself
8 scope:Scope() // my current problem scope
9 then

10 URI scopeId = scope.getURI();
11 URI userId = user.getUserURI();
12 URI serviceId = service.getServiceURI();
13 int trust = tgDAO.getPersonalTrust(userId, serviceId, scopeId);
14 int rel = tgDAO.getTrustReliability(userId, serviceId, scopeId);
15 int rec = tgDAO.getRecommendation(userId, serviceId, scopeId);
16 int rep = tgDAO.getReputation(serviceId, scopeId);
17 int score = 0.5*trust+0.3*rec+0.2*rep; // personal weighting
18 service.getPersonalization().setMetric("trust",trust);
19 service.getPersonalization().setMetric("rel",rel);
20 service.getPersonalization().setMetric("rep",rep);
21 service.getPersonalization().setMetric("myScore",score);
22 end
� �

Listing 5.1: Personalized trust aggregation.

Listing 5.2 shows some example rules, evaluating a user’s trust requirements based on
the personalized service profiles. Each service fulfilling at least one rule becomes a poten-
tially supporting expert service. The selected-flag indicates that a service is applicable
in the given scope (and for the given problem) from the user’s point of view.
� �

1 rule "Select service by average score"
2 salience 50
3 when
4 service:Service(personalization.getMetric("myScore" >= 0.85)
5 then
6 service.getPersonalization().setSelected(true);
7 end
8 rule "Select personally trusted services"
9 salience 50

10 when
11 service:Service(personalization.getMetric("trust") > 0.7 &&
12 personalization.getMetric("rel") > 0.5)
13 then
14 service.getPersonalization().setSelected(true);
15 end
� �

Listing 5.2: Discover services upon requirements.

5.5.2 RFS Routing

Different system strategies for selecting one expert service from the pool of discovered
services that cover a user’s trust requirements, can be realized with selection rules (Listing
5.3). For instance, in case of urgent requests, the system picks services with low work-
load (enabling load balancing); however, for supporting risky tasks, a service with high
reputation is selected.

62 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

� �
1 rule "Urgent RFS"
2 salience 50
3 when
4 rfs:RFS(eval(policy.flag.urgent))
5 serviceList:List() // all services fulfilling trust requirements
6 then
7 Service service = getServiceLWL(serviceList, 3);
8 rfs.assignService(service);
9 end

10 rule "Risky RFS"
11 salience 50
12 when
13 rfs:RFS(eval(policy.flag.risky))
14 serviceList:List() // all services fulfilling trust requirements
15 then
16 Service service = getServiceHR(serviceList);
17 rfs.assignService(service);
18 end
19
20 // get services with low work load (below numRFS in queue)
21 function Service getServiceLWL(List serviceList, numRFS) {...}
22 // get service with highest reputation
23 function Service getServiceHR(List serviceList) {...}
� �

Listing 5.3: Rules for service selection.

An excerpt of the RFS schema definitions is shown in Listings 5.4, defining complex
data structures, and Listing 5.5, defining the binding of the HPS WSDL to the (HPS) infras-
tructure services. In the depicted example, humans offer document review services through
HPSs. An RFS for that kind of service comprises the following main parts:

• The GenericResource defines common attributes and metadata associated with
resources such as documents or policies. A GenericResource can encapsulate
remote resources that are hosted by a collaboration infrastructure (e.g., document
management).

• The RFS Policy plays an important role for controlling interaction flows, e.g.,
time constraints, delegation behavior including decisions whether to respond to the
requester directly or to a delegating proxy, and so on.

• Request defines the structure of an RFS (here we show a simplified example).
From the user’s point of view XML Forms (XForms9) are used to render graphical
user interfaces.

• A Reply is the corresponding RFS response (we omitted the actual XML defintion).

The protocol (at the technical middleware level) is asynchronous allowing RFSs to
be stored, retrieved, and processed. For that purpose we implemented a middleware
service (HPS Access Layer - HAL) which dispatches and routes RFSs. In Listing 5.5,
GetReview depicts a WSDL message corresponding to the RFS ReviewRequest.
Upon receiving such a request, HAL generates a session identifier contained in the out-
put message AckReviewRequest. A notification is sent to the requester (assuming a
callback destination or notification endpoint has been provided) to deliver RFS status up-
dates for example; processed RFSs can be retrieved via GetReviewReply. Note, the
detailed notification mechanism is not described in this work that focuses on the realiza-
tion of trustworthy interaction patterns. More about HPS in detail can be found in [104].

9
http://www.w3.org/MarkUp/Forms/

5.5. TrueExpert Architecture 63

� �
1 <xsd:schema tns="http://myhps.org/rfs">
2 <xsd:complexType name="GenericResource">
3 <xsd:sequence>
4 <xsd:element name="Location" type="xsd:anyURI"/>
5 <xsd:element name="Expires" type="xsd:dateTime"/>
6 <xsd:sequence>
7 </xsd:complexType>
8 <xsd:complexType name="Request">
9 <xsd:sequence>

10 <xsd:element name="Policy" type="GenericResource"/>
11 <xsd:element name="ReviewDoc" type="GenericResource"/>
12 <xsd:element name="Comments" type="xsd:string"/>
13 </xsd:sequence>
14 </xsd:complexType>
15 <xsd:element name="ReviewRequest" type="Request"/>
16 <xsd:element name="AckReviewRequest" type="xsd:string"/>
17 <xsd:element name="GetReviewReply" type="xsd:string"/>
18 <xsd:element name="ReviewReply" type="Reply"/>
19 </xsd:schema>
� �

Listing 5.4: RFS schema definition.

� �
1 <wsdl:portType name="HPSReviewPortType">
2 <wsdl:operation name="GetReview">
3 <wsdl:input xmlns="http://www.w3.org/2006/05/addressing/wsdl"
4 message="GetReview" wsaw:Action="urn:GetReview">
5 </wsdl:input>
6 <wsdl:output message="AckReviewRequest" />
7 </wsdl:operation>
8 </wsdl:portType>
9 <wsdl:binding name="HALSOAPBinding" type="HPSRFSPortType">

10 <soap:binding style="document" transport="http://xmlsoap.org/soap/http"/>
11 </wsdl:binding>
� �

Listing 5.5: WSDL RFS binding.

5.5.3 RFS Delegation

We realize delegations by the means of ECA10 rules. While events for applying rules are
hard-coded, e.g. on receiving RFSs, conditions to be met and consequences can be flexibly
configured by service providers (MyService). Listing 5.6 shows two rules that define
such a delegation policy. In this example, the RFS sender (requester) receives automatically
an answer if the predefined conditions are fulfilled. Requests are (semi-)automatically
delegated (if possible) when the work load is high, i.e., there are more than 10 requests
waiting to be processed. Furthermore, no urgent requests are accepted on Fridays. The
definition of personalized rules can be restricted for users based on contractual terms of the
Expert Web.
� �

1 rule "Delegate RFS when overloaded"
2 when
3 rfs:RFS()
4 service:MyService(rfsQueue.length > 10)
5 then
6 rfs.setResponse(RFSResponse.DELEGATED, new Message("I’m really busy, so I delegated your RFS."));
7 end
8 rule "Reject urgent RFS on Fridays"
9 when

10 rfs:RFS(eval(flag.urgent))
11 service:MyService(workingproperties.lastDayOfWeek==Calendar.FRIDAY)
12 then
13 if(GregorianCalendar.getInstance().get(Calendar.DAY_OF_WEEK) == Calendar.FRIDAY)
14 rfs.setResponse(RFSResponse.REJECTED, new Message("It’s Friday, don’t stress me out!"));
15 end
� �

Listing 5.6: RFS acceptance and delegation rules.

10Event-Condition-Action

64 Chapter 5. Trusted Interaction Patterns in Enterprise Service Networks

5.5.4 Rewarding Mechanisms

Based on interaction success and reliability of services, configured rules calculate rewards.
These rules evaluate interaction metrics, calculated on top of interaction logs. Our im-
plementation accounts for the fundamental interaction metrics that have been presented in
Table 4.3.2 in Chapter 4.

Figure 5.7 visualizes in a flow chart what relations get rewarded and punished respec-
tively according to delegation behavior. A requester r sends an RFS to a proxy p, who either
processes this request itself or delegates to a further service sx. The symbol τ(ni, nj)+ in-
dicates that the relation from ni to nj gets rewarded, i.e., the underlying metrics such as
success rate; while τ(ni, nj)− denotes punishment. The difference between proxy- and
triad pattern is the establishment of a relationship between the original requester r and the
actually serving sx.

p decides

r sends

RFS to p

p processes

RFS
(r,p)-

p success?

(r,p)+ (r,p)-

Yes No

accept

reject

sx decides

reject

sx processes
RFS

sx success?

delegate

accept

(p,sx)+

(r,p)+ (p,sx)-

NoYes

p finds

 new sx?

(r,p)-

Yes

No

(r,sx)+

establish

triad

Yes

No

Figure 5.7: Rewarding and punishment of trust relations according to delegation behavior.

After evaluation of rewarding rules, the system updates confidence values and their
reliability in the corresponding trust scopes. Besides automatically determined metrics,
we incorporate a manual rewarding mechanisms (feedback provided by users). Both, au-
tomatic and manual rewards, are equally weighted and merged (averaged), to extend the
dimensions of trust, and strengthen its information value for the users of the Expert Web.

5.6 Discussion

In this chapter, we introduced concepts, centered around trust and Human-Provided Ser-
vices in mixed service systems, and discussed their application in context of the Expert

Web enterprise use case. We introduced models for rewarding interactions and establishing
trust on top of delegation patterns that typically occur in real-world scenarios. Besides the

5.6. Discussion 65

detailed use case and application of trust in enterprise networks, we demonstrated the tech-
nical realization of our approach, focusing implementation details that apply ECA rules.

Evaluations of delegation, rewarding and trust inference concepts can be found in the
next chapters of this work. However, further research has to be conducted to make the
presented concepts applicable in more complex environments.

Part II

Trust Mining and Prediction on the

Web

CHAPTER 6

Trust and Reputation Mining in

Professional Virtual Communities

Outline. In the case there are no observable SOAP interactions, trust is going to be based
on other data, gathered through mining on the Web. We present an approach to determining
relations of users in online discussion forums.

Contents

6.1 Motivation . 69

6.2 Trustworthy Sources of Data . 70

6.3 Trust and Roles in Virtual Community Discussions 71

6.4 Discussion Mining Approach . 72

6.4.1 Interaction Network Definition . 73

6.4.2 Discussion Mining Algorithm . 73

6.5 Trust Mining Model . 75

6.5.1 Trust Inference . 75

6.5.2 Trust Aggregation and Reputation 76

6.6 Evaluation and Discussion . 76

6.6.1 Preparing Evaluation Data . 76

6.6.2 Trust Network Model Configuration 77

6.6.3 Evaluation Approach . 78

6.6.4 Experiments . 79

6.1 Motivation

The concept of virtual (or online) communities is quite common today and frequently used
not only for private concerns, but also in professional working environments. Online plat-
forms such as discussion forums, blogs, and newsgroups are regularly utilized to get intro-
duced into new topics, to find solutions for particular problems, or just to stay informed
on what’s up in certain domains. Virtual communities are rapidly growing and emerging,
and thus, lots of spam and dispensable comments are posted in their forums or sent via e-
mail, polluting fruitful discussions. Several mechanisms have been proposed to handle this
problem, such as collaborative filtering of comments and global reputation of users based
on feedback mechanisms. However, because these concepts rely on manual and subjective

70 Chapter 6. Trust and Reputation Mining in Professional Virtual Communities

human feedback, they suffer from several drawbacks [58], including unfair ratings, low
incentives for providing feedback, and quality variations of ratings over time.

Especially, where mentioned communication technologies are regularly embedded to
connect e-professionals, such as in professional virtual communities (PVCs), and where
successful collaboration is critical for business, we identified the need for more sophis-
ticated reputation methods. Moreover, in modern working environments, where virtual
teams consisting of members from different departments or companies work together, per-
sonally unknown to each other, various complex social factors affect the overall collabora-
tion success. These factors can be expressed by one composite and abstract concept: trust.
Trusted relationships between colleagues are vital to the whole collaboration and a prereq-
uisite for successful work. A recent report about the roles of trust in today’s business world
[122] discovers that besides professional skills expressed as experience, expertise and com-
petence, soft skills, such as the willingness to exchange information, motivation and com-
munication skills, are at least equally important. Such social skills can be discovered and
evaluated in typical computer-supported discussions, common in online communities, in-
cluding threaded forum discussions, instant messaging chats, and e-mail conversation.

In this chapter, we deal with the following contributions:

• Concept of Trust Mining. We show an approach to trust mining between discus-
sion participants. Here, trust reflects someone’s ability to serve as valued discussion
partner in certain topics.

• Mining Algorithm. Our main contribution is a mining algorithm that is applied in
threaded Internet forums.

• Evaluation and Discussion of Trust Mining. We verify our approach with real data
sets and discuss its application and gathered results.

Trust mining is of paramount importance if interactions cannot be directly observed
due to technical or legal reasons. Then, trust mining deems to be a convenient way to
determine relations between users through processing interaction data that is accessible
from the Web.

6.2 Trustworthy Sources of Data

Most common online communication platforms, such as vBulletin1, integrate reputation
systems which either rank users based on simple metrics, including their posting count, or
enable users to reward (‘thank’) others directly. In contrast to this approach, we reward the
vitality of relationships between users and then derive user ratings by aggregating relation-
ship ratings. This enables us to utilize global metrics calculated from all available data,
such as the overall discussion effort of a particular user with respect to the whole commu-
nity, but also local metrics considering data restricted to particular users only, such as the
discussion effort between two specific users. Utilizing local metrics is of particular interest

1
http://www.vbulletin.com

6.3. Trust and Roles in Virtual Community Discussions 71

Internet
Forums

Blogs
Instant

Messaging
E-mail

Data Mapper

Data Filter and Refinement

Interaction Network Mining

Trust and Reputation
Mining Service

Discussion
Partner
Search

Personal
Trust Network
Visualization

Trust-enabled
Content
Filtering

Discussion
Participant
Evaluation

Trust-aware Application Support

PVC Supporting Services

Web
Crawler

Feed
Reader

WS
Client

E-Mail
Client

...

Trust Calculation

XQuery API

H
T

T
P

R
S

S

S
O

A
P

IM
A

P

..
.

Q
u

e
ry

Figure 6.1: Architectural overview of the trust and reputation mining service.

when the amount of controversial users is high [77]. With our system a user does not only
receive one globally valid trust rank, but may be graded from each individual’s view.

We developed a pluggable architecture (Figure 6.1) - part of VieTE [120] - that uti-
lizes various communication data sources through standard protocols, such as RSS feeds,
SOAP, and e-mail. The obtained data is mapped to a generic communication schema,
pre-processed and refined. Finally, an interaction network that models the relationships
between users upon mining communication logs, is built. Based on this network, trust
between individuals and reputation from a (sub-)community’s perspective can be inferred
and queried through VieTE’s provisioning interface. We understand the inferred discussion

trust to represent one dimension of general trust in PVCs, applicable in a wide range of dif-
ferently organized communities. Other dimensions of trust may base on the fulfillment of
service level agreements or the reliability of task execution, which are in scope of previous
chapters.

6.3 Trust and Roles in Virtual Community Discussions

In discussions we can intuitively distinguish between information providers and informa-
tion consumers. Especially in online discussions we can easily track who provides infor-
mation, e.g., by posting a comment in a forum or writing an e-mail to a group of people.
In contrast to that, determining information consumers is tricky. We can never be sure, that
people read received e-mails or new comments in a forum, even when they open forum
entries in their browsers. However, if somebody replies to a particular comment, then we
can certainly assume, s/he has read the message and found it worth for discussion. Thus the
replier can be identified as an information consumer, but also as an information provider.

72 Chapter 6. Trust and Reputation Mining in Professional Virtual Communities

In our approach we track exactly this discussion behavior and define, that whenever
one replies to a comment of another one, an interaction between them takes place. We
destill these interactions and build a notion of trust on top.

Particularly in discussions, it may seem intuitive that the more comments somebody
provides the more s/he can be trusted to be a good discussion partner. However, lurkers

[91], referring to people just watching discussions but not actually participating, can be
less trusted regarding their ‘openness’ and active participation. They lack the willingness to
exchange information, motivation or communication skills, thus they are bad collaborators.

However, a simple comment count does not truly reflect if somebody’s statements are
real contributions and worth reading and discussing. Thus, we consider threaded structures
and analyze how comments are recognized by others. For that purpose, we define the
following novel social roles within discussion scenarios:

• Activator. The role of an activator reflects that the more replies a discussion partic-
ipant receives, the more one’s comments seem to to be worth for discussion. Thus,
one can be trusted to have the competencies and skills to provide comments, inter-
esting for a wide range of community members.

• Driver. The role of a driver reflects, the more somebody replies to comments, the
more s/he can be trusted to actively participate in a discussion, thus s/he represents a
catalyst evident for a fruitful discussion.

• Affirmed Driver: An affirmed driver is defined as a driver whose contribution is
affirmed. This is the case if there is at least one reply to a driver’s comment.

According to these roles, discussion trust is (i) a measure for the contribution to dis-
cussions expressing the willingness to provide information and support; (ii) a measure
for interest similarities of people, as frequent discussion partneres have stronger relations.
Note, discussion trust does not reflect that a particular participant offers a valid information
or posts the truth. For this purpose, natural language processing and analyzing semantic
meanings of comments are required [33, 126], which is out of scope of our work.

6.4 Discussion Mining Approach

We developed a mining algorithm to determine the contribution of people in discussions.
However, in contrast to common approaches, we neither reward the participants directly
(e.g., their number of provided comments), nor do we utilize subjective feedback. We
rather mine interactions to reward particularly the relationships between each pair of dis-
cussion participants.

We make the following assumptions: (i) The notion of time can be neglected, which
means our algorithms do not determine how trust relations change over time. We deter-
mine trust relations for one particular point in time through mining of short history data.
Temporal evaluations, e.g. by applying moving averages, temporal weighting functions
or sliding windows, have to be set up on top of our approach and has been discussed in
previous chapters. (ii) We do not apply natural language processing. Thus, we accept the

6.4. Discussion Mining Approach 73

introduction of noise and small errors by rewarding users who post useless comments (i.e.,
spam). In the evaluation part we show that this is no disadvantage if we rely on larger
amounts of data. We further assume that in PVCs spam occurs less frequently than in open
Internet forums.

6.4.1 Interaction Network Definition

Again, we utilize a directed graph model G = (N,E) to reflect discussion relationships E
between users ni ∈ N , and incorporate context to allow trust determination with respect to
different situations on top of the created interaction network. A relationship e(n1, n2) ∈ E,
as defined in Equation 6.1, is described by various metrics such as the number of recent
interactions, their weights, and communication scores, valid in particular scopes (described
by context elements).

e(n1, n2) = 〈n1, n2,metrics[name, value, scope]〉 (6.1)

6.4.2 Discussion Mining Algorithm

We develop an algorithm that weighs the communication relations based on discussions
between each pair of participants. Let us assume an environments supporting threaded
discussion structures, as common in online forums or newsgroups. We argue that some-
body who provides a comment in a discussion thread is not only interested in the comment
s/he directly replies to, but to a certain extent also by preceding posts in the same chain of
comments. Thus, we interpret a thread to be similar to a group discussion and establish
relationships between participants who are posting in one chain. Figure 6.2(a) shows a
structured discussion thread where every box represents a comment provided by the anno-
tated participant. For the highlighted comment provided by n4, arrows show exemplary
which interactions between participants are synthesized by our algorithm. The comment
provider n4 honors the attracting comments of n3 and n1, and rewards the driving contri-
butions of n1, n2, and n5. If only affirmed drivers shall be rewarded, then the relation to n5

(dashed lines) is skipped, because no one has been attracted by its comment. The weights
of interactions are calculated by the interaction reward function fi(dt, c1, c2), where D is
the discussion tree, and the interaction from the author of comment c1 to the author of c2 is
rewarded. We initially set fi(D, c1, c2) =

1
dist(c1,c2)

, where dist() determines the distance
between two comments, i.e., the number of intermediate posts in the same thread (direct
replies have dist = 1). However, considering further comment attributes, including time
intervals between a comment and its replies or the number of replies a single comment
attracts, may improve the expressiveness regarding trust. All interactions between two par-
ticular participants are aggregated and directed weighted relations are created in the graph
model shown in Figure 6.2(b).

Algorithms 4 and 5 describe formally the mode of operation. According to Equa-
tion 6.1, each edge in the interaction model can have various metrics. Currently we ap-
ply count, which is the amount of interactions between two participants, and strength,
which is the sum of the weights of all interactions between them. We utilize the function

74 Chapter 6. Trust and Reputation Mining in Professional Virtual Communities

A topic

n1

n2

n3

n4

n1

n5

n2

+1

+0.5

+1

+0.5

+0.33

(a) Discussion thread

n1

n2

n3

n5

n40.5

1.0+0.5

0.33

1.0

(b) Mapping for user n4

Figure 6.2: Mapping from a discussion thread to the interaction network model.

incMetric(name, scope, edge, value) to increment the metric in scope

specified by name of the given edge by a certain value.

In Algorithm 4 relations from a comment’s c provider to the providers of preceding
comments are established due to their activator role. Algorithm 5 establishes relations to
the providers of child comments due to driving behavior. The function provider()

returns the identity of a comment provider, parent() determines the parent comment
on the specified level of the discussion thread (lvl = dist(c1, c2)), and children()

provides child comments.

Algorithms 4 and 5 are applied for each comment and reward the comment provider’s
contribution to the overall discussion. The approach can be further improved by accounting
for frequent communication patterns. This means, if ni provides a comment replied by nj ,

Algorithm 4 Function for rewarding the relations to the activators of a comment c
Require: discussionThread D, graphModel G, comment c, Scope s

1: /* reward postings across the number of configured levels */
2: for lvl = 1 to configMaxLevelUp do

3: cp ← parent(D, c, lvl)
4: /* break on top comment and do not reward self-replies */
5: if ∄ cp or provider(cp) = provider(c) then

6: break
7: /* create edge on demand */
8: if ∄ edge(G, provider(c), provider(cp)) then

9: createEdge(G, provider(c), provider(cp))

10: /* reward activator on current lvl */
11: incMetric(G, strength, edge(provider(c), provider(cp)), s, 1/lvl)
12: incMetric(G, count, edge(provider(c), provider(cp)), s, 1)
13: lvl← lvl + 1

14: return G

6.5. Trust Mining Model 75

Algorithm 5 Function for rewarding the relations to the drivers of a comment c
Require: discussionThread D, graphModel G, comment c, Scope s

1: /* reward postings across the number of configured levels */
2: for lvl = 1 to configMaxLevelDown do

3: Cc← children(D, c, lvl)
4: /* bottom level of D reached */
5: if Cc = ∅ or then

6: break
7: /* reward all driving child comment providers */
8: for all cc ∈ Cc do

9: /* do not reward self-replies */
10: if provider(cc) = provider(c) then

11: break
12: /* create edge on demand */
13: if ∄ edge(G, provider(c), provider(cc)) then

14: createEdge(G, provider(c), provider(cc))

15: incMetric(G, strength, edge(provider(c), provider(cc)), s, 1/lvl)
16: incMetric(G, count, edge(provider(c), provider(cc)), s, 1)

17: lvl← lvl + 1

18: return G

Algorithm 6 Function for rewarding bidirectional communication
Require: discussionThread D, graphModel G, comment c, Scope s

1: /* determine c’s parent and child comments */
2: cp← parent(D, c, 1)
3: Cc ← children(D, c, 1))
4: /* check for bidirectional communication */
5: for all cc ∈ Cc do

6: if provider(cp) = provider(cc) then

7: incMetric(G, strength, edge(provider(c), provider(cc)), s, bidiR)

8: return G

and ni replies to nj’s comment, then a real bidirectional communication can be observed.
In this case, the metric strength of e(nj , ni) is additionally rewarded with bidiR, because
ni does not only provide comments recognized by nj , but ni also answers to nj’s replies
(see Algorithm 6).

6.5 Trust Mining Model

6.5.1 Trust Inference

Similar to our previous approaches and other work [12, 55], trust is determined on top of
the created interaction network, depending on the notions of confidence and reliability. We
define that the confidence of user ni in user nj with respect to scope s (e.g., the domain
of discussion) can be derived from the previously described graph model G by using a

76 Chapter 6. Trust and Reputation Mining in Professional Virtual Communities

confidence function cs(ni, nj) = fc(G,ni, nj, s).
Reliability, expressing the certainty of ni’s confidence in nj with respect to scope

s, is determined by a reliability function ρ(cs(ni, nj)) = fρ(G,ni, nj , s). The value of
ρ(cs(ni, nj)) ∈ [0, 1] is basically influenced by the number and type of interactions which
were used to calculate confidence, and expresses the reliability of the confidence value
between totally uncertain and fully affirmed.

With the confidence of ni in nj and its reliability we calculate trust τ s(ni, nj) of ni in
nj according to Equation 6.2.

τ s(ni, nj) = cs(ni, nj) · ρ(c
s(ni, nj) (6.2)

6.5.2 Trust Aggregation and Reputation

Aggregation of trust, previously referred to as reputation, refers in this regard to (i) the
composition of trust values of a group of users in one user to build a view of trust from
a community’s perspective, or (ii) the composition of trust values calculated for different
scopes between two users to get a notion of trust for a broader scope or (iii) the combination
of (i) and (ii) to get the ‘general’ community trust in one user.

The computation of trust follows our introduced model in Chapter 5. Equation 6.3 is
applied to determine reputation taurep of a group N ′ ⊆ N of users in one particular user
nj ∈ N ′ with respect to a set of scopes S. The weighting factor calculated by fa can be
configured statically or set dynamically depending on individual properties of elements in
N ′, e.g., trust of long-term users have a higher impact on reputation than those of newbies.

τSrec(nj) =

∑
ni∈N′

∑
s∈S τs(ni,nj)·fa(G,ni,nj ,s)

∑
ni∈N′

∑
s∈S fa(G,ni,nj ,s)

(6.3)

6.6 Evaluation and Discussion

6.6.1 Preparing Evaluation Data

For the evaluation of our approach, we compare the output of the proposed algorithm with
real users’ opinions. Because our developed system is new and currently not utilized by
a wide range of users, we need a dataset which offers structured discussions in various
contexts and information about the real contribution of users. We fetched an appropriate
dataset with the required characteristics from the famous Slashdot2 portal.

Slashdot is a platform which offers the ability to discuss a wide variety of topics clas-
sified in different subdomains. An additional feature is the moderation system allowing
experienced users to rate the postings of other users on a scale between -1 and 5. We
interpret this score as human feedback which provides information about the quality of
comments and thus, when considering all posts, the average discussion capabilities of a
person.

We developed a Web crawler to capture threaded discussions in the subdomains Your

Rights Online (yro) and Technology (tech) from January 2007 to June 2008. We selected

2
http://slashdot.org

6.6. Evaluation and Discussion 77

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

degree

n
u

m
 n

o
d

e
s

(a) Connection degree (full data).

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

degree

n
u

m
 n

o
d

e
s

(b) Connection degree (reduced data).

Figure 6.3: Degree distribution.

these two subdomains due to their diversity, expressing different interests and expertises
of people discussing there. The subdomain in which a discussion takes place is reflected
by the scope of a discussion: s={yro | tech}. Users may have established discussion
relationships with respect to either yro, or tech, or both.

We have to ensure to compensate all impacts that degrade the quality of the data set
and suitability for the tests. First, we remove all comments posted by anonymous users,
because there is no meaningful way to map this data to particular nodes of the interaction
graph model. Second, if not changed from the default settings, the Slashdot UI hides low
scored comments automatically. Therefore, there is no way to distinguish if a particular
comment is not replied because it is simply poor and not worth a discussion, or if it is not
replied because it is hidden and thus never read. Hence, we remove low scored comments
from the data set. Third, we remove all potentially unrated posts, i.e., posts with score 1,
to ensure unbiased experiments.

Initially the captured data set consists of 49.239 users and 669.221 comments in the
given time period. After applying all steps of reduction we map the discussions to the
graph model, consisting of 24.824 nodes and 343.669 edges. In the experiments we rank
each user relatively to the others based on how much their discussion skills can be trusted
by the rest of the community. Because our presented trust mining approach fully relies on
the connectivity of a node within the graph, we have to ensure that the filtering procedures
do not distort this property. Figure 6.3 shows the degree of connection for each node for
the full data set and for the reduced one. The distribution follows a common power law
function, and when applying the reduction steps, the characteristics of the user distribution
and their connectivity basically do not change.

6.6.2 Trust Network Model Configuration

By applying the presented mapping approach we are able to grade discussion relationships
between any two users ni and nj in the graph G = (N,E) with respect to the subdomain,
reflected by scope s={yro | tech}.

Trust is determined by confidence and reliability as described in Section 6.5. To this

78 Chapter 6. Trust and Reputation Mining in Professional Virtual Communities

end, we define fc(G,ni, nj, s) = metric(strength, e(ni, nj), s) to be a function which
simply returns the discussion strength of the relation from ni to nj in a specific subdomain
(= scope s). We define a notion of confidence from ni in nj to be fully reliable if there
are at least maxia interactions with respect to the same subdomain. If fρ(G,ni, nj, s) =
metric(count,e(ni,nj),s)

maxia
is greater than 1 we set fρ(G,ni, nj , s) = 1. We configure maxia =

10 per year, which is the same amount of posts as identified in [42] to be required to
calculate representative results. For computing reputation, we apply all single input trust
values having the same weight fa(G,ni, nj, s) = 1.

For the sake of clarity we apply only the simple functions defined above, however,
more complex functions can be set up, which consider similarities between subdomains,
the amount of interactions compared to well-known community members or symmetry of
trust relationships, just to name a few.

Furthermore, we set configMaxLevelUp = 3, configMaxLevelDown = 3 and
reward bidirectional communication, i.e., post-reply-post patterns, with bidiR = 1 extra
point. By further increasing the number of levels for rewarding, the values indicating
discussion strength between the users will increase as well. However, this does not highly
influence the relative rankings of users.

6.6.3 Evaluation Approach

We evaluate our trust mining algorithm approach by comparing its results with trust values
derived from the feedback of real users. We introduce the following terminology:

Link rank. The link rank of a user is calculated by our mining algorithm
accounting for the strength of connections to others based on their nested com-
ments within discussions. We interpret this measure as trust and argue, that it
directly reflects a user’s willingness to share information and support others
(driver role), and attitude to highly recognized contributions (activator role).

Score rank. The score rank of a user is calculated by averaging his/her
posting scores, thus we utilize direct human feedback. We interpret the score
rank as trust and argue, that users may trust posters with high average posting
score more to deliver valuable contributions, than others.

Obviously both ranking methods rely on the same social properties, which reflect the
value of contribution provided by community members.

Note, our proposed scoring method does not only depend on the number of posts and
is completely different from simply giving reward points for every posted comment such
as in common Internet forums. Figure 6.4 depicts the number of posts within 18 month of
the top1000 linked users. However, there is a trend that frequently posting users are ranked
higher, there is obviously no strong correlation between the link rank and the number of
posts.

6.6. Evaluation and Discussion 79

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

rank

n
u

m
 p

o
s
ts

Figure 6.4: Link rank compared to number
of posts for top1000 linked users.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

link rank

s
c
o

re
 r

a
n

k

Figure 6.5: Link rank compared to score
rank for each user.

6.6.4 Experiments

6.6.4.1 Calculating Global Reputation

In our first experiment we determine global link ranks that are built by aggregating the
link strength values of all individual relations within the network for each user over all
scopes. Besides this, we determine the global score rank as well. This means we rank each
user two times: once with our algorithm through mining discussion structures, and once
based on humans’ feedback scores. For determining score ranks we degrade users’ average
scores by the factor postcount

numMinposts·numMonth
, if they posted less than numMinposts posts

a month. This ensures that rarely posting users with highly rated comments do not outrank
frequently posting users. For instance, a user with 5 comments, all rated with the highest
possible score, should not outrank another user with 100 posts with only 98 comments that
are scored highest. During experiments we found out that numMinposts = 10 per month
seems to be the value to reach the highest Pearson correlation coefficient (0.77) between
the results of both ranking methods for the given data set, as shown in Figure 6.5.

We further calculate the Dice similarity coefficient depicted in Equation 6.4, which is
defined as the amount of elements included in both of two sets, in our case the sets of
top scored users (TopXS) and top linked users (TopXL), where X={10,25,50,100,1000}
determining the size of the sets.

s =
2 · |TopXS ∩ TopXL|

|TopXS|+ |TopXL|
(6.4)

Table 6.1 shows how many percent of top linked users and top scored users overlap
after different time intervals. Obviously, the more data is used for trust calculation the more
the resulting top linked users get similar to the top scored ones, which means we receive
preciser results. After 18 month we finish with an overlap between 45 and 60 percent, for
the top10 to top50 and approximately 65 to 70 percent for larger groups. Furthermore, we
compare the amount of the top10 scored (Top10S) users who are also in the top25, top50,
top100, and top1000 (TopXL) of the top linked users. The top10 scored users are the users
scored best by others, and thus are most trusted to provide meaningful information. Table

80 Chapter 6. Trust and Reputation Mining in Professional Virtual Communities

6.1 shows that after 4 month 90 to 100 percent of the top10 scored users are included in the
top50 linked users.

OSim after month: 01 02 03 04 06 10 14 18
Top10|TopS10 in TopL10 10|10 30|30 30|30 30|30 40|40 50|50 60|60 50|50
Top25|TopS10 in TopL25 32|50 36|40 48|70 60|80 52|80 48|70 44|70 44|90
Top50|TopS10 in TopL50 28|50 34|60 40|80 50|90 54|100 58|90 62|100 60|100
Top100|TopS10 in TopL100 36|90 42|90 46|90 48|100 58|100 66|100 70|100 64|100
Top1000|TopS10 in TopL1000 61|100 61|100 66|100 64|100 64|100 66|100 68|100 70|100
number of users x1000 2.5 4.9 6.4 7.9 11 15 18 20

Table 6.1: Overlap similarities (OSim) of top linked and top scored users in percent.

We conclude, that for the given data set we are able to find a similar set of users, who
are trusted to post high quality comments, when ranked either by the average of posting
scores (scoreRank) or by the discussion structure and reply behavior (linkRank).

6.6.4.2 Enabling Context Dependent Trust Ranking

In a second experiment we consider the discussion scope. Discussions in the utilized
dataset take place either in subdomain yro or tech. We show that it is reasonable to
calculate trust for particular situations reflected by scopes. We use six month of data from
January 2008 to July 2008 because in this interval the amount of discussions and user
distribution in both subdomains are nearly equal, so, results cannot be influenced by the
number of posts. Then we rank each user two times with our algorithm, once for discus-
sions in yro and once for tech. We rank only users with more than 10 posts, which we
defined earlier as the absolute minimum for computing reliable results. There are in sum
14793 different users, where 5939 are only active in yro and 6288 in tech. Other users
participate in discussions in both subdomains and thus, are ranked two times.

In Figure 6.6 we compare how users are ranked with respect to both subdomains. There
is an amount of approximately 40 users who are both, in the top100 wrt. yro and in the
top100 wrt. tech, hence these people are highly trusted independent from the subdomain.
However, there are around 60 users in the top100 of one subdomain but badly ranked in
the other one, or not participating in discussions in the other subdomain at all. This group
is reflected in Figure 6.6 in the top-left quadrant for yro and in the bottom-right for tech
respectively.

We conclude that between the sets of top100 trusted users with respect to each subdo-
main there is less overlap than diversity. These results show the usefulness of considering
trust scopes.

6.6.4.3 Determining Personal Trust

In contrast to reputation, which is mostly defined as the aggregated opinions of others, trust
relies on personal experiences. As described in [42], in typical online communities exist
several clusters of users that comprise tightly interconnected members, but only sparse
connections to other clusters.

Compared to most common reputation systems that maintain only one global rank, e.g.,
reputation for each user from a global point of view, we are able to determine personal trust

6.6. Evaluation and Discussion 81

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

ranks in yro

ra
n

k
s

 i
n

 t
e

c
h

Figure 6.6: Link ranks in different contexts. Figure 6.7: Trust network (reduced).

relations (from an individual’s view). Hence, each community member has three possibil-
ities to determine trustworthy discussion partners: (i) trust users with highest reputation
from a global view (with or without distinguishing scopes), (ii) trust users who are di-
rectly connected strongest by utilizing local metrics (however, these users may have only
an average global reputation) or (iii) combine both methods.

In Figure 6.7 we removed all connections with strength ≤ 5, and all users who are
either not in the top50L users of yro (red), tech (blue), or both (magenta), or not connected
to anyone else. Therefore, the users with the highest reputation and their strongest connec-
tions remain. The size of a node (users) depends on its global rank in either yro, tech or
both, and the width of an edge reflects the connection strength. Obviously the trust graph
splits into several only sparsely interconnected components.

We investigated the connectivity of users to top users in the graph model. The subset
of users who are both connected to at least two other users and having more than 10 posts
a month has a size of 2038. Nearly all users (2014) are directly connected to at least one
member of the top250 linked users. At least half of them (1080) are connected to one user
from the top100, but only around 10% of all users are connected to a top10 one.

However a large amount of users is directly connected to at least one globally top
ranked discussion participant, there is still the need to account for personal relationships.
Especially for the presence of controversial users [77], personal relations are the only reli-
able way to determine trusted discussion partners from the individuals’ views.

CHAPTER 7

Bootstrapping and Prediction of

Trust

Outline. This chapter deals with bootstrapping, i.e., predicting, trust between actors in the
case no interactions from previous collaborations have been captured.

Contents

7.1 Motivation . 83

7.2 Towards Prediction of Trust . 84

7.3 Tagging Environment . 85

7.3.1 Modes of Profile Similarity Measurement 86

7.4 Similarity-based Trust Prediction . 87

7.4.1 Hierarchical Clustering of Global Interest Areas 88

7.4.2 Tagging Profile Creation . 89

7.4.3 Trust Prediction . 90

7.5 Implementation . 91

7.5.1 Reference Architecture . 91

7.5.2 Hierarchical Clustering Algorithm for Interests Tree Creation . . . 92

7.6 Evaluation and Discussion . 93

7.6.1 Interests Tree Creation . 93

7.6.2 Profile Mapping and Trust Prediction 94

7.1 Motivation

Trust and reputation mechanisms are essential for the success of open, large-scale Web
systems. In such systems, usually information provided by users or obtained during their
interactions, is collected to detect beneficial social connections, potentially leading to trust
between their members. While many trust-, recommendation- and reputation systems have
been described, including their underlying models and modes of operation [44, 58, 100],
one particular problem has been mostly neglected: How to put the system into opera-

tion, i.e., how to bootstrap trust between users to let them benefit from using the system,
even if there is not yet much, or even no, collected data available. A further, closely re-
lated research questions is, how to integrate newcomers that have no relations to any other

members in the system.

84 Chapter 7. Bootstrapping and Prediction of Trust

Our prior work [111] describes an environment comprising humans and services, in
which interactions spanning both kinds of entities are monitored. We strongly believe that
trust can only be based on the success and outcome of previous interactions [111, 119].
Without having knowledge of prior (observed) interactions, we argue that trust between
users cannot be determined in a reliable manner. Therefore, we propose an approach for
trust prediction that aims at compensating the issue of bootstrapping trust. We consider
influencing factors stimulating the evolution of trust. In various environments, such as
collaborative systems, trust is highly connected to interest similarities and capabilities of
the actors. For instance, if one actor, such as a human or service, has the capabilities to
perform or support a collaborative activity reliably, securely and dependably, it may be
sensed more trustworthy than other actors. Moreover, we argue that if actors have interests
or competencies similar to well-known trusted actors, they may enjoy initial trust to some
extent.

The contributions of this chapter are as follows:

• Application Environment. We introduce our concepts to trust prediction, and model
an application environment that enables trust prediction, even in the absence of direct
interactions.

• Bootstrapping Mechanisms. We present our approach for creating and comparing
tagging profiles based on clustering, and a novel method for trust prediction using
similarity measurements.

• Evaluation and Discussion. We show a reference implementation of our approach,
and evaluate algorithms using real world data sets from the tagging community
citeulike1.

7.2 Towards Prediction of Trust

Trust between entities can be managed in a graph model (for example, see [7]). The graph
is defined as G = (N,E) composed of the set N of nodes defining actors trusting each
other and the set E of directed edges denoting trust relations between actors. This model
is known as the Web of Trust.

In Figure 7.1, four different scenarios are depicted, which show concepts for trust de-
termination in a Web of Trust. We assume a situation where trust from actor n1 to actor
n2 is to be determined. The first case in Figure 7.1(a) visualizes the optimal case, in which
a trust relation from n1 to n2 can be inferred directly, e.g., based on previous interactions
[111]. In the second case in Figure 7.1(b), no direct trust relation could be determined,
however trust can be propagated if we assume transitivity of trust relations [58], enabling
n2 to recommend n3 to n1. The third case in Figure 7.1(c) depicts, that there is neither a
direct nor a propagated trust relation from n1 to n3. However, unrelated third party actors
n4 and n5 may provide a weaker, but acceptable, notion of trust in c through the means of
reputation. For our work the fourth use case in Figure 7.1(d) is the most interesting one,

1
http://www.citeulike.org

7.3. Tagging Environment 85

which demonstrates the limitations of propagations in the Web of Trust. If no one inter-
acted with n3 in the past and no one has established trust in n3, new approaches to trust
prediction need to be applied.

n3

n2

n1 n5

n4

(a) Direct trust infer-
ence from n1 to n3.

n3

n2

n1 n5

n4

(b) Recommendation
of n3 from n2 to n1.

n3

n2

n1 n5

n4

(c) Reputation of n3 by
n4 and n5.

n3

n2

n1 n5

n4

(d) Similarity of
(n1, n3) and (n2, n3)
for trust prediction.

Figure 7.1: trust(n1, n3)=?: The need for trust prediction in a Web of Trust.

We distinguish the following both trust prediction concepts:

• Trust Mirroring. Depending on the environment, interest and competency simi-
larities of people can be interpreted directly as an indicator for future trust. This is
especially true in environments where actors have the same or similar roles (e.g., on-
line social platforms). There is strong evidence that actors who are ‘similar minded’
tend to trust each other more than any random actors [78, 134]; e.g., movie rec-
ommendations of people with same interests are usually more trustworthy than the
opinions of unknown persons. In Figure 7.1(d), this means measuring the similarity
of n1’s and n3’s interests, allows, at least to some extent, trust prediction between
them (dashed line).

• Trust Teleportation. As depicted by Figure 7.1(d), we assume that n1 has estab-
lished a trust relationship to n2 in the past, for example, based on n2’s capabilities to
assist n1 in work activities. Therefore, others having similar interests and capabili-
ties as n2 may become similarly trusted by n1 in the future. In contrast to mirroring,
trust teleportation is applied in environments comprising actors with different roles.
For example, a manager might trust a developer belonging to a certain group. Other
members in the same group may benefit from the existing trust relationship by being
recommended as trustworthy as well. We attempt to predict the amount of future
trust from n1 to n3 by comparing n2’s and n3’s interests and capabilities.

Sophisticated profile similarity measurements are needed in both cases to realize our
concepts of trust prediction.

7.3 Tagging Environment

According to our concepts of trust prediction, we need models to manage the interests
and competencies of humans, and features of resources, e.g., services, respectively. In
contrast to traditional centralized approaches, where one instance, such as the human re-
source department, manages a catalog of competencies, we follow a dynamic self-managed

user-centric approach. We assume an environment where each actor tags different types
of resources s/he is interested in, such as bookmarks, scientific papers and Web services.

86 Chapter 7. Bootstrapping and Prediction of Trust

tagging

actions

resources with

tagging profiles

RTP

actors with tagging

profiles ATP

Resource r1

Resource r2

t1,t2,t3

t1,t6,t7

t2,t3,t4

t1,t5

ATP1

ATP2

ATP3

RTP1

RTP2

Actor n1

Actor n2

Actor n3

x
x

x
x

(a) Actors tagging resources.

x
x

ATP

t1 t4
t2t3

t5

x
x

x
x

x
x

x
x

t1 t4
t2

x
x

x
x

x
x

Tailored ATP

RTP

t7
t4

t2
t3

t9 x
x

Tailored RTP

x
x

t7
t3

t9

(b) Different types of tagging profiles.

Figure 7.2: Description of the tagging environment.

Based on the type of tagged resource and assigned tags, we can infer the centers of interest,
expressing to some extent their knowledge areas and capabilities; but from a community’s
view also the features or preferred usage of tagged resources. By utilizing this knowledge
and applying our concepts of trust mirroring and trust teleportation, we think it is possible
to predict trust relations that potentially emerge in the future.

We model the environment as depicted in Figure 7.2(a) which consists of:

• a set of actors N , having different interests reflected by actor-tagging-profiles (ATP).
These profiles are derived from tags T ′ ⊆ T used by ni ∈ N on a subset of resources
R′ ⊆ R.

• a set of resources R, having different properties (covering actor interests) reflected
by resource-tagging-profiles (RTP). These profiles are derived from tags T ′ ⊆ T

used by a subset of actors N ′ ∈ N on rj ∈ R.

• a set of tagging actions T = {t1, t2, t3 . . . }, where each tx is created by an actor
ni ∈ N for a resource rj ∈ R.

7.3.1 Modes of Profile Similarity Measurement

We determine tagging profiles for both actors (ATP) and resources (RTP) (Figure 7.2(b)).
ATPs express independent from particular resources, which tags are frequently used by
actors and therefore, their centers of interest. RTPs describe how a certain resource is
understood in general, independent from particular actors. According to our motivating
scenario depicted in Figure 7.1(d), ATP similarities can be either interpreted in context of
trust mirroring or trust teleportation. In contrast to that, RTP similarities are mostly only
meaningful for trust teleportation (e.g., Actor ni trusts n2 who is interested in or familiar
with a resource rj , thus ni might trust n3 who uses a very similar resource rk as well.)

Compared to general profile similarity, and common profile mining approaches, e.g. in
recommender systems [108], we do not only capture which actor uses which tags (ATP)
or which resource is tagged with which tags (RTP). We rather consider how an actor tags

7.4. Similarity-based Trust Prediction 87

particular subsets of resources. Using such Tailored ATPs we can infer similarities of tag
usage between actors ni, nj ∈ N , and therefore similarities in understanding, using, and
apprehending the same specific resources R′ ⊆ R. Furthermore, we capture how two
resources ri, rj ∈ R are tagged by the same group of actors N ′ ⊆ N . Such Tailored RTPs
can be utilized to determine similarities between resources and how they are understood
and used by particular groups of actors; e.g., distinguished experts in their respective fields
(Figure 7.2(b)).

7.4 Similarity-based Trust Prediction

Similarities of actors’ tag usage behavior can be directly calculated if an agreed restricted
set of tags is used. There are several drawbacks in real-life tagging environments that
allow the usage of an unrestricted set of tags. We identified two major influencing factors
prohibiting the direct comparison of tagging actions. First, synonyms cause problems as
they result in tags with (almost) the same meaning but being differently treated by computer
systems, e.g., football v.s. soccer. Second, terms, especially combined ones, are
often differently written and therefore not treated as equal, e.g., social-network v.s.
socialnetwork.

Mining of actors,

tags, resources

Clustering of global

interest areas

Actor interests

mapping and

ATP creation

Resource

properties

mapping and

RTP creation

Actor

interests

similarities

Resource

properties

similarities

ta
g

g
in

g

lo
g

s

p
re

d
ic

te
d

tr
u
s
t

Clustering PredictingMapping

x
x
x
x
x
x

x
x

x
x

select actors,

tailor resources

select resources,

tailor actors

Trust Prediction

- Mirroring

- Teleportation

Figure 7.3: An approach to trust prediction based on clustering and similarity.

Due to the described drawbacks of comparing tagging actions directly, we developed a
new approach, which measures their similarity indirectly with respect to a global reference
model. This approach to similarity measurement and trust prediction, is depicted in Figure
7.3. Three steps are performed:

1. Clustering. Identifying tagging actions, each consisting of an actor ni ∈ N tagging
a resource rj ∈ R using tags Trj = {t1, t2, t3 . . . }, Trj ⊆ T , and hierarchically
clustering tags in global interest areas (interests tree).

2. Mapping. Mapping of actor interest profiles (ATPs) and resource properties (RTPs)
to the created tree, to construct tagging profiles.

3. Predicting. Calculating similarities of ATPs and RTPs, and applying trust prediction
to determine potential trust relations.

88 Chapter 7. Bootstrapping and Prediction of Trust

7.4.1 Hierarchical Clustering of Global Interest Areas

The advantage of clustering related tags is twofold: (i) we are able to identify widely used
synonyms and equal, but differently written, tags (including singular/plural forms), and (ii)
we are able to identify tags with similar meanings or tags mostly used in combination. To
this end, we build from the captured tagging actions a global interests tree by applying hier-
archical clustering. This interests tree reflects which tags are generally applied to resources
in combination, and therefore, their relatedness.

The utilized concepts are well-known from the area of information retrieval (see for
instance [103]), however, while they are normally used to determine the similarities of
documents based on given terms, we apply them in the opposite way. This means we
determine term, i.e., tag, similarities based on given tag sets (profiles that are interpreted as
kinds of documents).

The tag frequency vector tx (Equation 7.1) describes the frequencies f the resources
R = {r1, r2 . . . rj} are tagged with tag tx ∈ T globally, i.e., by all actors N .

tx = 〈f(r1), f(r2) . . . f(rj)〉 (7.1)

The tag frequency matrix tfm (7.2), built from tag frequency vectors, describes the
frequencies the resources R are tagged with tags T = {t1, t2 . . . tx}.

tfm = 〈t1, t2 . . . tx〉|R|×|T | (7.2)

The popular tf∗idf model [103] introduces tag weighting based on the relative distinc-
tiveness of tags (Equation 7.3). Each entry tf(tx, rj) in tfm is weighted by the log of the
total number of resources |R|, divided by the amount ntx = |{rj ∈ R | tf(tx, rj) > 0}| of
resources the tag tx has been applied to.

tf∗idf(tx, rj) = tf(tx, rj) · log
|R|

ntx

(7.3)

Finally, the cosine similarity, a popular measure to determine the similarity of two
vectors in a vector space model, is applied (Equation 7.4).

sim(tx, ty) = cos(tx, ty) =
tx · ty

||tx|| · ||ty||
(7.4)

We perform hierarchical clustering to the available tag vectors. This clustering ap-
proach starts by putting each tag vector tx into a single cluster, and compares cluster sim-
ilarities successively. Tag clusters are then merged bottom-up when the similarity mea-
surement result exceeds predefined thresholds. The output of clustering is a hierarchical
tree structure, i.e., a dendrogram, reflecting global interest areas and their similarity (Fig-
ure 7.4). The details of the algorithm are shown in Section 7.5.

The approach can be further refined by applying the concept of latent semantic index-
ing (LSI) [23]. However very common in information retrieval, this method demands for
carefully selected configuration parameters not to distort the similarity measurement in our
case. Our approach applies hierarchical clustering, which means tag clusters are merged

7.4. Similarity-based Trust Prediction 89

so
ci
al
-n

et
w
or

k

so
ci
al
ne

tw
or

k

so
ci
al
_n

et
w
or

k

co
m

m
un

ity

co
m

m
un

iti
es

gr
ap

h-
m

in
in
g

gr
ap

h_
m

in
in
g

gr
ap

h

co
lla

bo
ra

tio
n

kn
ow

le
dg

e

ta
xo

no
m

y

on
to

lo
gy

m
et

ad
at

a

ta
gg

in
g

dr
ug

w
eb

20
, w

eb
2

w
eb

2.
0

0.5

0.25

0.15

0.05

0.0

0.95

ta
g

 v
e

c
to

r

s
im

ila
ri
ty

ge
ne

, g
en

es

ev
ol
ut

io
n

di
se

as
e

ce
ll,
 c
el
ls

ge
ne

tic
, g

en
et

ic
s

Figure 7.4: A small part of the citeulike global interests tree.

based on varying similarity thresholds. Thus, we do not necessarily need a further level of
fuzziness introduced by LSI.

7.4.2 Tagging Profile Creation

As mentioned earlier, we create tagging profiles for both actors and resources. While ATPs
describe the interests of actors, RTPs reflect features and properties of resources. The
performed steps to create either kind of tagging profiles are almost identical. Therefore we
show exemplarily the construction of ATPs in Figure 7.5. For RTPs the transposed tagging
matrices are used.

The upper part of the left picture (Figure 7.5(a)) depicts the tree of global interests,
created in the previous step. The lower part describes tagging matrices of three actors, e.g.,
actor n1 tags resource r11 with tag t1. In Figure 7.5(b), these tagging activities are weighted
and mapped to the bottom clusters of the interests tree (here: level 2). For this purpose,
the impact w of each tag tx on ni’s ATP is calculated according to Equation 7.5, assuming
that the sum runs over all resources Rni

⊆ R that are tagged by ni with tag tx ∈ Trj .
Therefore, the more tags are assigned to one resource rj ∈ Rni

, the less impact one tag tx
has on the description of the resource. The assigned weights to each cluster build the ATP
vectors pni

(see Figure 7.5(b)).

w(ni, tx) =
∑

∀rj∈Rni

1

|Trj |
(7.5)

In the next steps the ATP vectors are aggregated and propagated to the upper levels, by
simply building the average of all weights that are assigned to child clusters. Hence, new
ATP vectors on a higher and more abstract level are built. Finally, the root of the interests
tree is reached according to Figure 7.5(b).

For each actor either all tagged resources or representative subsets (e.g., the most fre-
quently tagged resources) are used to create the ATP. Such a general ATP reflects an actor’s
general interests. The same can be applied to resources, where RTPs describe their general
use. Instead, tailored ATPs reflect an actor’s understanding and apprehension of a particu-

90 Chapter 7. Bootstrapping and Prediction of Trust

sim(,)

sim(,)

sim(,)

t1 t3t2

t1,t2 t3

t1,t2,t3

Symbols:

n … actor

t … tag

r … resource

Level 2
 = 1

Level 0
 = 0

Level 1
 = 0.5

Level 2 Level 1 Level 0

0.926 1.0 1.0

0.577 0.707 1.0

0.535 0.707 1.0

a1: 1

a2: 1.5

a3: 0

a1: 1

a2: 0.5

a3: 0

a1: 1

a2: 1

a3: 3

t1 t2 t3

t1 t3t2n1

r11

r21

r31 x

x

x

t1 t3t2n2

r12

r22

r32

x

x

x

x

n1: 1

n2: 1

n3: 0

n1: 1

n2: 1

n3: 3

n1: 1

n2: 1

n3: 1.5

r13

r23

r33

t1 t3t2n3

x

x

x

t1 t3t2

t1,t2 t3

t1,t2,t3

(a)

(c)

(b)

pn1

n2
p

n3
p

pn1

pn1

n2
p

n2
p

n3
p

n3
p

Figure 7.5: An example for tag mapping and ATP comparison: (a) interest tree and actor
tagging actions. (b) creating ATPs by mapping tagging actions to the tree. (c) calculating
ATP similarities on different tree levels.

lar and carefully selected subset of resources. For instance, in the case of trust prediction
in a collaborative environment, resources might be selected according to their importance
in an ongoing task. According to Figure 7.5, this means each actor tags exactly the same
resources, i.e., rx1 = rx2 = rx3 ∀x ∈ {1, 2, 3}. On the other hand, tailored RTPs can be
used for trustworthy replacements of one resource with another one, on which a particular
subset of actors have similar views.

7.4.3 Trust Prediction

The profile similarity of two actors ni and nj is determined by the cosine of the angle
between their ATP vectors pni

and pnj
(cosine similarity). This similarity can be calculated

for each level of the global interests tree, whereas the similarity increases when walking
from the bottom level to the top level. Figure 7.5(c) shows the similarities of ATP vectors
on different levels for the given example.

However, the higher the level and the more tags are included in the same clusters,
the more fuzzy is the distinction of tag usage and therefore the similarity measurement.
Thus, we introduce the notion of reliability ρ (Equation 7.6) of a tagging profile similarity
measurement in a tree with numLevels in total.

ρ(sim(ni, nj)) =
level

numLevels
(7.6)

7.5. Implementation 91

For mirrored trust τM (Equation 7.7), as defined in Section 7.2, only profile similarities
and their reliability are used to predict a level of potential trust.

τM (ni, nj) = sim(ni, nj) · ρ(sim(ni, nj)) (7.7)

Teleported trust τT (Equation 7.8) means that an existing directed trust relation
τ(ni, nk) from actor ni to nk is teleported to a third actor nj depending on the similarity
of nk and nj . This teleportation operation ⊗ can be realized arithmetically or rule-based.

τT (ni, nj) = τ(ni, nk)⊗ (sim(nk, nj) · ρ(sim(nk, nj))) (7.8)

7.5 Implementation

In this section we introduce the architectural components of our trust bootstrapping and
prediction framework. Our architecture has been implemented on top of Web service tech-
nology suitable for distributed, large-scale environments. Furthermore, we detail the clus-
tering algorithm by showing the steps needed to create hierarchical, tag-based interests
trees.

7.5.1 Reference Architecture

The presented architecture evolved from our previous efforts in the area of trust manage-
ment in service-oriented systems (see Chapter 3 and 4 for details on the VieTE framework).

Our architecture consists of the following main building blocks:

• Tagging and Social Network Web Services facilitate the integration of existing sys-
tems and the usage of external data sources. Tagging and social networks, for exam-
ple, interaction graphs, can be imported via Web services.

• Data Provisioning comprises a set of Providers. We separated these providers
in resource-centric (e.g., Tag, Resource, Actor) and trust-centric blocks. Providers
enable access to Tagging Data and Social Network Data using the messaging sys-
tem JMS2. We use the WS-Resource Catalog (WS-RC) specification3 to manage
resources in the system.

• Trust Prediction components consist of Management support, responsible for the
ATP/RTP creation and tailoring of tagging profiles, and Measurement support
used for various algorithmic tasks such as trust prediction and similarity calculation.

• Trust Prediction Web Service enables access to predicted trust in a standardized man-
ner. We currently support SOAP-based services but our system can be easily en-
hanced by adding RESTful services support.

2
http://java.sun.com/products/jms/

3
http://schemas.xmlsoap.org/ws/2007/05/resourceCatalog/

92 Chapter 7. Bootstrapping and Prediction of Trust

M
e
s
s
a

g
in

g
 B

u
s

Data Provisioning

ATP/RTP
Creation

Management

Interests Tree
Creation

Actor/Resource
Tailoring

Trust Predictor

Measurement

Clustering

Similarity

Trust Prediction

Trust Prediction WSTagging/Social Network WS

Trust

Providers

Social
Structure

Actor Group

Tag

Providers

Actor

Resource

Tagging data

- Actors
- Resources
- Tags

SN Data

- Network Structure
- Trust Relations

Profiles
- ATP
- RTP

Interest
Areas
Tree

Prediction
- Rules
- Relations

Figure 7.6: Reference architecture enabling trust prediction in social network platforms.

7.5.2 Hierarchical Clustering Algorithm for Interests Tree Creation

We detail our clustering approach to interests tree creation as illustrated by Algorithm 7.
Briefly, the clustering starts by putting each tag vector tx (see Equation 7.1 in Section 7.4)

Algorithm 7 Hierarchical clustering of global interest areas
1: /* create tag frequency matrix */
2: 〈N,R, T 〉 = retrieveTaggingDataFromDB()
3: tfm = ∅
4: for each tx ∈ T do

5: tx = createTagFrequencyV ector(tx, 〈N,R, T 〉)
6: addToTagFrequencyMatrix(tfm, tx)

7: /* weight single tag entries */
8: for each tx ∈ T do

9: for each rj ∈ R do

10: tf(tx, rj) = extractV alue(tfm, tx, rj)
11: updateV alue(tfm, tf(tx, rj) ∗ idf(tx, rj))

12: /* perform hierarchical clustering */
13: ϑ[] = {0.95, 0.5, 0.25, 0.15, 0.05, 0.0}
14: Cluster[][1] = createClusterForEachTag(tfm)
15: for i = 1→ |ϑ[]| do

16: for u = 1→ |Cluster[][i]| do

17: Cu = Cluster[u][i]
18: if ¬ isMerged(Cu) then

19: Csim[] = {Cu}
20: for v = u+ 1→ |Cluster[][i]| do

21: Cv = Cluster[v][i]
22: if ¬ isMerged(Cv) and getSimilarity(Cu, Cv) ≥ ϑ[i] then

23: addToClusterArray(Csim[], Cv)

24: Cm = mergeClusters(Csim[])
25: addToClusterArray(Cluster[][i+ 1], Cm)

7.6. Evaluation and Discussion 93

into a single cluster, and comparing cluster similarities successively. After comparing each
cluster with each other, all clusters having cosine similarities above a predefined threshold
ϑ and have not been merged yet, are combined to single clusters. Then, ϑ is lowered and
the algorithm compares again all available clusters. Finally, all tag vectors are merged in
one single cluster, resulting in a tree structure, that reflects the global interests (Figure 7.4
in Section 7.4). The function getSimilarity() implements an average similarity measure-
ment by comparing artificial tag vectors that are based on the averages of all vectors within
respective clusters.

7.6 Evaluation and Discussion

We evaluate and discuss our new tagging profile creation and similarity measure-
ment approach using real-world data sets from the popular citeulike4 community.
Citeulike is a platform where users can register and tag scientific articles. But be-
fore we used this tagging data, we performed two refactoring operations: (i) removing tags
reflecting so-called stop words, e.g., of, the, in, on etc., resulting from word groups
which are sometimes separately saved; (ii) filtering of tags reflecting ambiguous high level
concepts such as system, paper, article; (iii) deleting tags not related to the features
or properties of resources, including toread, bibtex-import, important. These
steps reduce the available ’who-tagged-what’ data entries from 5.1 million to 4.4 million.

7.6.1 Interests Tree Creation

For the later following ATP and RTP creation, all actor or resource tags are mapped to the
same global interests tree. Therefore, the tree must be broad enough to contain and cover
the most common tags. Due to the huge size of the data set, we picked the 100 articles to
which most distinct tags have been assigned, and use all tags which have been applied to
at least five of these articles.

In citeulike users are free to add arbitrary self-defined tags, raising the
problem of differently written tags reflecting the same means. For instance the
tag social-network appears written as socialnetwork, social_networks,
social-networks etc., all meaning the same. To realize their equality, we start by
clustering tags with a comparably high similarity (≥ 0.95), and consider these clusters as
our initial cluster set. As long as differently written, but equally meant tags are used with a
similar frequency and distribution among resources, we can capture their potential equal-
ity, otherwise the impact of alternative tags is comparably low and negligible. Then, we
compare tag clusters applying much lower similarity thresholds (≤ 0.50) to capture tags
reflecting similar concepts.

Table 7.1 summarizes the tagging data properties used to construct the interests tree.
This tree consists of six levels, starting with 760 clusters on the lowest one (see Figure 7.4
in Section 7.4). The utilized algorithm is detailed in the next section.

4
http://www.citeulike.org/faq/data.adp

94 Chapter 7. Bootstrapping and Prediction of Trust

Metric Filtered data set Interests tree
Num. of articles 1020622 100
Num. of articles recognized by more than 50 users 25 21
Num. of distinct tags 287401 760
Num. of distinct tags applied by more than 500 users 272 -
Num. of distinct users 32449 -
Average num. of tags per article 1.2 157
Average num. of users per article 3.5 37

Table 7.1: Data properties for constructing the global interests tree.

7.6.2 Profile Mapping and Trust Prediction

We determine (i) for 10 highly active users the similarities of their general ATPs, and (ii) for
10 users in the area of the social web their tailored ATPs. For the first test we selected the
10 articles which have been tagged with most distinct tags. Then, for each of these articles,
we picked the user who applied most tags to it. Therefore, we get users, who tagged highly
recognized but different articles. We create the ATPs by retrieving all tags that each of
the selected users applied to his/her 10 most tagged articles (between 50 and 300 tags per
ATP). We compare all ATPs with each other (in total 45 comparisons) on each level of the
interests tree. The results are depicted in Figure 7.7(a). As expected, level 5 comparisons
result mostly in no similarity, only two ATPs have a similarity of 0.42 on this level. The
amount of similar ATPs in different similarity classes increases when we compare them on
higher levels of the interests tree. On level 0, of course, all ATPs are equal, because all tags
are merged in the same cluster. These results show that our approach of indirect similarity
measurement provides distinguishable similarity results on different levels of the tree.

L0 L1 L2 L3 L4 L5
0

10

20

30

40

50

tree level of comparison

n
u

m
b

e
r

o
f

s
im

il
a

ri
ti

e
s

 i
n

 A
T

P
s

Sim (0.0,0.2(

Sim (0.2,0.4(

Sim (0.4,0.6(

Sim (0.6,0.8(

Sim (0.8,1.0)

(a) General ATP similarity.

L0 L1 L2 L3 L4 L5
0

10

20

30

40

50

tree level of comparison

n
u

m
b

e
r

o
f

s
im

il
a

ri
ti

e
s

 i
n

 A
T

P
s

Sim (0.0,0.2(

Sim (0.2,0.4(

Sim (0.4,0.6(

Sim (0.6,0.8(

Sim (0.8,1.0)

(b) Tailored ATP similarity.

Figure 7.7: ATP similarity in citeulike on different levels.

In a second experiment we measure similarities of tailored ATPs. We restrict the tags
used for ATP creation to a subset of resources, and consider only tags assigned to articles
in the field of the social web. We filter all articles, which are not linked to the citeulike

7.6. Evaluation and Discussion 95

groups Semantic-Social-Networks5 , social_navigation6 , and Social Web7. The ATP sim-
ilarity results for the 10 most active users spanning these groups are depicted in Figure
7.7(b). Obviously, due to the restricted tag set and a common understanding of tag us-
age, ATP similarities, especially on level 2 to 4, are significantly higher than in the general
comparison before. Furthermore, we compare two sets of users, interested in computer
science, but only members of one set participate in social web groups. Their general ATPs
are largely similar on level 1 to 3, because all users assigned many general tags related to
computer science. However, if we compare both groups’ ATPs tailored to the social web,
there is nearly no remarkable similarity until level 1. We conclude, that tailored profiles
are key to more precise trust prediction.

5http://www.citeulike.org/groupfunc/328/home (82 users, 694 articles)
6
http://www.citeulike.org/groupfunc/1252/home (20 users, 507 articles)

7
http://www.citeulike.org/groupfunc/3764/home (27 users, 444 articles)

Part III

Trust-based Service-centric

Applications

CHAPTER 8

Context-aware Interaction Models in

Virtual Organizations

Outline. We go one step further towards the realization of the Expert Web use case (as
discussed in Chapter 5), and introduce fundamental concepts to allow flexible expert dis-
covery and involvement in process-oriented environments.

Contents

8.1 Motivation . 99

8.2 Foundational Concepts . 101

8.2.1 The COIN Enterprise Collaboration Architecture 101

8.2.2 Process Models for Virtual Organizations 102

8.2.3 Human-Interaction Support in Virtual Organizations 103

8.3 Context-aware Human Interaction Support 104

8.3.1 Context Model . 104

8.3.2 Applications . 105

8.3.3 Expert Ranking and Query Mechanisms 105

8.4 Results and Findings . 107

8.1 Motivation

Recently, supporting the flexible creation of virtual organizations (VOs), spanning compa-
nies, communities, and individuals, to compete with global enterprises has gained major
research attention. A virtual organization is a temporary alliance of enterprises that come

together to share skills or core competencies and resources in order to better respond to

business opportunities, and whose cooperation is supported by computer networks [17].
A process in a VO spans multiple organizations, whereas each task is either performed

by only one physical company or processed by various partners. While the interfaces and
flow of information and goods between the single task owners are pre-planned, human in-
teractions are usually not static. Especially in those cases where processes have not been
executed several times; thereby providing historical information, need dynamic interac-
tions of participants to adapt and optimize workflows, or to solve unforeseen problems. In
such scenarios we distinguish between two fundamental kinds of human interactions: (i)
organization-internal interactions, such as the communication and coordination between

100 Chapter 8. Context-aware Interaction Models in Virtual Organizations

members of the same company; and (ii) cross-organizational interactions that take place
between different physical companies.

Typical research challenges that arise in such scenarios [116] deal with the discovery
of people in partner organizations, accounting for contextual constraints (online presence
state, contact details, preferred communication channels), personal profiles (skills, certifi-
cates, collected experiences), and personal relations based on previous joint collaborations
in similar situations. Figure 8.1 depicts a typical scenario, where the task "Mechanical
Specification" of a construction process is jointly performed by the customer organization
(that participates in the VO itself), and a construction office.

Requirement
Analysis

Prototype
Testing

Mechanical
Specification

Customer
Discussions

Customer
Organization

Cross Organizational Process

Prototype
Construction

Final
Specification

Production

Manufacturer
Construction

Office

Internal
interaction

support

Inter-organizational
interaction patterns

Shared task
(context)

Figure 8.1: Human interactions in processes spanning organizations.

Consider the following scenario in Figure 8.1: The construction office creates the me-
chanical specification for a part required by a customer. However, there are various open
issues regarding the efficient production later on. Therefore, an immediate discussion be-
tween the customer who has certain requirements, the construction office that designs the
prototype, and the manufacturer who is able to optimize the manufacturing process, is
needed. Fundamental problems in this scenario include: Who are the persons with the
required knowledge in the respective organizations? How can they be contacted, quickly
informed about the problem, and involved in discussions? Who are distinguished third
party experts that could assist to come to an agreement? What persons can be trusted to
make the right decisions as they may have dealt with similar situations before?

This chapter comprises the following contributions:

• Context-aware Human Interaction Support. We highlight novel concepts for
context-aware human interaction support in process-oriented collaborations. There-
fore, we introduce the COIN1 architecture, basic technologies for realizing cross-
organizational processes, as well as fundamental human interaction concepts.

• Expert Ranking Approach. We deal with an expert ranking approach based on in-
teraction behavior and trust, and demonstrate the integration of our work in a virtual
production planning environment.

1EU FP7-216256 project ‘COIN’: http://www.coin-ip.eu

8.2. Foundational Concepts 101

8.2 Foundational Concepts

Before we deal with our approach to flexible human involvement in cross-organizational
processes, we outline the COIN project that represents the underlying basis for our work.

8.2.1 The COIN Enterprise Collaboration Architecture

The COIN project aims at providing an open, self-adaptive integrative solution for Enter-

prise Interoperability and Enterprise Collaboration. Service orientation is a well-suited
and widely adopted concept in collaboration scenarios, therefore, COIN utilizes state of
the art SOA concepts, including Semantic Web Technologies and Software-as-a-Service
(SaaS) models (see [39] for more details). With respect to Enterprise Collaboration, COIN
supports numerous features that focus on product development, production planning and
manufacturing, and project management in networks of enterprises. As a fundamental as-
pect, human interactions exist in all forms and phases of virtual organizations and play
a major role in the success of collaborations within enterprise networks. Therefore, un-
derstanding human interactions and providing advanced support for efficient and effective
interactions, is one of the key objectives in COIN’s Enterprise Collaboration research track.

Generic Service Platform

Presentation Layer

Business Layer

Data Layer

Web Portal, Single Point of Access

S
in

g
le

 S
ig

n
-o

n
 L

a
y
e

r

User data Context data
Collaboration

Artifacts

Collaboration Platform

Data Layer

Business Layer
W

S
D

L

In
te

rf
a
c
e

Data Layer

Business Layer

W
S

D
L

In
te

rf
a

c
e

Semantic

Services

Goal

Compo-

sition

Support

BPMN

Engine

GUI

L
o
g
-i

n

P
o

rt
a

l
M

a
n

a
g

e
m

e
n

t

..
.

Liferay

Support

COIN
Baseline

IFrame

B
O

C
h

a
ra

c
te

ri
z
a

ti
o

n

B
O

R
e

w
a
rd

in
g

 S
rv

..
.

COIN
Baseline

Portlets

C
o

m
m

u
n

ic
a

ti
o

n
 S

rv

B
O

R
e

w
a
rd

in
g

 S
rv

..
.

WSDL Interfaces

GSP

Comm-

unication

Interface

Integrated Services

P
ro

d
u

c
ti
o
n

P

la
n

n
in

g

Liferay Basic

Services

A
c
c
e
s
s

R
ig

h
ts

R
e
g

is
tr

a
ti
o

n

..
. S

 e
 c

 u
 r

 i
 t

 y

 L
 a

 y
 e

 r

eMailService

Services
Implementation

Product Management
Service

Customer Support
Service

Services
Implementation

Services
Implementation

W
S

D
L

In
te

rf
a

c
e

Communica-
tion Manager

Composition

Selection and
Ranking

Data Mediation

Choreography

R
e

s
o

u
rc

e
 M

a
n

a
g

e
r

C
o
re

Security Manager

Discovery

Monitoring

Invoker

S
 e

 c
 u

 r
 i
 t

 y

 L
 a

 y
 e

 r

S
 e

 c
 u

 r
 i
 t

 y

 L
 a

 y
 e

 r

Goals

Servi-
ces

Onto-
logies

Medi-
ator

Provider 1...n

P
ro

d
u
c
t

D
e

v
e

lo
p

m
e

n
t

P
ro

je
c
t

M
a

n
a

g
e

m
e

n
t

H
u

m
a

n

In
te

ra
c
ti
o

n

uses

Figure 8.2: The COIN Framework enabling cross-organizational collaborations.

The COIN Framework (see Figure 8.2) consists of (i) the Collaboration Platform (CP)
that provides fundamental features that are required in (nearly) every collaboration sce-
nario, and (ii) the Generic Service Platform (GSP) that allows extensions with services
following the SaaS model from third party providers. The CP is designed for and tightly
coupled to a Liferay2 community portal that provides an effective way to configure and per-

2Open Source Portal Liferay: http://www.liferay.com

102 Chapter 8. Context-aware Interaction Models in Virtual Organizations

sonalize the CP for specific end-users by providing customized services and tools. Single
sign-on- and security mechanisms span services and tools across layers. The GSP relies
on semantic web technologies, implemented by the WSMX3 environment and is utilized to
discover, bind, compose, and use third-party services at run time.

Because of its extensibility and configurability, the COIN platform can be applied in
a wide variety of different collaboration scenarios, ranging from traditional production
planning to social campaigning and interest group formations in professional virtual com-
munities. For enabling context-aware interactions, the following baseline components are
of major interest (i) user data, including skills and interest profiles, (ii) context data, such as
current ongoing activities and user preferences, (iii) integrated baseline services for com-
munication and coordination (e.g., e-mail notifications, and instant messengers), (iv) the
GSP as the platform to host extended human interaction services.

8.2.2 Process Models for Virtual Organizations

COIN collaborative Production Planning Services realize innovative solutions in the field
of production planning. The C3P (Collaborative Production Planning Platform) service is
a graphic environment focusing on collaborative creation of production processes. Compa-
nies can conveniently plug themselves to the system, invite potential partners and contribute
to the definition of the entire production plan. Furthermore, they collaboratively solve aris-
ing problems during the execution using human interaction services. The flow of steps to
manufacture a product is defined on two different workflow levels:

• Collaborative Public Processes are defined as XPDL4 workflows; whereas each
step has at least one responsible partner assigned. The process steps are defined
collaboratively by partners, and represent interfaces that hide company-internal
(sub-)processes. The Collaborative Public Process Management Service allows mul-
tiple users to modify the same process concurrently, for instance, inserting new ac-
tivities, splitting activities in different steps provided by different partners, deleting
activities and defining relations between steps.

• Private Processes define workflows on company-level. Each company describes
and imports its own private (sub-)processes involving company resources, such as
personnel, material, and machines. Starting from a step of the public process this
module allows a particular company to connect its private processes to address the
goal of the related public process. Because of privacy issues and protecting know-
how, private processes are available to persons of the owning company only.

The meeting points between different partners participating in the collaborative public
process are virtual rooms that are linked to the arrows of the workflow model (see Figure
8.3(a) and 8.3(b)). Actors can collaboratively define interfaces between process steps, e.g.,
regarding the shipment of goods. Furthermore, they solve arising problems to find a final
agreement of the production plan. Figure 8.3(a) depicts a public process. Following the

3WSMX: Web Services Modelling eXecution Environment: http://www.wsmx.org
4XPDL: XML Process Definition Language: http://www.wfmc.org/xpdl.html

8.2. Foundational Concepts 103

(a) Collaborative Process Design: yellow boxes rep-
resent public views on activities of the companies, in-
cluding items manufacturing or testing; in some cases
goods shipping are included in the item manufacturing
operation.

(b) Process Execution Monitoring: visualize planned
and actual task execution progress.

(c) Context-aware Expert Involvement: contact the
best experts in their fields considering contextual con-
straints including communication channels and online
presence.

Figure 8.3: Flexible expert involvement in running processes.

BPMN5 standard the horizontal white areas represent the customers, the OEM (first tier of
the supply chain) and the different suppliers (second supply chain tier). The yellow boxes
reflect the public view on the steps of the chain to complete the final item manufacturing.
Temporal dependencies of activities are clearly visible through the arrows linking the pub-
lic activities that compose the public process. For the sake of simplicity not all activities
are represented in this example.

This section discussed the conceptual and technical grounding of process-oriented en-
vironments as used in the previously introduced Expert Web use case (see Chapter 5).
However, in this thesis we focus on flexible collaboration environments and dynamically
changing social relations and member expertise. Therefore, we further discuss in this chap-
ter the role of human interactionsm their mining, and dynamic profile updates (such as
experience and skills) for supporting fundamental expert discovery mechanisms.

8.2.3 Human-Interaction Support in Virtual Organizations

Virtual Organizations pose additional challenges to human interaction support. VOs are
typically temporary alliances that form and dissolve again. Various actors are involved in
such VOs collaborating and working on joint activities. However, finding the right person
to work on tasks or to solve emerging problems is challenging due to scale (number of

5BPMN: Business Process Modeling Notation: http://www.bpmn.org

104 Chapter 8. Context-aware Interaction Models in Virtual Organizations

people involved in VOs) and the temporary nature of formations. Furthermore, actor skills
and competencies evolve over time requiring dynamic approaches for the management of
these actor properties. In this work, we propose context-aware techniques and tools to
address fundamental issues in such collaboration environments: how to find the right per-
son and collaborate with that person using the best suitable communication and interaction
channel? We propose a combination of the following concepts (as separately discussed in
previous chapters) to address the need for context-aware interactions in VOs:

• Mining of interactions to determine patterns, for example delegation patterns, user
preferences, and user behavior (described by multiple metrics).

• Managing context information to select suitable interaction and communication
channels.

• Trust inference methods based on social relations to influence communication pat-
terns [116].

Furthermore, human interactions need to be supported in service-oriented systems. Us-
ing traditional communication tools (e.g., e-mail, instant messaging tools, or Skype) only
may not be well suited for that purpose, especially when neglecting context. To address
human interactions in SOA, we propose Human-Provided Services [106] that can be addi-
tionally utilized for providing ‘trusted online help and support’ enabling experts to define
services based on their skills. This approach makes the flexible involvement in workflows
possible without designing such interactions a-priori. A set of tools and services support
human interactions including: (i) Communication services: chat, e-mail, IM, Skype, and
various notification services (ii) Activity management service managing flexible collabora-
tion structures and artifacts used in collaborations (documents, resources, etc.); (iii) Profile

management service for storing user skills and capabilities
Specifically, context is used in various ways to support adaptive communication and

collaboration: (i) Communication channels can be pre-selected based on user presence
(online status), privacy rules, and urgency (e.g., e-mail v.s. VoIP v.s. SMS). (ii) Users are
assigned to activities based on their skills but also social preferences of other users working
on joint activities. (iii) Expert finding based on reputation in a certain field, for example,
with respect to activities that need to be performed.

In the rest of this chapter, we focus exemplarily on the latter, i.e., expert discovery and
ranking.

8.3 Context-aware Human Interaction Support

We highlight an expert query and ranking approach and demonstrate its application in the
process-oriented cross-organizational collaboration environments.

8.3.1 Context Model

Observing and mining interactions enables the calculation of metrics that describe the col-
laboration behavior of network members regarding certain activities. Furthermore, mining

8.3. Context-aware Human Interaction Support 105

social network data determines reputation of actors and their trust relations (such as in
friend networks). The utilized context model, as presented in Chapter 3, centers all data
about actors, profiles, relations, and resources, around activities. Furthermore, metrics that
describe actor behavior with respect to different activity types are part of this model. These
data are the basis for ranking and selecting experts.

8.3.2 Applications

We outline flexible expert involvement and management of communication among two
different companies in a shared workflow. The following software modules are used for
flexible human interactions in processes: (i) COIN Baseline including a central database
to store and manage profiles of individuals, teams and organizations; (ii) Activity and Task

Models that are used to infer the context of ongoing work. This information improves the
expert search by accounting for experience and expertise; (iii) C3P Production Planning

Software, utilizing concepts of public and private workflows presented before; (iv) Com-

munication Services to actually involve experts via e-mail, instant messaging, or Skype.
Figure 8.3 depicts the single steps of involving experts. In (a), still in the planning

phase, partners can be involved to discuss the planned process, while in (b) the actually
executed state and emerging problems are discussed. For that purpose, contextual infor-
mation is derived from a task’s execution, including its type, temporal constraints, and the
owning company, to discover assistance. This means, the requester for an expert, i.e., the
activity owner, can specify an expert search query according to external constraints; for
instance, urgent support needs an expert to be currently online and highly responsive; or
tasks carrying company sensitive information should not be shared with external people.

8.3.3 Expert Ranking and Query Mechanisms

We rank members N in the Web of Trust G = (N,E) and determine experts with the
Promethee approach [14] based on multiple criteria, obtained from mining interactions as
mentioned above. Our overall approach to determine the best available expert(s) on request
is depicted in Algorithm 8.

Algorithm 8 Context-aware trusted expert discovery based on multiple criteria.
Input: search query
Compute:

1. Filter experts according to mandatory constraints.

2. Select ranking criteria and order.

3. Assign weights to criteria.

4. Rank remaining experts.

5. Pick on or more of the top ranked experts.

Output: best available expert

First (1), all experts that do not fulfill certain constraints, mandatory to support a given

106 Chapter 8. Context-aware Interaction Models in Virtual Organizations

activity, e.g., online state, company membership, are sorted out. Afterwards (2), the activity
leader sets ranking criteria and their order, for instance experience ≻ reputation ≻

responsiveness. The order influences the importance (weights) of criteria (3). Then the
actual ranking is performed (4), and from the resulting list experts are manually picked (5).

We denote Pj(n1, n2) ∈ [0, 1] as the priority of the choice of node n1 over n2 in G

with respect to criteria j. For instance, expert n1 is preferred over n2 regarding metric
experience. Since we rank experts with respect to multiple criteria, i.e., values of k met-
rics, we aggregate priorities as shown in Equation 8.1. The weight wj of each criterion j is
derived from the specified order of important metrics in the search query.

π(n1, n2) =

k
∑

j=1

Pj(n1, n2)wj (8.1)

Outrankings (Equation 8.2, 8.3) compare a choice of an expert n1 with the |N |−1 other
choices in the set of all available experts N . The positive outrank Φ+ determines how n1

is outranking all other experts, and Φ− determines how all other experts are outranking n1.
The higher the value of Φ+, and the lower the value of Φ−, the better is the choice n1.

Φ+(n1) =
1

|N | − 1

∑

nx∈N

π(n1, nx) (8.2)

Φ−(n1) =
1

|N | − 1

∑

nx∈N

π(nx, n1) (8.3)

Finally, the score of an expert is calculated by Eq. (8.4).

Φ(n1) = Φ+(n1)− Φ−(n1) (8.4)

We demonstrate the application of the described Promethee approach [14] with a short
example. Assume we rank experts according to different metrics experience, reputation,
responsiveness (∈ [0,100]) with two different queries Q1 = {exp ≻ rep ≻ resp} and
Q2 = {resp ≻ rep ≻ exp}. Figure 8.4 compares expert ranks, and Table 8.1 shows
the detailed ranking results. Note, the impact of k metrics vary with their position in the
queries, and weights are defined as wj = 2k−pos(j).

-4

-2

0

2

4

6

n1 n2 n3 n4 n5

Pos. Outrank
Neg. Outrank
Score

(a) Q1 = {exp ≻ rep ≻ resp}.

-4

-2

0

2

4

6

n1 n2 n3 n4 n5

Pos. Outrank
Neg. Outrank
Score

(b) Q2 = {resp ≻ rep ≻ exp}.

Figure 8.4: Expert ranking results for Q1 and Q2.

8.4. Results and Findings 107

Complexity of the Promethee approach including speedup methods and parallel com-
putation is discussed in [26]. The method requires O(kn2) independent operations to build
the outrankings. The number of operations grows very large as the number of criteria (k)
and alternatives (n) increases. However, the method can be optimized by parallel compu-
tation of operations [26].

expert experience reputation responsiveness ΦQ1
(rank) ΦQ2

(rank)

n1 50 50 50 1.5 (r3) 3 (r1)

n2 75 25 25 2 (r1) 0.5 (r3)

n3 100 0 0 1.75 (r2) -3.5 (r5)

n4 0 100 0 -1.75 (r4) -1.75 (r4)

n5 0 0 100 -3.5 (r5) 1.75 (r2)

Table 8.1: Example rankings accounting for experience, reputation, and responsiveness.

Example Scenario. A manufacturer from China and an assembler from Italy work
together on the assembly of a product. The manufacturer in China has to send goods to
the company in Italy. Unforeseen problems may happen at China’s customs when export-
ing certain parts. In this case persons from both companies can collaborate in the virtual
room (see Figure 8.3(b)), sharing the current and the adapted production plan, uploading
documents from China’s custom office, chatting or talking via Skype to find a solution.
When the required set of skills, such as far-east custom policies expertise, are not satisfied,
third-party experts from outside the currently executed process can be involved through an
expert search query. The discussion participants in the virtual room can decide about useful
contextual constraints and discover a set of people who match the search query. Finally,
the expert requester(s) may pick one or more people to be contacted (visualized in Figure
8.3(c)).

8.4 Results and Findings

After extensive discussions with COIN end-user partners, such as Poyry6, the system is ap-
plied in their business cases. The following results can be mentioned: (i) Enhanced expert

discovery mechanisms. By considering not only static competencies, such as official cer-
tificates and education, but also dynamically changing experiences, experts can be selected
more precisely; especially when accounting for particular contextual constraints, such as
online presence for immediate responses or organizational memberships. (ii) Significantly

reduced response times. By automatically selecting preferred communication channels,
experts can be faster involved in ongoing collaborations. Communication channels are
selected based on working time, location of people, and their current activities (all infor-
mation obtained from the context model). (iii) Harnessing distributed expertise. Involving
experts from various physical companies in the same virtual organization massively ex-
tends the pool of available skilled persons who can assist in ongoing collaborations.

6Pöyry Group: http://www.poyry.com

108 Chapter 8. Context-aware Interaction Models in Virtual Organizations

Besides these positive aspects, we will conduct further research to deal with negative
side effects, such as (i) Privacy concerns due to monitoring and mining interactions (also
see Chapter 11 on privacy issues), (ii) Complex adaptations and extensions of the context

model to suitably reflect the real environment.

CHAPTER 9

Trust-based Discovery and

Interactions in Expert Networks

Outline. We deal with an advanced expert discovery approach in the previosuly introduced
Expert Web. For that purpose, we extend the popular HITS algorithm[65] with context-
sensitive personalized trust weightings.

Contents

9.1 Motivation . 109

9.2 Flexible Involvements of Experts . 110

9.3 Expertise Model . 112

9.3.1 Personalized Expert Queries . 112

9.3.2 Skill Model . 113

9.4 Expert Discovery . 114

9.4.1 Skill Matching Algorithm . 115

9.4.2 Discovery of Expert Hubs . 115

9.5 Evaluation . 119

9.6 Discussion . 122

9.1 Motivation

Web services have pioneered the way for a new blend of composable systems. Services
already play an important role in fulfilling organizations’ business objectives because pro-
cess stakeholders can design, implement, and execute business processes using Web ser-
vices and languages such as the Business Process Execution Language (BPEL) [92]. A
broad range of services is increasingly found in open Web-based platforms. Users and
developers have the ability to use services in various applications because services offer
well-defined, programmable, interfaces.

In process-centric collaboration, a top-down approach is typically taken by defining
process activities and tasks prior to deploying and executing the process. Before creating
the model, the designer must fully understand each step in the process. Flexibility in such
composition models is limited since unexpected changes require remodeling of the process.
Such changes may cause exceptions, disrupting the normal execution of the process. It is
important to support adaptivity in collaborations and compositions. An important role

110 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

towards adaptive processes plays the ability to support the execution of ad-hoc activities
and flexibility in human interactions to react to unexpected events. While the process-
centric collaboration approach follows a top-down methodology in modeling flows, ad-hoc
flows in flexible collaborations emerge at run-time. A run-time environment constraints
the execution of flows. Such constraints are, for example, the availability of resources,
services, and people.

In this chapter, we focus again on the Expert Web use case, based on the concept of
Human-Provided Services (HPS) [106]. We discuss the discovery and interactions in mixed
service oriented systems comprising HPS and software-based services (SBS). Experts offer
their skills and capabilities as HPS that can be requested on demand.

We present these key contributions regarding advanced expert discovery support:

• Estimation of user reputation based on a context-sensitive algorithm. Our approach,
called ExpertHITS, is based on the concept of hubs and authorities in Web-based
environments.

• An approach for community reputation (the hub-expertise of users) influenced by

trust relations. Dynamic link weights are based on trust and user rating influenced
by the query context. ExpertHITS is calculated online, thus fully personalized based
on the expert-requester’s preferences (i.e., the demanded set of skills).

• Implementation and evaluation of our approach demonstrating scalability and effec-
tiveness of our proposed algorithm.

9.2 Flexible Involvements of Experts

Once more, we motivate our work with the Expert Web scenario as introduced in Chapter 5.
This scenario use case for discovering experts on demand and flexible interaction support
is depicted in Figure 9.1. The process model may be composed of single tasks assigned
to responsible persons, describing the steps needed to produce a software module. After
finishing a common requirement analysis, an engineer evaluates the re-usability of existing
work, while a software architect designs the framework. The implementation task is carried
out by a software developer, and two software tester evaluate the prototype implementation
with respect to functional properties (e.g., coverage of requirements) and non-functional
properties (e.g., performance and memory consumption). We assume that the task owners
in this process exchange only electronic files and interact by using communication tools.

While various languages and techniques for modeling such processes already exist, for
example BPEL, we focus on another aspect in this scenario: discovery and interactions

with trusted experts. A language such as BPEL demands for the precise definition of flows
and input/output data. However, even in carefully planned processes with human participa-
tion, for example modeled as BPEL4People activities [1], ad-hoc interactions and adapta-
tion are required due to the complexity of human tasks, people’s individual understanding,
and unpredictable events. According to Figure 9.1, the software architect receives the re-
quirement analysis document from a preceding step. But if people have not yet worked

9.2. Flexible Involvements of Experts 111

requirement
analysis

Expert Web

Process

trusted

selection

WS

DL

WS

DL

Symbols:

human

expert service
prov. by human

expert service
impl. in software

expertise area

network relation

WS

DL

re-usability
check

architectural
design

implemen-
tation

functional
tests

non-functio-
nal tests

WS

DL

WS

DL

trusted

delegations

RFS

Figure 9.1: Discovering and including experts for online help and suppport.

jointly on similar tasks, it is likely that they need to set up a meeting for discussing relevant
information and process artifacts. Personal meetings may be time and cost intensive, espe-
cially in cases where people belong to different geographically distributed organizational
units. Various Web 2.0 technologies, including forums, Wiki pages and text chats, provide
well-proven support for online-work in collaborative environments.

However, several challenges remain unsolved that are addressed in this work. We al-
ready highlighted context-aware concepts to involve third-party experts in ongoing col-
laborations (see Chapter 5 and 8). In this chapter, we deal with an advanced reputation
mechanism to support the discovery of experts based on hard skills, and social aspects,
i.e., trust.

The Expert Web. Here we propose the Expert Web consisting of connected experts that
provide help and support in a service-oriented manner. The members of this expert web are
either humans, such as company employees offering help as online support services or can
in some cases be provided as software-based services. Applied to enterprise scenarios, such
a network of experts, spanning various organizational units, can be consulted for efficient
discovery of available support. The expert seekers, for example the software engineers or
architect in our use case, send requests for support, abbreviated as RFSs. Experts may also
delegate RFSs to other experts in the network, for example when they are overloaded or
not able to provide satisfying responses. Following this way, not only users of the expert
network establish trust in experts, but also trust relations between experts emerge.

On the Emergence of Trust. Traditional rating and ranking models usually neglect
social aspects and individual preferences. However, actors in the Expert Web may not be
compatible with respect to working style and behavior. As a consequence social aspects
need to be considered and require dynamic interaction models. Here, we use social trust

to support and guide delegations of requests. As discussed in Chapter 4, social trust refers
to the flexible interpretation of previous collaboration behavior [7, 37] and the similar-
ity of dynamically adapting interests [38, 134]. Especially in collaborative environments,
where users are exposed higher risks than in common social network scenarios [30], and
where business is at stake, considering social trust is essential to effectively guide human
interactions.

112 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

9.3 Expertise Model

In this section we will detail the basic concepts enabling the discovery of experts. Our
approach is based on the following idea: given a search query containing the set of relevant
skills, who is the expert (i) satisfying these demanded skills and (ii) how well is this expert
connected to other people having similar expertise. From the Expert Web point of view,
finding the right expert by performing skill matching is not sufficient. We also need to
consider whether the expert will be able to delegate RFSs to other peers in the Expert Web.

9.3.1 Personalized Expert Queries

In this work, we define this concept as expert hubs that are well-connected (i.e., social
network structure and connections based on joint collaborations) given a particular query
context. Delegation is important in flexible, interaction-based systems because it becomes
clear that expert hubs will attract many RFSs over time, thus presenting bottlenecks in terms
of processing time needed to work on RFSs. On the other side, being a hub in the Expert
Web also means that a person knows many other experts in similar fields of interest. We
argue that the likelihood of being able to delegate RFSs to other experts greatly increases
depending on the hubness of a person due to the embedding of a hub in expert areas (e.g.,
communities or interest groups). The major challenge in this scenario is that hubness needs
to be calculated on demand based on a query. The query determines the context through
the set of skills relevant for discovering experts.

Symbols

Expert Service

RFS

Knows relation

Trust relation

Rating relation

Interaction

Rating action

WS

DL

QA

WS

DL

Q
B

PP

P

P

P P

P

P

P

P

P

H
A

H
B

P

Figure 9.2: Hubs with different areas of expertise.

Let us start formalizing this concept by discussing two scenarios as depicted in Figure
9.2. First, a query (see QA or QB) is specified either manually by a (human) expert seeker
or derived automatically from a given process context, for example a predefined rule de-
noting that a particular set of skills is needed to solve a problem. The purpose of a query is
to return a set of experts who can process RFSs, either by working on the RFSs or delega-
tion. Thus, QA would return HA as the user who is well connected to authorities in query
context QA.

The concept of hubs and authorities has been introduced by Kleinberg [65] to rank Web
pages in search queries using the ‘HITS algorithm’ (Hyperlink-Induced Topic Search). The
notion of authorities in social or collaborative networks can be interpreted as a measure to

9.3. Expertise Model 113

estimate the relative standing or importance of individuals in an implicitly defined network
[65].

There are two influencing factors, i.e., relations, determining hub- and authority scores:
(i) how much hubs trust authorities (depicted as filled arrows from hubs to authorities) and
(ii) ratings hubs receive from authorities (open arrows to hubs). Trust mainly influences
the potential number of users (e.g., known by HA) who can process delegated RFSs. On
the other hand, receivers can associate ratings to RFSs to express their opinion whether the
delegated RFSs fit their expertise. QB may demand for a different set of skills. Thus, not
only matching of actors is influenced, but also the set of interactions and ratings consid-
ered for calculating ExpertHITS (i.e., only the set of RFSs and ratings relevant for QB).
Note, single interactions that lead to trust relations, as well as single rating actions that
lead to rating relations are not depicted here, but explained in detail in the next section.
This approach provides a powerful tool for expert discovery because reputation (for ex-
ample, within communities) is expressed as hub-expertise by weighting trust relations in
personalized scopes (through the query context) and feedback-ratings. Also, we believe
that our approach is difficult to cheat on because hub-expertise is influenced by how well
hubs are connected to multiple authorities who propagate their expertise back to hubs. We
will further elaborate on this concept in the following sections. Before doing so, we discuss
the model for expressing skills and areas of expertise.

9.3.2 Skill Model

Our proposed skill model is based on the ACM Computing Classification System1. This
simple model is sufficient to serve as a basic classification scheme for skills in the computer
science domain which is well aligned with the requirements of the previously introduced
motivating scenario. More advanced skill or competency models (e.g., ontological systems
[10]) are not within the scope of this work. In Figure 9.3, we show an excerpt of a taxonomy
that can be used to classify skills in, for example, the software engineering domain.

The basic idea of our approach is to define different weights for each level in the tree
(see Figure 9.3(a)). The top-most level (the root node) has the lowest weight since top
levels in the skill tree denote broad areas of expertise. The weights increase depending
on the tree depth because lower levels contain fine-grained skill and expertise information
(specialism). We define the set of levels L = {L0, L1, . . . , Ln} with

∑

i:1...nwLi
= 12.

All nodes in the skill tree that do not have successor nodes are called leaf nodes.
A subset of the tree may be selected by a query Q to discover experts. Thus, the pro-

vided query needs to be matched against user profiles to determine how well users match
the demanded set of skills. Each node in the tree is called skill property. We introduce query

preferences enabling the expert seeker to express strong or weak matching preferences of
skill properties and optional (‘nice to have’) properties. A strong preference might denote
that the expert seeker requires the user to have certain skill properties, whereas weak prefer-
ences would express that the expert should have as many skill properties. Optional means

1ACM Classification System: http://www.acm.org/about/class/1998/.
2Having all level weights sum up to 1 means that there is a mutual dependency between weights.

114 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

L0

(a) (b)

L1

L2

Software/SE

Programming

Techniques
SE

General
Requirements/

Specifications

SE for Internet

projects
Standards Analysis

Languages
MethodologiesL3

SE

General
Requirements/

Specifications

SE for Internet

projects
LanguagesAnalysis

(c) SE

General
Requirements/

Specifications

Standards MethodologiesLanguages

Figure 9.3: (a) Excerpt skill taxonomy in the software engineering domain. (b) illustrates
an example query specifying the demanded skills as formulated by an expert seeker. (c)
gives an example of a user skill profile.

that higher preferences are given to those experts that have a higher degree of similarity
with a set of optional skill properties.

In Figure 9.3(b), an example query is shown that can be formulated as, e.g., SE for

Internet projects and [Requirements [Analysis][Language]] speci-
fied within the skill subtree SE. For a given user profile, e.g., Figure 9.3(c), matching is per-
formed according to different preferences. Specifying strong preferences for the first part
of the query expression would mean no overlap between specified skill property [SE for

Internet projects] and the user expertise in Standards, whereas a weak prefer-
ence expresses the need to have some specialism in a given area (i.e., [SE [General]]).
Considering the second part of the query expression, strong preferences are calculated as
the overlap similarity between the set of skill properties [Analysis][Language] and
[Languages][Methodologies].

9.4 Expert Discovery

We detail our discovery approach by defining a matching procedure and an algorithm for
calculating ExpertHITS. An important aspect of the presented approach is to select inter-
actions for inferring trust relations based on (query) context information. We assume that
each interaction (e.g., based on delegated RFSs) is associated with context tags based on
the skill taxonomy.

Algorithm 9 outlines our approach at a high level, which will be detailed in subsequent
sections. First, matching is performed based on the query context. In this step, the previ-
ously introduced skill model is used to retrieve the set of qualified users. Second, expert
hubs are discovered using link and interaction information. As our algorithm is based on
Kleinberg’s HITS, we calculate hub and authority scores online for each single member of
the Expert Web. Third, discovered users are ranked by their hubness to determine the best
suitable expert.

Next, we define the basic algorithm for matching user profiles and RFSs.

9.4. Expert Discovery 115

Algorithm 9 Outline discovery approach.
Input: Given a query context Q to discover expert hubs
Compute:

1. Find users matching demanded set of skills.

2. Calculate hub-expertise of users given query context Q.

(a) For each user calculate hub score in context Q.

(b) For each user calculate authority score in context Q.

3. Rank users by hub score.

Output: Ranked experts in Q

9.4.1 Skill Matching Algorithm

The basic idea is to use a metric to calculate the overlap of two sets A and B as |A∩B|
m

[49]. The presented algorithm supports the notion of strong, weak, and optional matching
preferences through alternate approaches for calculating overlap similarities of sets of prop-
erties. These preferences have impact on matching of skill properties on lower levels. As
mentioned before, all nodes in the skill tree that do not have successor nodes are called leaf

nodes. For simplicity, we do not consider unbalanced trees or complicated branching struc-
tures. Matches at leaf-node level have higher impact on similarities due to the following
property: weights increase depending on the tree depth such that wL0

< wL1
< . . . < wLn .

In the following we will derive an algorithm for matching elements which may depict in-
teraction data (tagged RFS-based interactions) and user profiles holding skill information.
The function leafNodes returns the set of child nodes associated with a given property
in the query or the global skill taxonomy tree GT . The set |P (Li)| denotes the number of
properties in Li.

Steps 1 - 3 in Algorithm 10 calculate the numerator of the set metric (|A∩B|). The set
similarity is divided by the number m based on different matching preferences. As shown
in Algorithm 10 (step 4), m is appended to the matching result to obtain similarity scores
based on the different preferences prefstrong,prefweak or prefoptional as defined in the
following:

m =

|leafNodes(qp(Li))| ∪ |leafNodes(ep(Li))| if prefstrong
|leafNodes(GT (Li))| if prefweak or prefoptional
|P (Li)| otherwise

(9.1)

9.4.2 Discovery of Expert Hubs

Here we present our expert discovery algorithm that is influenced by trust inference as well
as rating mechanisms. Our algorithm accounts for context information and weighted links
between actors. Context is utilized by considering relations of experts in different scopes.

116 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

Algorithm 10 Topic tree matching algorithm.
Input: Given a query context Q containing a set of properties qp and elements E
Compute:

1. Get all elements e ∈ E′ ⊆ E whose properties provide a minimum match of topics.

2. Extract topic tree matching query root node.

3. Iterate through each level and calculate overlap similarity of property in query at
current level i. Given current property qp(Li):

(a) If leafNodes(qp(Li)) 6= ∅ then do |leafNodes(qp(Li))| ∩
|leafNodes(ep(Li))|.

(b) If leafNodes(qp(Li)) = ∅ and weak preference then use
|leafNodes(ep(Li))|.

(c) Otherwise perform qp(Li) ∩ ep(Li).

4. Divide similarity by m and append score with wLi
to previous score sum.

Output: Ranked elements according to similarity

Thus, the goal of our algorithm is to find hubs with respect to context. In the following,
we discuss the basic flow of actions in the Expert Web. The actions include delegations
of RFSs, ratings of requests, and advanced delegation patterns (see Chapter 5). First, we
discuss the discovery and selection of expert hubs and authorities (Figure 9.4) followed by
the definition of delegation patterns and rating (Figure 9.5).

n 3

n 2

n 5

n 4
n 6

WS

DL

Q

P

P

P

P

P

H
n 1

P

(a) Discovery of expert hub.

n 3

n 2

n 5

n 4
n 6

WS

DL

P

P

P

P

P

P

n 1

P

Q

H

(b) Trusted selection of authority.

Figure 9.4: Interaction and discovery model.

Hub discovery. Let us assume that a query Q is specified to discover an expert hub (see
Figure 9.4(a)). Every query influences the set of prior ratings (arrows pointing to n1) and
interactions (i.e., actions) that need to be considered when calculating hub- and authority
scores. Consider the query context Q comprising actions related to the demanded set of
skills. Note, the previously defined matching algorithm is used to select related actions. In
this case, n1 has been discovered as the entry point denoted as H

Delegation actions. In Figure 9.4(a), user n1 receives an RFS issued towards the Ex-

9.4. Expert Discovery 117

pert Web. Since n1 represents the hub expert, n1 may decide to delegate the request to
one of its neighbors n2, n3, n5, n6, which can be discovered through knows relations3

(Figure 9.4(b)). In our Expert Web application scenario, knows is a bidirectional relation
between users. A relation becomes active if both users acknowledge that they are con-
nected to each other (n2 knows n1 and n1 knows n2), a simple yet effective mechanism
to support growth in social networks (e.g., newcomers and bootstrapping problem) while
preserving user control. Note, knows relations do not contain context related information
such as tags. The context of interactions is derived from delegated RFSs (tags or type of
RFS classified by using the skill taxonomy). To support growth in networks (e.g., how
can newcomers become members of communities), we introduce an advanced interactions
pattern in the Expert Web depicted by Figure 9.5(a).

n 3

n 2

n 5

n 4
n 6

WS

DL

P

P

P

P

P

P

n 1

P

Q

H

(a) Delegation of RFS.

n 3

n 2

n 5

n 4
n 6

WS

DL

P

P

P

P

P

P

n 1

P

R

R

Q

H

(b) RFS reply and rating.

Figure 9.5: Advanced interaction patterns and rating.

Triad delegation pattern. An authority may need to delegate an RFS received from
the hub to somebody who is known to the authority, but not the hub. This pattern is shown
in Figure 9.5(a). Hub n1 delegates an RFS to n5, which is in turn delegated to n4 and, thus,
being responsible for processing the RFS.

If ties (i.e., through knows relations) between the pairs (n1, n5) and (n5, n4) exist,
it is likely that n4 will attempt to establish a connection to n1 as well. This concept is
known as triadic closure in social networks [128] and can be applied to support interaction
patterns in service-oriented systems. The triad interaction pattern (see [116]) enables n4

to connect to hubs and helps increasing its authority in the Expert Web. As mentioned
previously, knows is a bidirectional connection and needs to be acknowledged by n1.

Rating procedure. An RFS is delivered back to the expert seeker from the Expert
Web; i.e., the selected hub n1 depicted in Figure 9.5. The main argument of our model is to
determine those hubs that are well embedded in expertise areas (e.g., communities). Thus,
the hub-score should be influenced by feedback ratings denoting the level of satisfaction
of authorities. Ratings are subjective opinions of authorities with respect to RFSs received
from hubs, i.e., whether RFSs fit the expertise area of authorities. In the final step, RFSs are
rated (see dashed open arrows) expressing the precision of received delegations. Indeed,

3The knows property in FOAF profiles can be used for discovering social relations; see
http://xmlns.com/foaf/spec/ issued at 2 Nov. 2007.

118 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

such ratings are also given to RFSs traversing the Expert Web through triad delegation
patterns. Given the scenario in Figure 9.5, automatic propagation of ratings (e.g., if a
delegated RFS from n1 to n5 was further delegated to n4) is currently not considered in
our model. Thus, n4 rates the RFS received from n5 and similarly n5 from n1.

Trust updates. Trust relations, based on experts’ behavior in terms of reliability, avail-
ability, or RFS processing successes, are periodically updated with recent interaction data.
Those interactions (reflected by filled dashed arrows) are aggregated to interaction metrics
that are interpreted by pre-defined rules to infer trust. The detailed mechanisms has been
studied in Chapter 4.

Formalized Model

In the following, we discuss the formal model for our proposed expertise ranking algorithm
consisting of two components (i) hub score H(ni;Q) of user ni in query context Q and (ii)
authority score A(nj;Q) of user nj in the same query context Q.

• H(ni;Q): Hub score of user ni acting as a reliable entry point to the Expert Web
brokering RFSs to authoritative users. Hubs are identified based on the demanded
expertise, knows relations connecting ni to other experts and feedback ratings re-
ceived from prior delegations.

• A(nj ;Q): Authority score of user nj . Authorities are skilled users (experts) that are
connected to influential hubs. In our model, authority means that users process RFSs
received from hubs in a reliable, trustworthy manner.

H(ni;Q) =
∑

nj∈knows(ni)

wQ
njni

A(nj ;Q) (9.2)

A(nj ;Q) =
∑

ni∈knows(nj)

wQ
ninj

H(ni;Q) (9.3)

An important factor in our model is the estimation of link weights. Table 9.1 gives a
description based on which parameters the weights are calculated.

Symbol Description
knows(ni) The set of users known by ni.
wQ
ninj Trust influences the delegation behavior of hubs by selecting authorities

based the success of interactions; in our example successfully delegated
and processed RFSs.

wQ
njni Denotes the connection strength of an authority nj to hub ni. In other

words, wQ
njni influences the ‘hubness’ of ni. The weight can be calculated

using information from ratings given by nj to RFSs received from ni.

Table 9.1: Hubs and authorities in the Expert Web.

9.5. Evaluation 119

The weight wQ
ninj can be interpreted as how much ni trusts nj in processing RFSs in a

reliable manner. The weight can be estimated as

wQ
ninj

=
Successful delegations from ni to nj

∑

nx∈knows(ni)

Successful delegations from ni to nx

(9.4)

9.5 Evaluation

In our experiments we focus on the performance of ExpertHITS as well as the influence of
trust and ratings on hub/authority scores. In this work, we do not deal with performance
issues due to network delay or end-to-end characteristics of the entire system. Here we
focus on ExperHITS calculation time under different conditions.

Experimental Setup. In all our tests we used a machine with Intel Core2 Duo CPU
2.50 GHz, 4GB RAM, running Java 1.6 and an OSGi Java container for hosting services.
A query service has been implemented on top of the HPS Framework [106]. We use trust
mining and metric calculation capabilities available as services by the VieTE (Vienna Trust
Emergence) framework [117] to construct graphs based on user relations and trust. The Ex-
pertHITS algorithm has been implemented on top of a Java-based graph modeling toolkit4.

Data Generation. The approach we take is to generate artificial interaction data imitat-
ing real collaboration environments. For this purpose, we adopt the preferential attachment

method [97] which provides a realistic model for science collaboration scenarios. Specifi-
cally, a collaboration network is modeled as an undirected graph G = (N,E) comprising
a set of nodes N and edges E establishing connections between nodes. The probability
of establishing a new connection to a given node is proportional to its degree distribution.
Using this basic network structure, we generate interactions (delegations and ratings) asso-
ciated with edges. Assuming a scale free network with power law distribution, hubs play a
central role, thereby generating a large amount of delegations. This behavior is taken into
account when generating artificial interactions by estimating that 80% of delegations are
initiated by about 20% of network users (i.e., immitating hubs).

Results. Complexity is a crucial factor in order to support personalization of queries.
The complexity for computing ExpertHITS is O(|N | ∗ it), |N | representing the number of
nodes in the graph and it the number of iterations until the algorithm converges. We analyze
different networks comprising actors and interactions that have already been matched with
a specific query context (see Table 9.2).

network characteristics ExpertHITS computation time
Small-scale: 100 nodes, 400 edges ≈ 60 ms
Medium-scale: 1000 nodes, 4000 edges ≈ 600 ms
Large-scale: 10000 nodes, 40000 edges ≈ 12100 ms

Table 9.2: ExpertHITS computation performance.

4JUNG: http://jung.sourceforge.net/

120 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

ExperHITS can be computed in a sufficient amount of time scaling up to large networks
(i.e., 10000 nodes). Notice, these networks represent already filtered subgraphs based on
the query context. We believe that this assumption is realistic considering the targeted
Expert Web consisting of professionals. The system must be able to handle multiple re-
quests simultaneously. We analyze the performance of ExpertHITS under different load
conditions. At this stage, we focus on small-scale (100 nodes) and medium-scale (1000
nodes) networks. Figure 9.6(a) and Figure 9.6(b) show the results given 50-500 concurrent
requests to calculate ExpertHITS. A queue holds instances of the constructed network. A
thread pool instantiates worker threads to calculate personalized ranking scores based on
query preferences. Small-scale networks can be processed in a real-time manner requir-
ing in our experiments in the worst case (MAX values) up to 12 seconds. On average, 17
seconds can be expected under different load conditions (50-500 concurrent requests). The
results of medium-scale networks are shown in Figure 9.6(b) and compared with small-
scale networks in Figure 9.7. Computing ExpertHITS in such networks takes up to several
minutes when serving concurrent requests (i.e., on average 390s at a load of 200 requests).
Load conditions in the range between 300-500 concurrent executions of the algorithms re-
sults on average in response times between 15-25 minutes. Given our initial online help

50 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000
AVG
MIN
MAX

T
im

e
 (

m
s
)

number of concurrent requests

(a) Small-scale.

50 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

T
im

e
 (

s
)

AVG
MIN
MAX

number of concurrent requests

(b) Medium-scale.

Figure 9.6: Concurrent request processing time of ExpertHITS.

50 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

T
im

e
 (

s
)

Medium−scale (1000 Nodes)
Small−scale (100 Nodes)

number of concurrent requests

Figure 9.7: Comparison of total processing times.

9.5. Evaluation 121

and support example, we believe it is sufficient to compute ExpertHITS in this magnitude
because illustrated processes in software engineering do not demand for hard computa-
tional (time) constraints. Scalability and reduced processing time can be achieved by using
multiple servers and load balancing mechanisms. These mechanisms are subject to our
future work and performance evaluation.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

16

18

Rank

D
e
g

re
e

(a) Node degree.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−15

−10

−5

0

5

10

15

20

25

30

Rank

C
h

a
n

g
e

(b) Ranking change.

Figure 9.8: Impact of ExpertHITS on rankings.

To test the effectiveness of ExpertHITS, we performed experiments to study the impact
of ratings and trust on expert rankings. In Figure 9.8, we show the top-30 ranked experts in
a small-scale network (100 nodes). Results are sorted based on the position within the result
set (horizontal axis). Figure 9.8(a) shows the degree of network nodes and Figure 9.8(b)
ranking changes obtained by comparing ranking results using the HITS algorithm without
taking trust or ratings into account. Specifically, pos(ni)HITS−pos(ni)ExpertHITS returns
the absolute ranking change of ni in a given result set.

In Figure 9.9, we show the average rating of each ranked node; average rating of node
ni received from its neighboring nodes divided by the expected rating. We define quality as
the aggregated trust weights. Quality is calculated as

∑

nj∈knows(ni)

∑

nk∈inlink(nj)
wnknj

.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

Rank

Rating
Quality

Figure 9.9: Ratings and quality.

122 Chapter 9. Trust-based Discovery and Interactions in Expert Networks

Quality measures the overall trust in node nj . In Figure 9.9, we see that all nodes within the
top segment received high ratings given a high degree of links which is the desired property
of ExpertHITS. Some nodes are demoted (negative ranking change) since the node (e.g.,
see 11) has received low ratings even though the node has a high degree of links. On the
other hand, nodes get promoted (positive ranking change) if they exhibit sufficient high
ratings (see 15) or high quality (see 20 which was promoted a few positions only due to
limited degree). Overall, ExpertHITS exhibits the demanded properties of promoting well-
connected and rated hubs, thereby guaranteeing the discovery of reliable entry points to the
Expert Web.

9.6 Discussion

In this chapter, we introduced a new approach for supporting trust- and reputation-based
expert discovery. Unlike traditional models found in process-centric environments, we pro-
posed the combination of preplanned process steps and ad-hoc activities to solve emergent
problems in distributed collaboration environments. Our approach is based on the HPS
concept enabling knowledge workers to offer their skills and expertise in service-oriented
systems. Expert discovery is greatly influenced by (behavioral) trust and reputation mech-
anisms. We demonstrated a novel approach for estimating expert reputation based on link
structure and trust relations. Trust information is periodically updated to capture dynami-
cally changing interaction preferences and trust relations. We have shown that ExpertHITS
can be computed in an online manner, thereby enabling full personalization at runtime.
Existing approaches in personalized expertise mining algorithm typically perform offline
interaction analysis. Our empirical evaluations have shown that ExpertHITS exhibits the
desired properties; trust and rating weights influence hub- and authority scores. These
properties ensure that our algorithm discovers experts which are well-connected to other
experts.

CHAPTER 10

Trust-based Adaptations in Complex

Service Systems

Outline. We discuss the meaning of trust for dynamic adaptations in service-centric sys-
tems. For that purpose, we highlight mechanisms for flexible information disclosure in
collaboration scenarios.

Contents

10.1 Motivation . 123

10.2 The Science Collaboration Scenario . 125

10.2.1 Emerging Trust Networks . 126

10.2.2 On Trusted Information Sharing 126

10.2.3 Context Model and Shared Information 128

10.3 Design and Architecture . 129

10.3.1 Sharing Framework . 129

10.3.2 Implementation Details . 131

10.4 Evaluation and Discussion . 135

10.4.1 Preparation . 135

10.4.2 Experiments . 136

10.1 Motivation

The way people interact in collaborative and social environments on the Web has evolved
in a rapid pace over the last few years. Services have become a key-enabling technology to
support collaboration and interactions. Pervasiveness, context-awareness, and adaptiveness
are some of the concepts that emerged recently in service-oriented systems. A system is not
designed, deployed, and executed; but rather evolves and adapts over time. This paradigm
shift from closed systems to open, loosely coupled Web services-based systems requires
new approaches to support interactions.

Trust emerging in specific scopes, relies on previous interactions, and evolves over
time. Accounting for dynamically changing trust relations when selecting people for com-
munication or collaboration, services to be utilized, and resources to be applied, leads to
more efficient cooperation and compositions of human- and software services [111]. Some
typical aspects that require run-time adaptation in mixed service-oriented systems include:

124 Chapter 10. Trust-based Adaptations in Complex Service Systems

observe interaction

behavior and context

infer relations and

determine network structure

I. Monitor

II. Analyze

III. Plan

plan collaboration activities

upon analyzed relations

instantiate and run

(adapted) collaboration

IV. Execute

Act
i-

vi
ty Act

i-

vi
ty

WSDL

Figure 10.1: Adaptation approach for mixed service-oriented systems.

• Discovery of Network Members and Resources. In many networks, for example so-
cial networks, the discovery and selection process relies on matching of user profiles
and resource features that are mainly static. In contrast, utilizing periodically up-
dated trust relations better accounts for varying user preferences and avoids lookup
based on stale information.

• Access to and Sharing of Information. Traditional approaches to access rights man-
agement are based on manually assigned static user roles. However, the user is often
not able to keep track of configurations in complex networks such as dynamically
changing roles.

• Coordination and Compositions. Especially in flexible environments, compositions
of humans and services cannot only rely on static structures, but have to be flexibly
adapted based on their run-time behavior.

• Interaction Policies and Patterns. In common enterprise networks, policies and in-
teraction patterns describe and restrict communication paths between network mem-
bers. Therefore, periodic adaptation upon ongoing collaborations enable optimiza-
tions according to the outcome of interactions.

We introduce a general approach to deal with these concerns, enabling trust-based
adaptation of complex network structures (Figure 10.1). This concept follows an adopted
version of the ‘MAPE’ cycle as introduced in Chapter 3. MAPE, incorporating funda-
mental concepts from control engineering, describes a cycle consisting of four phases,

10.2. The Science Collaboration Scenario 125

which are Monitor, Analyze, Plan and Execute. Periodically running through these four
phases establishes a kind of environmental feedback control, and, therefore, allows to adapt
to varying circumstances. This aspect enables us to address aforementioned challenges.
Briefly explained again, in the Monitoring Phase our system observes interactions, in par-
ticular communication, coordination, and execution events among network members in
their respective situations. In the Analyzing Phase logged interactions are used to infer
relations and to determine network structures. For this purpose, domain-dependent inter-
action metrics and quality criteria are calculated and interpreted. The following Planning

Phase covers the preparation of new collaborations, for instance, discovery, ranking and
selection of network members, services, and resources. In the Execution Phase either new
collaborations are instantiated, or existing scenarios adapted according to feedback from
prior observations. In that phase network members interact to perform planned activities.
This closes the cycle.

Previously, we introduced methods and algorithms that are applied in the monitoring
and analyzing phases of the MAPE approach for inferring trust by interpreting and weight-
ing interactions [111]. In this chapter, we describe the realization and major design deci-
sions of frameworks that support adaptations in complex service-oriented networks. We
present the following contributions:

• Trust-based Adaptation in Complex Systems. We focus on complex networks of
human and service actors. In that environment, we describe the emergence of trust
upon interactions, and discuss a self-adaptive approach as well as typical concerns.

• Realization and Implementation Aspects. We discuss the support and realization of
one representative mixed complex network example. In that use case, information
sharing among network members is adapted by accounting for dynamically emerging
trust relations.

• Evaluation and Discussion. We evaluate our Web services-based implementation
with performance studies under realistic conditions.

10.2 The Science Collaboration Scenario

A typical environment for applying trusted information sharing is a science collabora-

tion network. It comprises scientists, members from national and international research
labs, and experts from the industry. Collaboration is supported by modern service-oriented
architectures that realize centralized people registries and profile management, communi-
cation services, and data sharing facilities. Network members collaborate to address chal-
lenging research questions and to reach higher impact of scientific disseminations. They
conduct joint project proposals, perform distributed software prototyping, and data anal-
ysis and visualization. Furthermore, certain participants can provide their support in a
service-oriented manner. For instance, they offer document review services, or data analy-
sis services, and interact through precisely predefined interfaces. We utilize the previously
introduced Human-Provided Services (HPS) framework [106] to embed humans acting as

126 Chapter 10. Trust-based Adaptations in Complex Service Systems

services using SOA concepts. This includes WSDL descriptions of interfaces, central reg-
istries, SOAP-based interactions, and sophisticated logging facilities.

10.2.1 Emerging Trust Networks

We demonstrated the (semi-)automatic flexible determination of trust [111] in the above-
mentioned service-oriented collaboration environment in previous chapters. Briefly, our
approach relies on the observation of fundamental interactions, such as SOAP-based com-
munication, coordination or execution messages. People interact and use services when
conducting activities. Figure 10.2 depicts this fundamental concept. Network members
collaboratively perform activities of different types. These activities structure relevant con-
textual information, including involved actors, goals, temporal constraints, and assigned
resources. So, we conclude that an activity holistically captures the context of interactions
between participants [111]. Several activity contexts are aggregated to uniform scopes,
e.g., all activities of a specific type (activity scope), or all activities belonging to a certain
project (project scope). Trust emerges from interactions and manual ratings of collabora-
tion partners within those scopes. For instance, trust can rely on the responsiveness and
reliability of collaboration partners, as well as on their collected experiences and skills. As
shown in Figure 10.2, trust is represented by a directed relation from one network member
ni (the trustor) to another one nj (the trustee), and relies on prior cooperative behavior
in a given scope. These trust relations are determined by periodically analyzing and in-
terpreting observed interactions and ratings of partners. For example, the collaboration of
network members n1, n2, n3, and n4 in different scientific dissemination activities a1 and
a2, leads to the establishment of trust in one uniform ‘dissemination scope’. Finally, a
scale-free complex network emerges from cooperations in typical research collaborations
as investigated by [97].

scope

dependent

trust relations

n4

n5

n2

Symbols:

network member

activity

activity context

interaction

trust relation

trust scope

a

context-aware

interactions

a 2

management

scope

dissemination

scope

n3

a 3

a 1

n1

Figure 10.2: On the emergence of trust.

10.2.2 On Trusted Information Sharing

In a science collaboration network scenario, understandably no member will share novel,
yet unpublished, ideas carelessly. However, information sharing is essential to discover

10.2. The Science Collaboration Scenario 127

new collaboration opportunities. The challenge is to enable sensitive information sharing,
that adapts and restricts the view on information with respect to changing trust relations.
Therefore, we introduce the concept of trusted information sharing. This concept provides
the means to share information, e.g., paper drafts, recently submitted papers, or project
documentation, only with trusted network members who have demonstrated their reliable
and dependable behavior before. In this case, trust reflects a probability measure of future
collaboration successes, and therefore, potential benefits from collaborations.

As depicted in Figure 10.3, trusted information sharing is bound to trust scopes. For in-
stance, if member n1 established trust in n5 in the management scope (because they jointly
performed several project management activities successfully), n5 is allowed to access n1’s
data about referees’ contact details, planned future projects, and personal organizational de-
tails. However, no information dedicated to other scopes, such as scientific dissemination,
is shared. Hence, information sharing is restricted to mandatory information in particular
scopes.

n4

n5

n2

Symbols:

network member

information

trust relation

trust scope

sharing

management

scope

dissemination

scope

n3

reputation

based sharing

trust based

sharing

recommendation

based sharing

n1

Figure 10.3: Trust concepts utilized for trusted information sharing.

As trust relations emerge dynamically based on interaction behavior of people, the
amount of shared information is periodically adapted by the system and, in the optimal
case, needs no further manual intervention of users. However, this approach works best
in environments with flat (or practically no) hierarchies, where people may decide com-
pletely on their own about conditions for information sharing. In enterprise collaborations,
with pre-determined communication paths and static role models, mechanisms that over-
ride trust-based sharing are required. But here, we focus on the depicted science collab-
oration network that consists of people with equal roles, rights and aims. We identified
three fundamental trust concepts to enable trusted information sharing in the described
environment:

Sharing based on Personal Trust Relations. Activity relevant artifacts are shared in a
scope to different extent (views), according to the degree of trust between network mem-
bers. For instance, in Figure 10.3 n1 grants access to n5 to information in the management
scope.

Sharing based on Recommendations. In case of sparse trust networks, or low connec-
tivity of certain members, sharing based on personal relations only is limited. Second-hand

128 Chapter 10. Trust-based Adaptations in Complex Service Systems

opinions, called recommendations, are utilized to overcome this problem. For instance,
n1 trusts n2, and n2 trusts n4 because of successful previous collaborations in the dis-
semination scope. If these successes rely on the compatibility of each member’s working
style, there is a high probability that n1 might establish trust to n4 upon future interactions
(for transitive trust propagation see [46]). Hence, to facilitate the establishment of trust
relations, n1 is encouraged to share pieces of information with the unknown member n4.
Sharing of data, such as parts from the personal profile, introduces n1 to n4 and supports
the bootstrapping of future collaborations [134].

Sharing based on Reputation. If network members are trusted by several partners in
the same scope, (i.e., they have more than one trustor), reputation can be determined. For
instance, n2 is trusted by n1 and n4. Therefore, network member n3, who has not estab-
lished trust in others yet, can rely on this reputation (inferred from single trust relations).
So, n3 can either allow n2 to access parts of his personally managed information (passive
sharing), or by pushing information towards n2 (active sharing).

10.2.3 Context Model and Shared Information

We adapt our previously shown activity model as depicted in Figure 10.4 to capture the
context of interactions, and to distinguish and categorize interaction behavior with respect
to different situations. It reflects the relationships between managed information in so-
cial and collaborative networks, including the introduced science collaboration network
scenario. Briefly, this model comprises the aggregated information from various support-
ing services, such as community member profiles, calculated interaction and trust metrics,
personal information, and involved activities.

Activity

-Name

-Type

-Description

-Priority

-Tag [1...*]

Network Member

-id

InvolvementRole

-Type

-Responsibility [1...*]

parent

child

GenericResource

-URI

-Type

ActivityTemplate

-Type

*

Profile

-Name

-FOAF

-Capability [1...*]

-ResearchFields [1...*]

-Employment

*

applies

in

A
c
ti
v
it
y

in
v
o
lv

e
d

as

1

1 has

Relation

Metric

-Name

-Description

-Type

-Value

-Timestamp

Scope

-Name

-Description

-Constraint [1...*]

PersonalInformation

-Name

-Type

-Uri

0..1

0..*

2

0..*

*

1

1

0..*

linked to

1 valid in

describes
1

*

owns
1

1 0..*

Figure 10.4: Interaction context model and shared information.

We enable the sharing of all of this information. Hence, in contrast to traditional ap-
proaches, such as P2P file sharing that focuses on sharing of document-based information

10.3. Design and Architecture 129

only, we also allow sharing of social information. Besides personal data, this includes
profiles, member relationships, activity involvements, regular co-workers, or collaboration
performance determined by previous interactions.

10.3 Design and Architecture

The most fundamental use case of trusted information sharing is as follows: A network
member ni (the trustor) has established trust in his collaboration partner nj (the trustee)
due to previous cooperative behavior in a specific scope. Therefore, the owner (trustor ni)
of some information that is identified by an uri is willed to share this information with his
trustee nj .

We distinguish between two modes of sharing: (i) Activity-centric sharing accounts for
the currently jointly processed activity of ni and nj . Therefore, information is shared to
foster ongoing collaborations. (ii) Scope-centric sharing is about information sharing due
to trust in a scope, but without accounting for a concrete activity. This kind of sharing is
useful to facilitate future collaborations, i.e., the creation of new joint activities.

Besides the modes we distinguish two different sharing styles: (i) Active Sharing
pushes information to actual or potential collaboration partners (depending on the shar-
ing mode), e.g., a call for paper via announcement services. (ii) Passive Sharing grants
access to personal information when requested by other network members, e.g., when the
collaboration network is searched for dissemination opportunities. We focus on the latter
kind of sharing style that can be understood as a dynamic access control system.

10.3.1 Sharing Framework

This section details the structural view of the framework (components) and the dynamic
aspects (invocations) describing the mode of operation.

10.3.1.1 Structural View

The major components of our framework and their connections are briefly shown in Fig-
ure 10.5. The backend services comprise one or more Information Repositories that hold
various kinds of information, encoded in XML and defined by XML schemes (XSDs). An
Information Catalog enables users to link information from repositories to sharing scopes.
Activities, as introduced in our motivating scenario, are managed by an Activity Manage-

ment Service and act as the glue for multi-dimensional collaboration data (see the context
model in Figure 10.4). Especially trust relations that emerge from interactions between
users during the execution of activities, are provided by the Trust Network Provider. A
Sharing Rule Management Service provides trust requirements for information sharing,
e.g., a minimum degree of personal trust or reputation, and the Sharing View Management

stores transformation scripts (XSLTs) to customize the view on XML-encoded informa-
tion. The Sharing Proxy utilizes all the aforementioned SOAP-based services and restricts
information based on sharing views picked by evaluating sharing rules. Technically, this is
realized by transforming XML data through applying XSLTs depending on trust relations

130 Chapter 10. Trust-based Adaptations in Complex Service Systems

Sharing
Views

Info
Catalog

Info
Repository

Sharing
Rules

Activity
Mgmt.

Trust
Network

Collaboration Portal

Admin-Interface

(Rules, Views…)

End-User

Info Sharing Tool

WSDL

Backend Services

WSDL

WSDL

WSDL WSDL

WSDL

Sharing Proxy

SOAP Stack HTTP

REST Handler

SOAP Client

Rule Engine

XSLT Transformer

Web Service Cache

REST

S
O

A
P

 S
ta

c
k

Trusted Information Sharing Framework

L
if
e

ra
y
 P

o
rt

le
ts

A
x
is

2
 S

e
rv

ic
e
s

(X)HTML, AJAXuri

S
O

A
P

S
O

A
P

T
o
m

c
a
t
S

e
rv

le
t

Figure 10.5: Architectural overview of the sharing framework.

between information owner and requester. Higher trust allows more details to be shared. In
the end-user collaboration portal, an Information Sharing Tool is provided that communi-
cates with the Sharing Proxy via a REST-style interface, and allows to create, read, update
and delete (CRUD) shared information. This includes adding new information to reposi-
tories (e.g., document stores) and registering this information in the Information Catalog.
An Administrator Interface enables the configuration of sharing rules and views (XSLTs),
as well as the registration of new information types (XSDs).

10.3.1.2 Fundamental Mode of Operation

We describe the interplay of the components to cover the fundamental use case of trust-
worthy sharing of a particular information (i.e., that is already referenced by an uri), of
the owner ni with the requester nj . Let us assume, ni explicitly publishes the uri of an
XML file in a public area of the collaboration platform. User nj wants to retrieve this
information through the REST interface of the Sharing Proxy, and view in his Browser.
That is the point, where trustworthiness comes into play. The sequential interactions of the
single components are depicted in Figure 10.6. The process starts with retrieving registered
meta-data for the given information, including the owner and valid scopes of sharing. After
that, joint scopes are requested from the Activity Management Service, i.e., the scopes of
all joint activities. Then, the sharing rules of the information owner are retrieved, as well
as existing trust relations in the potential sharing scopes. The Sharing Proxy picks the shar-
ing rule that results in the least restrictive information. This means sharing relies on the
tightest available trust relation between owner and requester. According to the picked rule,
the corresponding XSLT script from the Sharing View Management Service is requested,

10.3. Design and Architecture 131

Information

Sharing Tool

Sharing

Proxy

Activity

Management

Sharing Rule

Management

Trust Network

Provider

Sharing View

Management

Information

Repository

rules

relations

getInformation(uri)

info

getViewScript(rule.xsduri)

view

info'
applyTransformation(info,view,metadata)

Information

Catalog

getMetaData(uri)

metadata

getInfo(uri)

selectLeastRestrictiveTransformation(uri,rules,relations)

getJointScopes(metadata)

scopes

getSharingRules(scopes)

getTrustRelations(metadata.infoowner,requester,scopes)

Figure 10.6: Mode of operation of the sharing framework.

as well as the initially requested information from the Information Repository. Finally, the
requested information is dynamically transformed to its trustworthy view and delivered to
the requester.

10.3.2 Implementation Details

The information sharing framework, depicted in Figure 10.5, is designed as distributed
service-oriented system, where the single components are implemented as Web services
with SOAP and REST interfaces. In this section we highlight implementation decisions,
that are further discussed in the evaluation part of this chapter.

Sharing Proxy Interface. In contrast to the other components, the Sharing Proxy is
not implemented as a SOAP-based Web service, but as a Servlet with a REST-style in-
terface [34]. On the one side, this fact simplifies the integration with the collaboration
portal (JSR-168 portlets1), on the other side, processing pure HTTP requests deem to be
more scalable than SOAP messages. Resource repositories are typical applications for
RESTful interfaces, where each resource is explicitly identified by a corresponding uri.
The requester is identified by HTTP authorization in each request, therefore no further
parameters than the uri of the information of interest is required to enable trusted infor-
mation sharing. Table 10.1 summarizes the available RESTful operations of the Sharing
Proxy. The uri for each resource is composed of the uri of the proxy servlet with additional
scopeId, activityId, memberId, and optional infoURI. If the requester omits the infoURI,
a collection of all information (with optional type selection) identified by the given uri
is returned (/listInfos&type=XSD). Restrictions on scopes, activities, and members are not

1
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html

132 Chapter 10. Trust-based Adaptations in Complex Service Systems

Operation servletURI/scopeId/activityId/
memberId/listInfos&type=xsd

servletURI/scopeId/activityId/
memberId/infoURI

GET get all information uris (collection
overview)

get specific info identified by uri

PUT – replace/update existing information
(only with same XSD))

POST create new information (following
existing XSD)

–

DELETE – delete specific info (if the requester
is the registered owner)

Table 10.1: Sharing Proxy REST-style interface.

mandatory, and can be replaced with anyScope/anyActivity/anyMember. For instance, links
to all shared paper drafts of any community member in the scope of ‘scientific dissemi-
nation’, can be found in servletURI/disseminationScopeId/anyActivity/anyMember/listIn-

fos&type=paperdraft.xsd.
Trust Network Provider Interface. Network members retrieve data about connected

neighbors in a system-managed trust graph, and can search for users by name and profile
data (similar to a lightweight service registry). Furthermore, the service offers information
about someone’s trust relations, second-hand recommendations, and third-party reputation.
Design details of the Trust Network Provider can be found in the appendix of this work.
For more information on sharing social relations see Chapter 11.

Information Definitions and Repository. Shared information has one of the following
origins: (i) information that is manually managed by users, such as documents, notes, and
source code in external repositories; and (ii) information that is generated and managed by
the system according to the context model. All information structures are pre-defined by
XSDs, provided by administrators of the platform. Listing 10.1 shows exemplarily a paper
draft XSD that is suitable for the academic research network scenario (and further used in
the evaluation part).
� �

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 xmlns:p="http://www.infosys.tuwien.ac.at/tis/papercon"
4 elementFormDefault="qualified" attributeFormDefault="unqualified">
5 <xsd:import namespace="http://www.infosys.tuwien.ac.at/tis/papercon"
6 schemaLocation="paperconcepts.xsd"/>
7 <xsd:element name="paperdraft" type="tpaperdraft"/>
8 <xsd:complexType name="tpaperdraft">
9 <xsd:sequence>

10 <xsd:element name="title" type="xsd:string"/>
11 <xsd:element name="author" type="p:author" maxOccurs="unbounded"/>
12 <xsd:element name="contact" type="xsd:string"/>

13 <xsd:element name="category" type="p:category" maxOccurs="unbounded"/>
14 <xsd:element name="keywords" type="xsd:string" maxOccurs="unbounded"/>
15 <xsd:element name="abstract" type="xsd:string" minOccurs="0"/>
16 <xsd:element name="body" type="xsd:string" minOccurs="0"/>
17 <xsd:element name="lastChangeAt" type="xsd:dateTime"/>
18 <xsd:element name="linkedRes" type="xsd:anyURI" maxOccurs="unbounded"/>
19 </xsd:sequence>
20 <xsd:attribute name="uri" type="xsd:anyURI" use="required"/>
21 </xsd:complexType>
22 </xsd:schema>
� �

Listing 10.1: XSD for information about paper drafts.

10.3. Design and Architecture 133

Information Registration. Users register each item of information that they intend to
share in the Information Catalog (however, this can be automatized with more advanced
tool support). By creating catalog entries, they link information (identified by uris of XML
data and corresponding XSD(s)) to scopes. In this way, users decide on their own which
information can be shared in which scopes. Listing 10.2 shows an excerpt of the schema
of such catalog entries.
� �

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>
3 <xsd:element name="entry" type="tEntry"/>
4 <xsd:complexType name="tEntry">
5 <xsd:sequence>
6 <xsd:element name="registeredName" type="xsd:string"/>
7 <xsd:element name="infoXSD" type="xsd:anyURI"/>
8 <xsd:element name="infoURI" type="xsd:anyURI"/>
9 <xsd:element name="owner" type="xsd:anyURI"/>

10 <xsd:element name="scope" type="xsd:anyURI" maxOccurs="unbounded"/>
11 <xsd:element name="mode" type="tmode"/>
12 <xsd:element name="registeredAt" type="xsd:dateTime"/>
13 <xsd:element name="updatedAt" type="xsd:dateTime"/>
14 <xsd:element name="comment" type="xsd:string"/>
15 </xsd:sequence>
16 <xsd:attribute name="uri" type="xsd:anyURI" use="required"/>
17 </xsd:complexType>
18 <!-- ... -->
19 </xsd:schema>

 	
Listing 10.2: Catalog entry schema excerpt.

The main advantage of separating the actual information (e.g., paper drafts) from shar-
ing management data (e.g., scope of sharing, owner, mode) is that the same information
can be linked to different scopes, and links can be dynamically modified without affecting
the actual information (separation of concerns). The schema (Listing 10.2) is designed to
enable multiple types of search queries, such as retrieving shared information in a scope,
of a specific type (XSD), of a particular user, or combinations of these parameters.

Sharing Rule Definitions. In addition to catalog entries, users who want to share
information also define sharing rules that account for dynamically changing trust relations.
� �

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"...>
3 <xsd:element name="rule" type="tRule"/>
4 <xsd:complexType name="tRule">
5 <xsd:sequence>
6 <xsd:element name="owner" type="xsd:anyURI"/>
7 <xsd:element name="validScope" type="xsd:anyURI" maxOccurs="unbounded"/>
8 <xsd:element name="applyOnType" type="xsd:anyURI"/>
9 <xsd:element name="condition" type="tCondition"/>

10 <xsd:element name="applyXSLT" type="xsd:anyURI"/>
11 <!-- ... -->
12 </xsd:sequence>
13 </xsd:complexType>
14 <xsd:complexType name="tCondition">
15 <xsd:sequence>
16 <xsd:element name="trust" type="tnValop" minOccurs="0"/>
17 <xsd:element name="recommendation" type="tnValop" minOccurs="0"/>

18 <xsd:element name="reputation" type="tnValop" minOccurs="0"/>
19 </xsd:sequence>
20 </xsd:complexType>
21 <!-- ... -->
22 </xsd:schema>

 	
Listing 10.3: Sharing rule schema excerpt.

According to the excerpt in Listing 10.3, users define in which scope(s) a rule is valid,
and which type of information (XSD) is concerned. A condition block describes the actual
trust requirements for firing a rule, e.g., minimum personal trust, recommendation, and

134 Chapter 10. Trust-based Adaptations in Complex Service Systems

reputation of the requesting community member. The resulting action is a transformation
of the desired information (XML) with a pre-defined XSLT script, to filter content and
provide restricted views. If sharing rules collide, e.g., there is a rule for all information of
a given type, and a second rule that matches the uri of the requested information, the more
specific (second) rule is picked.

Sharing View Definitions. The mentioned XSLT scripts for restricting XML-based in-
formation are pre-defined by domain experts (who also define XSDs of information types),
and selected by end-users when defining rules. For the exemplary paper draft schema in
Listing 10.1, a matching XSLT could have the structure in Listing 10.4. After applying
this script, only paper title, a contact person, categories, and keywords are visible to the
requester, while the actual (co-)authors, abstract, document body, modification date, and
linked resources are omitted. The output of transformations are HTML fragments that are
directly embedded in a dynamic (X)HTML page and rendered in a Portlet of the Collabo-
ration Portal.
� �

1 <?xml version="1.0"?>
2 <xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
3 <xsl:output method="html" encoding="UTF-8" indent="yes" />
4 <xsl:template match="/">
5 <h3>Shared Paper Draft (Restricted View)</h3>
6 <xsl:apply-templates />
7 </xsl:template>
8 <xsl:template match="paperdraft">
9 Title: <xsl:apply-templates select="title"/>

10 Contact Details: <xsl:apply-templates select="contact"/>

11 Categories: <xsl:for-each select="category">
12 <xsl:apply-templates/>, </xsl:for-each>

13 Keywords: <xsl:for-each select="keyword">

14 <xsl:apply-templates/>, </xsl:for-each>

15 </xsl:template>
16 </xsl:transform>
� �

Listing 10.4: Exemplary view on paper drafts.

Querying Information Collections. In contrast to the extensively discussed case of
an already referenced information (identified by a well-known uri), community members
will also search the network for larger sets of data (uri/listInfos). For instance, ‘who are
co-workers of member ni?’, or ‘what are the documents of ni in the dissemination scope?’.

Algorithm 11 Discover information of type in the network
Require: information type, requester requ

1: sharedInfoXML[]← ∅
2: for each e ∈ getInfoCatalogEntries(type) do

3: if ∄ jointActivity(requ, e.owner) then

4: continue loop

5: trustRel← getTrustRelation(e.owner, requ, e.scope)
6: rule← getRule(e.owner, e.type, e.mode, trustRel)
7: view ← getView(rule)
8: info← getInformation(e.uri)
9: info′ ← applyTransformation(info, view)

10: if info′ 6= ∅ then

11: add(info′, sharedInfoXML[])

12: return sharedInfoXML[]

10.4. Evaluation and Discussion 135

Algorithm 11 depicts the order of requests from the Sharing Proxy’s perspective, when
requester requ queries for information of a particular type in the whole network. After
retrieving all catalog entries of the type of interest, each entry is processed. The trust
relation to the corresponding information owner in the selected scope is evaluated, and
configured rules applied (using XSLTs). Finally, all found information is returned in its
individually restricted shape.

10.4 Evaluation and Discussion

A fundamental aspect of our trust-based adaptation approach is the context-awareness of
data and trust. Due to the high complexity of large-scale networks comprising various
kinds of interactions, distinct scopes of trust, and large blocks of shared information, we
evaluate the feasibility of our framework by well-directed performance studies. We focus
on the most critical parts, i.e., potential bottlenecks, in our system, in particular, on (i) trust
inference upon interaction logs, (ii) trust provisioning, (iii) and the overall performance of
trusted information sharing. The conducted experiments address general technical prob-
lems and research challenges in complex networks, such as emerging relations in evolving
structures, graph operations on large-scale networks, and information processing with re-
spect to contextual constraints.

10.4.1 Preparation

For conducting our performance studies, we generate an artificial interaction and trust net-
work that we would expect to emerge under realistic conditions. For that purpose we utilize
the preferential attachment model of Barabasi and Albert to create2 network structures that
are characteristic for science collaborations [97].

(a) Scale-free graph structure.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

k

N
(k

)

N(k) ∼ k
−2.5

(b) Power-law node distribution.

Figure 10.7: Generated network using the preferential attachment model.

2see JUNG graph library: http://jung.sourceforge.net

136 Chapter 10. Trust-based Adaptations in Complex Service Systems

As shown in Figure 10.7 for a graph with 500 nodes, the output is a scale-free network
with node degrees3 following a power-law distribution. These structures are the basis for
creating realistic interaction logs that are used to conduct trust inference experiments. For
a graph G = (N,E), we generate in total 100 · |E| interactions between pairs of nodes
(ni, nj). In our experiments we assume that 80% of interactions take place between 20%
of the most active users (reflected by hub nodes with high degree). Generated interactions
have a particular type (support request/response, activity success/failure notification) and
timestamp, and occur in one of two abstract trust scopes. While we payed attention on
creating a realistic amount and distribution of interactions that are closely bound to node
degrees, the interaction properties themselves, i.e., type and timestamp, do not influence the
actual performance study (because they do not influence the number of required operations
to process the interaction logs). Furthermore, we created required XML artifacts, including
some information to be shared, catalog entries, and common sharing rules (accounting for
trust and recomendation) and views.

10.4.2 Experiments

For the following experiments, the Sharing Proxy and the backend services are hosted on a
server with Intel Xeon 3.2GHz (quad), 10GB RAM, running Tomcat 6 with Axis2 1.4.1 on
Ubuntu Linux, and MySQL 5.0 databases. The client simulation runs on a Pentium 4 with
2GB on Windows XP, and is connected with the servers through a local 100MBit Ethernet.

Interaction Logging and Trust Inference. Through utilizing available interaction
properties, we calculate three metrics (i) average response time, (ii) success rate (ratio of
success to the sum of success and failure notifications), and (iii) support reciprocity (ratio
of processed to sent support requests). Individual response times are normalized to [0, 1]

with respect to the highest and lowest values in the whole network. Confidence c(ni, nj)

(see the trust model in Chapter 5) between each pair of connected nodes accounts for all
three metrics equally. If the amount of interactions |I(ni, nj)| between a pair (ni, nj) is

below 10, we set the reliability of confidence to |I(ni,nj)|
10 , else we assume a reliability of 1.

Trust is calculated (for two independent scopes) by multiplying confidence c(ni, nj) with
its reliability ρ(c(ni, nj)).

We measure the required time to completely process the interaction logs, including
reading logs from the interaction database (SQL), aggregating logs and calculating metrics,
normalizing metrics (here only the response time, because the values of other metrics are
already in [0, 1]), computing trust, and updates in the trust graph (EMA with α = 0.5).

network characteristics trust computation time
Small-scale: 100 nodes, 191 edges 1 min 44 sec
Medium-scale: 1000 nodes, 1987 edges 17 min 20 sec
Large-scale: 10000 nodes, 19983 edges 173 min 19 sec

Table 10.2: Trust inference performance results.

3the node size is proportional to the degree; white nodes are ‘hubs’

10.4. Evaluation and Discussion 137

The results show that especially for medium and large networks only a periodic offline
calculation is feasible.

Network Management and Trust Provisioning. This second set of experiments, deal
with trust provisioning and the calculation of recommendation and reputation on top of a
large-scale trust network (10000 nodes). Figure 10.8(a) depicts the required time in sec-
onds to calculate the recommendation τ srec(ni, nj), having 10 and 100 recommender (i.e.,
intermediate nodes on connecting parallel paths (ni, nj) of length 2). Several ways to im-
plement recommendations exist. First, a client may request all recommender nodes and
their relations and calculate recommendations on the client-side. However this method
is simple to implement on the provider side, it is obviously the slowest one due to large
amounts of transferred data. Still retrieving all recommender and relations directly from
the backend database, but performing the calculation server-side, dramatically improves the
performance. However, this method produces heavy load at the provider and its database
and deems not to be scalable. Therefore, we map the network data, i.e., a directed graph
model with annotated nodes and edges, in memory and perform operations without the
backend database. Since all data is held in memory, the performance of calculating recom-
mendations online is comparable to provisioning of pre-calculated data only. Hence, we
design our system with an in-memory graph model, and further measure some aspects of
this design decision. Figure 10.8(b) illustrates required time for mapping the whole graph
from the backend database to its in-memory representation. Figure 10.8(c) shows the mem-
ory consumption for instances of different sizes, first for the whole Trust Network Provider
Service, and second only for the graph object itself.

0 1 2 3 4 5 6 7

server-side (pre-calculation)

server-side (in-memory model)

server-side (SQL)

client-side

time (sec)

100 recommender

 10 recommender

(a) Different recommendation calculation approaches.

1

10

100

1000

10000

10 100 1000 10000 100000

#vertices

ti
m

e
 (

s
e
c
)

(b) Graph mapping time.

0,1

1

10

100

1000

1 10 100 1000 10000 100000

#vertices

m
e

m
o

ry
 (

M
B

)

mem (full service)

mem (graph model)

(c) Memory consumption.

Figure 10.8: Performance tests for mapping the graph model.

138 Chapter 10. Trust-based Adaptations in Complex Service Systems

Overall End-To-End Performance and Caching. The overall process of trusted in-
formation sharing involves several backend services. Communicating with and retrieving
data from these Web services is time-intensive, especially if they are frequently utilized
and/or large amounts of data are transferred (and processed by respective SOAP stacks).
Besides the actual Information Repository, we identified the Information Catalog, Shar-

ing View Service and Sharing Rule Service as the most data-intensive services. Therefore,
we studied the overall performance when caching data. In particular, the Sharing Proxy

implements the widely adopted strategy of self-pruning cache objects [43].

0

5

10

15

20

25

30

1 10 100 1000

number of concurrent requests

p
ro

c
e

s
s

in
g

 t
im

e
 [

s
e

c
]

uncached

XSLTs and rules cached

XSLTs, rules, catalog cached

full response cached

Figure 10.9: Overall performance of the Sharing Framework.

Figure 10.9 depicts the required time of the Sharing Proxy to process different amounts
of concurrent client requests. In detail, we measured the processing time (i) without any
caching mechanisms, (ii) when caching only rarely changed sharing rules and associated
sharing views (XSLTs), (iii) when caching rules, XSLTs, and catalog entries, (iv) for de-
livering the response only, i.e., providing the already transformed and cached information.
The results show that with applying different caching strategies the overall performance
can be significantly increased. However, depending on the application domain, a trade-off
between performance and up-to-dateness of cached data has to be carefully considered.

CHAPTER 11

Supporting Network Formation

under Privacy Constraints

Outline. This chapter deals with privacy issues of utilizing data mining for trust inference
and profile sharing for group formations in a Web of Social Trust.

Contents

11.1 Motivation . 139

11.2 Privacy-aware Group Formations . 141

11.2.1 Formations in a Web of Social Trust 141

11.2.2 Privacy-aware Browsing Patterns 142

11.3 Privacy in Collaborative SOA . 143

11.3.1 Flexible Collaborations in SOA 143

11.3.2 Adaptive Profile Sharing Model 144

11.3.3 Privacy-Aware Network Browsing Algorithm 146

11.4 Implementation and Application . 147

11.5 Evaluation and Discussion . 148

11.5.1 Portal Application for Privacy-Aware Formation 148

11.5.2 Simulations . 149

11.1 Motivation

Small and medium-sized organizations create alliances to compete with global players, to
cope with the dynamics of economy and business, and to harvest business opportunities
that a single partner cannot take. In such networks where companies, communities, and
individuals form virtual organizations, collaboration support is a major research track.

Individuals and companies that are interested in collaborations register at collaboration
portals, where they can flexibly discover partners to form temporal alliances [17]. The
collaborations in such networks usually span numerous individuals distributed over various
organizations and locations. Due to the scale of these networks it is impossible for the
individuals to keep track of the dynamics in such networks.

However, the recent adoption of service-oriented concepts and architectures permits the
(semi-)automatic management of member profiles and network structures. In particular,
SOA provides the functional means to allow loose coupling of entities through predefined

140 Chapter 11. Supporting Network Formation under Privacy Constraints

interfaces and well-formed interaction messages. Upon SOA, monitoring of interactions
enables the inference of social relations through mining logs. Hence, we use SOA to sup-
port and guide human interactions in collaborations by utilizing social relations.

The automatic inference and adaptation of relations between network members [90,
117] has several advantages. Negative influences, such as using outdated information, do
not exist compared to manually declared relations. Moreover, monitoring of interaction be-
havior allows timely adaptations in ongoing collaborations, for instance, updates of mem-
ber profiles based on successes in recent collaborations and collected experiences, without
major user intervention.

In this chapter, we focus on supporting group formations in virtual environments by
accounting for the individuals’ social relations, especially social trust. Particularly in col-
laborative environments, where users are exposed higher risks than in common social net-
work scenarios [30], and where business is at stake, considering social trust is essential to
effectively guide human interactions [83].

Use case scenarios for applying Trustworthy Group Formation include:

• Team Formation in Collaboration Environments, mostly relying on recent collabo-
ration behavior, previous successes, and member recommendations. A typical use
case is the formation of a team of experts with different expertises to perform a given
task.

• Social Formation of Campaigns, mainly focusing on people’s interests and interest
similarities for targeted notifications and advertisement. A typical use case is the
formation of interest groups in social campaigns.

In this work, we introduce concepts and tools to facilitate the formation processes by
allowing network members to browse the Web of Social Trust. This enables the users to
discover trustworthy partners and to study their shared profile information. Hence, mem-
bers initially providing more information to others are more likely to be able to set up
collaborations. However, privacy of members has to be maintained. Thus, it is crucial to
account for a balance between disclosing and protecting sensible profile information. Fig-
ure 11.1 underlines this required tradeoff.Finally, two major aspects have to be considered:
(i) which profile information is shared to facilitate the set up of future collaborations, (ii)
with whom is this information shared in order to maintain privacy.

Privacy

Collaboration

?
?

??

Figure 11.1: Supporting the balance between collaborations and privacy.

This chapter deals with the following contributions:

• Privacy Patterns in Networks. We discuss privacy-aware profile sharing patterns,
applicable in a wide range of collaboration and social environments, that account for
relationships between network members.

11.2. Privacy-aware Group Formations 141

• Collaborative SOA. We introduce a SOA-enabled collaboration environment and dis-
cuss its advantages regarding the automatic determination of relations used to sup-
port group formation processes.

• Privacy-aware Profile Sharing Model. We highlight common privacy issues related
to interaction mining and a model enabling members to share joint collaboration
successes without violating their partners’ privacy.

• Application and Evaluation. We introduce an end-user tool that supports network
formations by exploring the Web of Social Trust, and discuss its applicability.

11.2 Privacy-aware Group Formations

We deal with supporting formations, e.g., composing teams and creating sub-communities,
in social and collaborative environments, where the single members are connected through
a Web of Social Trust [7]. We strongly believe that in realistic scenarios, interactions and
network structures are too complex to enable entirely automatic group formation processes.
There are several tradeoffs that have to be taken into account, such as considering personal
relations of future group members, their expertise areas, formal skills, but also company
memberships and employment status, current work load and so on. Hence, we argue the
formation has to be performed by a human. However, we think supporting people in group
formation processes with powerful tools will alleviate this task. Our network manage-
ment approach consists of the following features: (i) Network Member Profile Creation.

Static profiles comprise names, business areas, contact data; while dynamically adapting
profiles reflect previous collaboration successes, preferences, behavior, and collected expe-
riences. (ii) Profile Sharing. Profiles should be shared with network members to facilitate
collaborations. However, to maintain privacy, information should be shared with trustwor-
thy members only. (iii) Collaboration Network Visualization. Relations between network
members emerge when performing joint activities. Recently successful compositions are
visualized for reuse in future collaborations.

11.2.1 Formations in a Web of Social Trust

Accounting for a Web of Social Trust supports the discovery, selection, and group for-
mation; and therefore the composition of network members for particular purposes. The
formation process usually comprises the following three steps: (i) Discovery of Members

by querying their static and/or dynamic profiles, including their interests and expertise, as
well as the requester’s preferences regarding trust and reputation. (ii) Evaluation of Net-

work Members by accounting for their profiles and community embedding, e.g., a mem-
ber’s frequent partners. This step of the formation process discovers someone’s reputation
and further potential collaboration partners who can be considered in the formation pro-
cess. Especially, when setting up teams, picking persons who are already familiar with
each other’s working style can be very beneficial. (iii) Group Set-up after member eval-
uation and selection. Depending on the environment, people are either selected after a

142 Chapter 11. Supporting Network Formation under Privacy Constraints

negotiation phase, e.g., virtual team formation in business scenarios, or selected without
their explicit agreement, e.g., for spreading messages in campaigns or distributing notifica-
tions based on interests and expertise areas. Our privacy approach protects users from spam
and unwanted notifications,e.g., messages from untrusted members, as these notifications
are directed according their periodically determined interests.

11.2.2 Privacy-aware Browsing Patterns

Allowing users to browse the Web of Social Trust, e.g., to study relations and previously
successful compositions, raises several privacy concerns: Who is allowed to retrieve some-

one’s profile? Which collaboration relationships are revealed? It is obviously unacceptable
that every member of the network who performs group formations, can access all data of
each other. Usually, sensible data is shared with close partners only, while general infor-
mation may be shared with a larger group.

In this work, we distinguish three levels of information sharing: (i) basic profiles de-
scribe some fundamental properties such as name and contact details; (ii) success stories

comprise information about previous successful activities that have been jointly performed
with other members; (iii) relations to partners, i.e., referees, are gathered through mining
of interactions in prior success stories.

n1

n2

(a) Basic profile.

n1

n2

(b) Success stories.

n1

n2

(c) Relations.

Figure 11.2: Fundamental patterns for sharing profile data.

Figure 11.2 depicts the fundamental patterns for privacy-aware browsing of the Web of

Social Trust. They depict mandatory relations in the Web of Social Trust for sharing profile
information. The empty, half-filled, and full filled document symbols reflect the amount of
shared profile information with the requester n1: basic profiles, success stories, relations.
Let us assume n1 browses the Web of Social Trust and wants to retrieve profile information
from collaboration partners. The first pattern (Figure 11.2(a)) allows him to reveal the basic
profile of trusted network partners. However, n2 only shares success stories with n1 if n2

trusts n1 to some extent (Figure 11.2(b)). Relying on mutual trust in collaborations, n1 and
n2 both share information about relations to their collaboration partners (Figure 11.2(c)).

With the fundamental patterns, only profiles, success stories, and relations from direct
neighbors can be retrieved. Since this would not allow to sufficiently browse the Web of

Social Trust, there are more advanced patterns to expand the Circle of Trust. Within the
circle of requester n1, members share personal data – even if they are not directly connected
to n1 – but still considering their privacy (Figure 11.3).

Propagation of Profiles (Figure 11.3(a)) allows member n1 to browse the profile of
n3. However there is no direct connection between them, both have a transitive relation
through n2. In detail, because n3 trusts n2 and thus shares his profile, and n2 trusts n1, n2

11.3. Privacy in Collaborative SOA 143

n1

n2

n3

n5

n4

(a) Propagation.

n1

n2

n3

n5

n4

(b) Blocking Nodes.

n1

n2

n3

n4

(c) Success Filtering.

Figure 11.3: Advanced Web of Social Trust browsing patterns.

shares his perspective on n3 with n1. This propagation mechanism can be interpreted as
n2 recommending n3 to n1 (e.g., realized with FOAF1) and extends n1’s Circle of Trust.
Propagation is enabled by concatenating fundamental sharing patterns along paths with
predefined lengths.

Blocking Nodes (Figure 11.3(b)) terminate the propagation of information in the Web

of Social Trust. Profile sharing is restricted to members within a certain distance (i.e., the
propagation path length). For instance, if the propagation path has a length of two hops, n5

does not reveal success stories and relations to n1, even though a path of mutual trust exists
between them. Furthermore, it is not possible to propagate success stories or relations over
a node that shares only basic profile information itself (here: n4).

Success Filtering. (Figure 11.3(c)) means that only distinguished positive collaboration
experiences are explicitly highlighted. Spreading information about unsuccessful collabo-
rations, and low trust relations – a form of defamation – is thereby avoided. For instance,
let us assume prior collaborations between n2 and n5 were not successful, so the identity
of n5 and its relations are hidden from n1. Note, again there is no need for n1 to have a
personal relation to the member of interest. Users can individually configure if they like to
make beneficial relations public.

11.3 Privacy in Collaborative SOA

We discuss a flexible activity-centric collaboration network using advanced SOA concepts,
supporting the discovery of partners, interaction monitoring and patterns, and relation man-
agement through mining. For that purpose, we introduce a novel model that enables flexible
sharing of joint collaboration successes.

11.3.1 Flexible Collaborations in SOA

During collaborations, network members interact, for instance, by exchanging documents.
Collaborations in SOA means that all interactions are performed through Web services.
Even the capabilities of humans are described by WSDL and communication takes place
with SOAP messages (see Human-Provided Services [106] and BPEL4People[1]. In the

1Friend-Of-A-Friend Specification: http://xmlns.com/foaf/spec/

144 Chapter 11. Supporting Network Formation under Privacy Constraints

scenario depicted by Figure 11.4, the two members n1 and n2 perform activity a1, n2

and n3 perform activities a2 and a3, and so on. Activities represent interaction contexts,
reflected by the dashed areas, that hold information about involved actors, goals, temporal
constraints, assigned resources, etc. Hence, an activity holistically describes the context of
an interaction in our environment model [117].

Logged interactions are periodically analyzed and aggregated. Various metrics de-
scribe the collaboration behavior and attitude of network members, including responsive-
ness, availability, or reciprocity [90]. Finally, interaction metrics are interpreted according
to pre-defined domain rules, and the degree of trust between each pair of previously in-
teracting members is determined. The exact mechanism is has been studied in Chapter 4.
In this chapter, we assume we are able to infer meaningful social relations and focus on
privacy-awareness in formation processes.

n1 n2

n4

n5

n3

a6

a1

a5

a3

a4

a2

Symbols:

Member

Activity

Context

Trust Rel.

a

n

Figure 11.4: Activity-centric collaboration model.

Using interaction logging and mining in collaborative service-oriented environments
enables two remarkable mechanisms:

• Automatic Emergence of Social Relations. Based on observed interactions, calcu-
lated behavior metrics, and the results of their interpretation, trust relations emerge
between network members [117]. These relations are kept updated without the need
for manual intervention.

• Dynamic Profile Adaptations. While network members usually manage their profiles
manually, our approach allows to adapt them based on monitored collaborations; for
instance, updating collected experiences and main expertise areas automatically.

11.3.2 Adaptive Profile Sharing Model

While the dynamically adapting Web of Social Trust represents a convenient way for net-
work members to individually share profile data, the representation of the actually shared
data is still undefined. As previously mentioned, we enable members to share basic pro-
files, success stories, and personal relations. For that purpose, we utilize three different
models (i) the Basic Profile Model, (ii) the Activity Involvement Model, and (iii) the Trust

Graph Model. Whenever one member requests profile information about a neighbor, s/he
receives parts from respective models with regard to trust paths in the Web of Social Trust.

11.3. Privacy in Collaborative SOA 145

Therefore, we do not only allow members to share their own isolated profiles, but also
enable the propagation of profiles along transitive relations and sharing of joint activity
information.

Trust Graph Model. Let Gτ = (Nn, Eτ) be a graph reflecting the Web of Social Trust

with Nn denoting the set of network members and Eτ the set of directed edges connecting
pairs of nodes. Each edge is associated with further metrics that are used to determine
trustworthy behavior. Figure 11.4 depicts this model (ignore activity components).

Activity Involvement Model. The involvement of members in activities is modeled as bi-
partite graph Ga = (Nn, Na, Ea) (Figure 11.5). It comprises collaboration success stories;
in our model successfully performed activities ai ∈ Na and their participating members
nj ∈ Nn. An edge ea(nj , ai) ∈ Ea reflects that member nj has been involved in activity
ai. A list of further properties may be assigned to an edge, for instance, the degree of
participation or involvement role. After finishing an activity, each involved member can
decide if s/he wants to share information about this collaboration as success story. How-
ever collaborations can be mostly categorized in terms of successful or failed from a global
perspective, the individual member views may vary. Typically, newcomers will empha-
size a certain activity as a success story, while experienced members categorize it as daily
routine. Hence, members of finished activities can decide themselves which ones shall
be explicitly included in their profiles (see dashed lines in Figure 11.5); thus, providing a
personalized view on success stories. For instance, while n2 emphasizes a5 as success, n4

does not. So, n2 is not allowed to share the involvement of n4 in that activity with n1.
According to emerged trust relations (Figure 11.4) more or less information is revealed,
applying the previously introduced privacy patterns.

n1 n2 n4 n5n3

a6

a1

a5a3

a4a2

Figure 11.5: Activity-centric involvement model.

Basic Profile Model. The basic profile, attached to each node in Nn, comprises funda-
mental data about a member, such as name, organizational affiliations, and contact details.
This basic profile is mainly static.

Shared Network Data. Finally, network members share subsets of (i) basic profiles
bound to nodes in Nn, (ii) success stories reflected by Ga, and (iii) trust relations in Gτ .
Figure 11.6 shows an example for data shared with n1 when n1 incrementally extends its
view and requests data about neighbors and neighbors’ neighbors. On the left side shared
success stories are depicted, while on the right side shared personal relations are shown.
Members share different amounts of information with n1 through propagation according
to dynamic trust Gτ for the given scenario in Figure 11.4. For instance, n1 has no view on
the trust relation from n4 to n5, since there is no mutual trust path from n1 to either n4 or
n5.

146 Chapter 11. Supporting Network Formation under Privacy Constraints

n1 n2

a1

a5

a4a2

n1 n2

(a) n1 extends its view and discovers n2.

n1 n2 n4n3

a1

a5

a4a2

n1 n2

n4
n3

(b) n1 extends its view by n2’s perspective.

n1 n2 n4 n5n3

a6

a1

a5

a4a2

n5

n1 n2

n4
n3

(c) n1 extends its view by n3’s and n4’s perspective.

Figure 11.6: Example applying browsing patterns from n1’s perspective.

11.3.3 Privacy-Aware Network Browsing Algorithm

We present Algorithm 12 that deals with sharing of basic profiles in Nn, success stories in
Ga and personal relations in Gτ . The shared network segment S contains subsets of data
managed by these models, and is incrementally extended. This enables a requester, i.e.,
the origin node no to browse through the Web of Social Trust by extending its view, i.e.,
S, through one of the connected nodes ne step by step. The implementation and specific
application of this approach is described in the next section.

The algorithm comprises three main parts (see comments), for adding nodes and their
basic profiles, adding success stories, and personal relationships according to the previously
defined browsing patterns. The functions predec() and succ() provide the predeces-
sors and successors of a given node in a directed graph, while neighbors() provides
connected nodes in an undirected graph. Furthermore, isShared() determines if a user
shares a given activity as success story, and edge() returns the edge between two given
nodes (iff one exists). Finally addToS() extends the shared network information segment
S with provided nodes, edges, and activities. For the sake of clarity, we neglect blocking
behavior when exceeding the maximum distance from no to ne. Note, that the algorithm
does not test, if an element – node or edge – is already included in S. The shared segment
s does not contain duplicates since nodes and edges are managed in (hash) sets.

11.4. Implementation and Application 147

Algorithm 12 Dynamic extension of shared network data S.
1: Input: origin node no, extension node ne

2: Global: Gτ = (Nn, Eτ), Ga = (Nn, Na, Ea), S = (Gs
τ , G

s
a)

3: function EXTENDVIEW(no , ne)
4: /* add basic profiles of all trustors and trustees */
5: N ′

n ← predec(ne, Gτ) ∪ succ(ne, Gτ)
6: for each n ∈ N ′

n do

7: addToS(n,N s
n)

8: /* add success stories */
9: N ′

n ← predec(ne, Gτ)
10: for each n ∈ N ′

n do

11: N ′
a ← neighbors(n,Ga)

12: for each a ∈ N ′
a do

13: if isShared(a, n) then

14: addToS(a,N s
a)

15: addToS(edge(n, a,Ga), Es
a)

16: /* add personal relations */
17: if (predec(ne, G

s
τ) ∩ succ(ne, G

s
τ)) 6= ∅ ∨ ne = no then

18: N ′
n ← predec(ne, Gτ) ∩ succ(ne, Gτ)

19: for each n ∈ N ′
n do

20: if ∃ edge(ne, n,Gτ) then

21: addToS(edge(ne, n,Gτ), Es
τ)

11.4 Implementation and Application

In this section we highlight the extensions of the VieTE framework to support privacy-aware
provisioning of profiles, relations and shared activities.

VieTE Extensions Overview. VieTE (see Chapter 4 for details) consist of three layers
for (i) monitoring and logging interactions, (ii) trust inference, (iii) and trust provision-
ing. We address typical privacy concerns regarding logging and provisioning of data by
enabling the definition of:

• Logging Rules that determine what interaction channels are monitored and occuring
interactions logged. Of course, the more interactions are logged, the more fine-
grained social relations can be inferred and thus, formations supported, e.g., based
on tight trust relations.

• Provisioning Rules that realize the aforementioned privacy browsing patterns, and,
thus, which profile information is revealed and under what circumstances.

Activity Model for Flexible Collaborations. Network members share subsets of basic
profiles, joint success stories, and relations. All potentially shared data is managed by the
adopted activity model depicted in Figure 11.7. Note, the entity Involvement does not
only contain the role of a network member in an activity, but also his/her sharing prefer-
ences (isSharedSuccess) of a certain success story. Activities are managed through a
collaboration portal, as previously discussed.

148 Chapter 11. Supporting Network Formation under Privacy Constraints

Activity

-Name

-Type

-Description

-Priority

-Tag [1...*]

Network Member

-id

Involvement

-Role

-Responsibility [1...*]

-isSharedSuccess

p
a
re

n
t

GenericResource

-URI

-Type

ActivityTemplate

-Type

*

BasicProfile

-Name

-FOAF

-Capability [1...*]

-Employment

*

applies

in

A
c
ti
v
it
y

in
v
o
lv

e
d

as

1

1

hasRelation

Metric

-Name

-Description

-Type

-Value

-Timestamp

0..1

0..*

2

1..*

*

1

describe

1owns

Action

-Type

-ExecutedBy

-Receivers

-UsedResources

-Timestamp
1 0..*comprises

c
o
n

n
e

c
ts

Figure 11.7: Adapted activity management and profile data model (excerpt).

Interaction Mining and Trust Emergence. Using interaction mining is an effective
way to avoid sharing of static outdated data, and to unburden humans from manually up-
dating their profiles. Member profiles, including interests and expertises, can be updated
by accounting for context-aware interactions. Furthermore, interaction behavior described
by various calculated interaction metrics are utilized to infer social trust relations [90, 117].

SOAP messages use WS-Security to ensure properly signed messages and strong en-
cryption of interaction data2. Once interactions are stored in the framework’s databases,
they are used to infer higher level collaboration metrics (see Chapter 4). Therefore, low
level traffic data can be purged in (short) periodic time intervals. Since we apply a central-
ized architecture, typical problems of P2P systems, such as propagating sensible data over
several potentially untrusted nodes, can be avoided.

Adaptive Profile Sharing. Profiles, including fundamental member information,
joint success stories, and personal trust relations are provided through VieTE’s Social
Network Provisioning WS. However, all requested data have to pass a Profile
Filter that restricts a user’s access to data about other members depending on social re-
lations. For that purpose we implemented the previously discussed privacy-aware browsing
patterns.

11.5 Evaluation and Discussion

11.5.1 Portal Application for Privacy-Aware Formation

We evaluated the efficiency of introduced Web of Social Trust browsing patterns for forma-
tions with an implementation of a Web-based Network Browser shown in Figure 11.8. This
tool depicts the expanded network on the left side, and shared profile information on the

2see Apache WSS4J: http://ws.apache.org/wss4j/

11.5. Evaluation and Discussion 149

right side. Clicking a node reveals the basic profile and some calculated metrics of a mem-
ber (shown here), while clicking an edge reveals information about joint activities, where
this relation emerged. Solid edges represent relations that are described by further metrics
used to determine trust; see Link Property Activity Success. Dashed lines reflect trust
relations that exist due to joint success stories, however, associated metrics are not shared
with the tool user. The size of nodes and width of edges respectively are proportional to
the visualized metrics selected by Partner Property and Link Property.

Figure 11.8: Collaboration network browser.

The formation use case starts with visualizing the user of the tool as a single (yellow)
node. The user is then able to expand the network with successors and predecessors in
the Web of Social Trust to discover potential collaboration partners in the selected Trust
Scope (here: ‘software development’). Depending on trust, partner relations and joint
success stories with third parties are propagated. So, the user can incrementally discover
larger segments of the Web of Social Trust. The tool user evaluates the members’ profiles,
success stories, and community embeddings, and picks single members to join a team or
form a group in social campaigns. This step is supported by embedded communication
tools; e.g., potential partners can be contacted with an integrated Skype client to negotiate
their admission. The graph view can be conveniently zoomed to keep overview even of
large-scale networks.

11.5.2 Simulations

We created artificial networks with fixed amounts of nodes and power-law distributed edges
[97] to evaluate the effects of propagating profile information. Thus, we denote the com-

150 Chapter 11. Supporting Network Formation under Privacy Constraints

plexity of a graph as the average outdegree of a node in the long tail of the degree distri-
bution; in other words, the average number of trusted neighbors (trustees) for the bottom
90% of members. We pick random nodes from this set and run experiments for each of
them until we calculate stable average results.

The first experiment investigates the average size of the Circle of Trust, depending on
the number of trustees for different network sizes n and propagation path lengths pp. For
that purpose we apply Algorithm 12 recursively until the whole circle (i.e., all users who
share at least their joint success stories profile) is discovered. Figure 11.9 shows that for
highly cross-linked graphs (i.e., #trustees > 2), only short pps (max. 3 or 4 hops) are
feasible. Otherwise, virtually all members are in the Circle of Trust - see the size of the
Circle of Trust when propagating profile information over 5 and 6 nodes.

0

10

20

30

40

50

60

70

1 2 3 4 5
#trustees (avg)

#
n

o
d

e
s
 i
n

 c
ir

c
le

 o
f

tr
u

s
t n=10

n=100

n=1000

n=10000

(a) Depending on n (pp = 2).

0

200

400

600

800

1000

1 2 3 4 5
#trustees (avg)

#
n

o
d

e
s
 i
n

 c
ir

c
le

 o
f

tr
u

s
t pp=2

pp=3

pp=4

pp=5

pp=6

(b) Depending on pp (n = 1000).

Figure 11.9: Size of the circle of trust with respect to average number of trustees for differ-
ent network sizes n and propagation path lengths pp.

1

10

100

1000

1 2 3 4 5
#trustees (avg)

#
g

ra
p

h
 o

p
e

ra
ti
o

n
s

n=10

n=100

n=1000

n=10000

(a) Depending on n (pp = 2).

1

10

100

1000

10000

1 2 3 4 5
#trustees (avg)

#
g

ra
p

h
 o

p
e

ra
ti
o

n
s

pp=2 pp=3
pp=4 pp=5
pp=6

(b) Depending on pp (n = 1000).

Figure 11.10: Required trust graph operations with respect to average number of trustees
for different network sizes n and propagation path lengths pp.

A second experiment highlights the computational complexity of determining the Cir-

cle of Trust with Algorithm 12. While the size of the network does not considerably influ-
ence the number of required graph operations (at least for small pp), increasing pp in highly

11.5. Evaluation and Discussion 151

cross-linked graphs leads to exponential costs (see Figure 11.10). Graph operations include
retrieving referenced nodes and edges, as well as neighbors, predecessors and successors
in Gτ and Ga in VieTE’s Social Network Provisioning WS. These operations
take place on the server side before the new graph segment S is provided to the requesting
client.

CHAPTER 12

Conclusion and Future Research

This work highlighted the notion of trust in service-oriented networks from various per-
spectives, and demonstrated its use and consequences in a wide range of application sce-
narios.

We strongly believe that trust is an inevitable mechanism in today’s service-oriented
architectures. While from a sole technical view, dealing with quality of service measure-
ments only seems feasible, the situation in Mixed Systems fundamentally changes. When
we integrate the human in the loop of service-oriented applications (such as the discussed
Expert Web scenario), we also have to deal with social influences: subjective views and
perceptions, motivation, incentives, risks and benefits. These influences shape the inter-
action behavior of people on the Web. Trust deems to be an intuitive concept to handle
complex side-effects, and only trust-aware applications provide the required adaptability
in mixed service-oriented environments.

Furthermore, in today’s large-scale systems, a thorough technical grounding to support
and automate discovery, interactions, rating, and ranking is required, since no one is able
to keep track of the dynamics manually. We utilize well-established and supported Web
service standards to realize our novel concepts and to ground them in state-of-the-art SOA
technologies.

Future research aims at modeling complex human behavior. Currently we only capture
fundamental interaction metrics, however, for complex scenarios beyond simple request-
response patterns, we need approaches to model and track realistic behavior and collabora-
tive attitudes. Furthermore, the application of our frameworks, especially the Expert Web,
in real large-scale business environments would enable an evaluation of trust concepts un-
der more realistic conditions.

Since Mixed Systems in the widest sense are already common today – however, mostly
grounded in proprietary technologies – we expect promising research challenges in the
future. Interactions through social networks and community platforms, recommendations
and personalization on the Web, rating and ranking in the Internet of Services – trust mech-
anisms may be applied in all these areas to increase efficiency and effectiveness.

Bibliography

[1] A. AGRAWAL ET AL. Ws-bpel extension for people (bpel4people), version 1.0,
2007. 8, 19, 50, 110, 143

[2] ABDUL-RAHMAN, A., AND HAILES, S. Supporting trust in virtual communities.
In Hawaii International Conferences on System Sciences (HICSS) (2000). 32

[3] ABOWD, G. D., DEY, A. K., BROWN, P. J., DAVIES, N., SMITH, M., AND

STEGGLES, P. Towards a better understanding of context and context-awareness. In
International Symposium on Handheld and Ubiquitous Computing (1999), pp. 304–
307. 8, 9

[4] ADAMIC, L. A., ZHANG, J., BAKSHY, E., AND ACKERMAN, M. S. Knowledge
sharing and yahoo answers: everyone knows something. In International World

Wide Web Conference (WWW) (2008), ACM, pp. 665–674. 12

[5] AGICHTEIN, E., CASTILLO, C., DONATO, D., GIONIS, A., AND MISHNE, G.
Finding high-quality content in social media. In ACM International Conference on

Web Search and Data Mining (WSDM) (2008), pp. 183–194. 11

[6] ALTINEL, M., AND FRANKLIN, M. J. Efficient filtering of xml documents for
selective dissemination of information. In International Conference on Very Large

Data Bases (VLDB) (2000), pp. 53–64. 12

[7] ARTZ, D., AND GIL, Y. A survey of trust in computer science and the semantic
web. Journal on Web Semantics 5, 2 (2007), 58–71. 2, 9, 17, 31, 84, 111, 141

[8] BALDAUF, M., DUSTDAR, S., AND ROSENBERG, F. A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing 2, 4 (2007),
263–277. 8

[9] BALTHAZARD, P. A., POTTER, R. E., AND WARREN, J. Expertise, extraversion
and group interaction styles as performance indicators in virtual teams: how do
perceptions of it’s performance get formed? DATA BASE 35, 1 (2004), 41–64. 8

[10] BECERRA-FERNANDEZ, I. Searching for experts on the web: A review of contem-
porary expertise locator systems. ACM Transactions on Internet Technologies 6, 4
(2006), 333–355. 113

[11] BHATTI, R., BERTINO, E., AND GHAFOOR, A. A trust-based context-aware access
control model for web-services. Distributed and Parallel Databases 18, 1 (2005),
83–105. 12

[12] BILLHARDT, H., HERMOSO, R., OSSOWSKI, S., AND CENTENO, R. Trust-based
service provider selection in open environments. In ACM Symposium on Applied

Computing (SAC) (2007), pp. 1375–1380. 10, 75

156 Bibliography

[13] BRADLEY, N. A., AND DUNLOP, M. D. Toward a multidisciplinary model of con-
text to support context-aware computing. Human-Computer Interaction 20 (2005),
403–446. 9

[14] BRANS, J., AND VINCKE, P. A preference ranking organisation method. Manage-

ment Science 31, 6 (1985), 647–656. 12, 105, 106

[15] BRESLIN, J., PASSANT, A., AND DECKER, S. Social web applications in enter-
prise. The Social Semantic Web 48 (2009), 251–267. 8

[16] BRYL, V., AND GIORGINI, P. Self-configuring socio-technical systems: Redesign
at runtime. International Transactions on Systems Science and Applications (ITSSA)

2, 1 (2006), 31–40. 9

[17] CAMARINHA-MATOS, L. M., AND AFSARMANESH, H. Collaborative networks -
value creation in a knowledge society. In PROLAMAT (2006), pp. 26–40. 8, 99, 139

[18] CAVERLEE, J., LIU, L., AND WEBB, S. Socialtrust: tamper-resilient trust es-
tablishment in online communities. In ACM/IEEE Joint Conference on Digital Li-

braries (JCDL) (2008), ACM, pp. 104–114. 10

[19] CHANG, E., HUSSAIN, F., AND DILLON, T. Trust and Reputation for Service-

Oriented Environments: Technologies For Building Business Intelligence And Con-

sumer Confidence. John Wiley & Sons, 2005. 17

[20] CLEAR, T., AND KASSABOVA, D. Motivational patterns in virtual team collab-
oration. In Australasian Computing Education Conference (ACE) (2005), vol. 42,
pp. 51–58. 8

[21] CONNER, W., IYENGAR, A., MIKALSEN, T., ROUVELLOU, I., AND NAHRSTEDT,
K. A trust management framework for service-oriented environments. In Interna-

tional World Wide Web Conference (WWW) (2009). 9

[22] COZZI, A., FARRELL, S., LAU, T., SMITH, B. A., DREWS, C., LIN, J., STACHEL,
B., AND MORAN, T. P. Activity management as a web service. IBM Systems

Journal 45, 4 (2006), 695–712. 16

[23] DEERWESTER, S., DUMAIS, S., FURNAS, G., LANDAUER, T., AND HARSHMAN,
R. Indexing by latent semantic analysis. Journal of the American society for infor-

mation science 41, 6 (1990), 391–407. 88

[24] DI NITTO, E., GHEZZI, C., METZGER, A., PAPAZOGLOU, M., AND POHL, K.
A journey to highly dynamic, self-adaptive service-based applications. Automated

Software Engineering (2008). 9

[25] DIAO, Y., RIZVI, S., AND FRANKLIN, M. J. Towards an internet-scale xml dis-
semination service. In International Conference on Very Large Data Bases (VLDB)

(2004), pp. 612–623. 12

Bibliography 157

[26] DIAS, L. C., COSTA, J. P., AND CLIMACO, J. N. A parallel implementation of
the promethee method. European Journal of Operational Research 104, 3 (1998),
521–531. 107

[27] DOM, B., EIRON, I., COZZI, A., AND ZHANG, Y. Graph-based ranking algorithms
for e-mail expertise analysis. In Workshop on Research Issues in Data Mining and

Knowledge Discovery (DMKD) (2003), pp. 42–48. 11

[28] DUSTDAR, S. Caramba - a process-aware collaboration system supporting ad hoc
and collaborative processes in virtual teams. Distributed and Parallel Databases 15,
1 (January 2004), 45–66. 8, 16

[29] DUSTDAR, S., AND HOFFMANN, T. Interaction pattern detection in process ori-
ented information systems. Data and Knowledge Engineering 62, 1 (jul 2007),
138–155. 8, 32, 59

[30] DWYER, C., HILTZ, S. R., AND PASSERINI, K. Trust and privacy concern within
social networking sites: A comparison of facebook and myspace. In Americas Con-

ference on Information Systems (AMCIS) (2007). 12, 111, 140

[31] DYBWAD, B. Think twice: That facebook update could get you robbed.
http://mashable.com/2009/08/27/facebook-burglary/, online, August 2009. 12

[32] EDA, T., YOSHIKAWA, M., AND YAMAMURO, M. Locally expandable allocation
of folksonomy tags in a directed acyclic graph. In International Conference on Web

Information Systems Engineering (WISE) (2008), vol. 5175, Springer, pp. 151–162.
11

[33] FENG, D., SHAW, E., KIM, J., AND HOVY, E. H. Learning to detect conversation
focus of threaded discussions. In North American Chapter of the Association for

Computational Linguistics - Human Language Technologies (NAACL HLT) (2006).
72

[34] FIELDING, R. T. Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine, 2000. 60, 131

[35] FIGUEIRA, J., GRECO, S., AND EHRGOTT, M. Multiple criteria decision analysis:

state of the art surveys. Springer, 2005. 12

[36] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: El-

ements of Reusable Object-oriented Software. Addison-Wesley, Boston, MA, USA,
1995. 59

[37] GOLBECK, J. Computing with Social Trust (Human-Computer Interaction Series),
1 ed. Springer, December 2008. 111

[38] GOLBECK, J. Trust and nuanced profile similarity in online social networks. ACM

Transactions on the Web 3, 4 (2009), 1–33. 10, 11, 111

158 Bibliography

[39] GOLD, N., KNIGHT, C., MOHAN, A., AND MUNRO, M. Understanding service-
oriented software. IEEE Software 21, 2 (2004), 71–77. 101

[40] GOLDER, S. A., AND HUBERMAN, B. A. The structure of collaborative tagging
systems. The Journal of Information Science (2006). 11

[41] GOMBOTZ, R., AND DUSTDAR, S. On web services workflow mining. In Business

Process Management Workshops (2005), pp. 216–228. 23

[42] GOMEZ, V., KALTENBRUNNER, A., AND LOPEZ, V. Statistical analysis of the
social network and discussion threads in slashdot. In International World Wide Web

Conference (WWW) (2008), pp. 645–654. 12, 78, 80

[43] GOODMAN, B. D. Accelerate your web services with caching. IBM Advanced

Internet Technology (December 2002). 138

[44] GRANDISON, T., AND SLOMAN, M. A survey of trust in internet applications.
IEEE Communications Surveys and Tutorials 3, 4 (2000). 9, 31, 32, 83

[45] GRIFFITHS, N. A fuzzy approach to reasoning with trust, distrust and insufficient
trust. In CIA (2006), vol. 4149, pp. 360–374. 10, 37

[46] GUHA, R., KUMAR, R., RAGHAVAN, P., AND TOMKINS, A. Propagation of trust
and distrust. In International World Wide Web Conference (WWW) (2004), pp. 403–
412. 10, 19, 128

[47] GYÖNGYI, Z., GARCIA-MOLINA, H., AND PEDERSEN, J. Combating web spam
with trustrank. In International Conference on Very Large Data Bases (VLDB)

(2004), pp. 576–587. 11

[48] HARRISON, B. L., COZZI, A., AND MORAN, T. P. Roles and relationships for
unified activity management. In International Conference on Supporting Group

Work (GROUP) (2005), pp. 236–245. 8

[49] HAVELIWALA, T. H. Topic-sensitive pagerank. In International World Wide Web

Conference (WWW) (2002), pp. 517–526. 11, 115

[50] HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., AND RIEDL, J. T. Evalu-
ating collaborative filtering recommender systems. ACM Transactions on Informa-

tion Systems (TOIS) 22, 1 (2004), 5–53. 11

[51] HESS, C., STEIN, K., AND SCHLIEDER, C. Trust-enhanced visibility for personal-
ized document recommendations. In ACM Symposium on Applied computing (SAC)

(2006), pp. 1865–1869. 12

[52] HEYMANN, P., AND GARCIA-MOLINA, H. Collaborative creation of communal
hierarchical taxonomies in social tagging systems. Tech. Rep. 2006-10, Computer
Science Department, April 2006. 11

Bibliography 159

[53] HOFFNER, Y., LUDWIG, H., GREFEN, P. W. P. J., AND ABERER, K. Crossflow:
integrating workflow management and electronic commerce. SIGecom Exchanges

2, 1 (2001), 1–10. 8

[54] HSU, M.-H., JU, T., YEN, C.-H., AND CHANG, C.-M. Knowledge sharing be-
havior in virtual communities: The relationship between trust, self-efficacy, and out-
come expectations. International Journal of Human-Computer Studies 65, 2 (2007),
153–169. 12

[55] HUYNH, T. D., JENNINGS, N. R., AND SHADBOLT, N. R. An integrated trust and
reputation model for open multi-agent systems. Autonomous Agents and Multiagent

Systems (AAMAS) 13, 2 (2006), 119–154. 32, 54, 75

[56] IBM. An architectural blueprint for autonomic computing. Whitepaper (2005). 9,
21

[57] JEH, G., AND WIDOM, J. Scaling personalized web search. In International World

Wide Web Conference (WWW) (2003), pp. 271–279. 11

[58] JØSANG, A., ISMAIL, R., AND BOYD, C. A survey of trust and reputation systems
for online service provision. Decision Support Systems 43, 2 (2007), 618–644. 2, 9,
17, 31, 70, 83, 84

[59] JURCZYK, P., AND AGICHTEIN, E. Discovering authorities in question answer
communities by using link analysis. In Conference on Information and Knowledge

Management (CIKM) (2007), pp. 919–922. 11

[60] KALEPU, S., KRISHNASWAMY, S., AND LOKE, S. W. Reputation = f(user ranking,
compliance, verity). In International Conference on Web Services (ICWS) (2004),
p. 200. 12

[61] KAMVAR, S. D., SCHLOSSER, M. T., AND GARCIA-MOLINA, H. The eigentrust
algorithm for reputation management in p2p networks. In International World Wide

Web Conference (WWW) (2003), pp. 640–651. 12

[62] KARAGIANNIS, T., AND VOJNOVIC, M. Email Information Flow in Large-Scale
Enterprises. Tech. rep., Microsoft Research, 2008. 11

[63] KERSCHBAUM, F., HALLER, J., KARABULUT, Y., AND ROBINSON, P. Pathtrust:
A trust-based reputation service for virtual organization formation. In International

Conference on Trust Management (iTrust) (2006), pp. 193–205. 10, 12

[64] KILNER, R. Internet shopping for burglars on social networks.
http://www.insurancedaily.co.uk/2009/08/28/internet-shopping-for-burglars-on-
social-networks/, online, August 2009. 12

[65] KLEINBERG, J. M. Authoritative sources in a hyperlinked environment. Journal of

the ACM 46, 5 (1999), 604–632. 11, 12, 109, 112, 113

160 Bibliography

[66] KOVAC, D., AND TRCEK, D. Qualitative trust modeling in soa. Journal of Systems

Architecture 55, 4 (2009), 255–263. 9, 10

[67] LEEKWIJCK, W. V., AND KERRE, E. E. Defuzzification: criteria and classification.
Fuzzy Sets and Systems 108, 2 (1999), 159 – 178. 39

[68] LESANI, M., AND MONTAZERI, N. Fuzzy trust aggregation and personalized trust
inference in virtual social networks. Computational Intelligence 25, 2 (2009), 51–
83. 10

[69] LEYMANN, F. Workflow-based coordination and cooperation in a service world. In
CoopIS, DOA, GADA, and ODBASE (2006), pp. 2–16. 9

[70] LOKE, S. W. Context-aware artifacts: Two development approaches. IEEE Perva-

sive Computing 5, 2 (2006), 48–53. 9

[71] M. AMEND ET AL. Web services human task (ws-humantask), version 1.0, 2007. 8

[72] MALIK, Z., AND BOUGUETTAYA, A. Reputation bootstrapping for trust establish-
ment among web services. IEEE Internet Computing 13, 1 (2009), 40–47. 9

[73] MARSH, S. Information sharing is enhanced using trust models. PerAda Magazine

(Pervasive Adaptation) (9 2008). 12

[74] MARSH, S. P. Formalising trust as a computational concept. PhD thesis, University
of Stirling, April 1994. 9

[75] MASSA, P. A survey of trust use and modeling in real online systems, 2007. 9

[76] MASSA, P., AND AVESANI, P. Trust-aware collaborative filtering for recommender
systems. In CoopIS, DOA, ODBASE (2004), pp. 492–508. 10

[77] MASSA, P., AND AVESANI, P. Controversial users demand local trust metrics: An
experimental study on epinions.com community. In AAAI Conference on Artificial

Intelligence (2005), pp. 121–126. 10, 19, 71, 81

[78] MATSUO, Y., AND YAMAMOTO, H. Community gravity: Measuring bidirectional
effects by trust and rating on online social networks. In International World Wide

Web Conference (WWW) (2009), pp. 751–760. 10, 85

[79] MAXIMILIEN, E. M., AND SINGH, M. P. Toward autonomic web services trust
and selection. In International Conference on Service Oriented Computing (ICSOC)

(2004), pp. 212–221. 10, 11

[80] MCKNIGHT, D. H., AND CHERVANY, N. L. The meanings of trust. Tech. rep.,
University of Minnesota, 1996. 9

[81] MCLURE-WASKO, M., AND FARAJ, S. Why should i share? examining social
capital and knowledge contribution in electronic networks. MIS Quarterly 29, 1
(2005), 35–57. 10

Bibliography 161

[82] MENDLING, J., PLOESSER, K., AND STREMBECK, M. Specifying separation of
duty constraints in bpel4people processes. In Business Information Systems (2008),
pp. 273–284. 8

[83] METZGER, M. J. Privacy, trust, and disclosure: Exploring barriers to electronic
commerce. Journal on Computer-Mediated Communication 9, 4 (2004). 12, 140

[84] MEYER, K. A. Face-to-face versus threaded discussions: The role of time and
higher-order thinking. Journal for Asynchronous Learning Networks 7, 3 (2003),
55–65. 10

[85] MEZGÁR, I. Trust building in virtual communities. In PRO-VE (2009), vol. 307 of
IFIP Conference Proceedings, Springer, pp. 393–400. 10

[86] MICHLMAYR, E., AND CAYZER, S. Learning user profiles from tagging data and
leveraging them for personal(ized) information access. In Workshop on Tagging and

Metadata for Social Information Organization, WWW (2007). 11

[87] MOODY, P., GRUEN, D., MULLER, M. J., TANG, J. C., AND MORAN, T. P.
Business activity patterns: A new model for collaborative business applications.
IBM Systems Journal 45, 4 (2006), 683–694. 8, 16

[88] MORAN, T. P., COZZI, A., AND FARRELL, S. P. Unified activity management:
Supporting people in e-business. Communications of the ACM 48, 12 (2005), 67–
70. 8

[89] MORI, J., SUGIYAMA, T., AND MATSUO, Y. Real-world oriented information
sharing using social networks. In GROUP (2005), pp. 81–84. 12

[90] MUI, L., MOHTASHEMI, M., AND HALBERSTADT, A. A computational model
of trust and reputation for e-businesses. In Hawaii International Conferences on

System Sciences (HICSS) (2002), p. 188. 9, 10, 32, 140, 144, 148

[91] NONNECKE, B., PREECE, J., AND ANDREWS, D. What lurkers and posters think
of each other. In Hawaii International Conferences on System Sciences (HICSS)

(2004). 10, 72

[92] OASIS. Business process execution language for web services, version 2.0, 2007.
49, 109

[93] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The pagerank citation
ranking: Bringing order to the web. Tech. rep., Stanford University, 1998. 11, 12,
55

[94] PANTELI, N., AND DAVISON, R. The role of subgroups in the communication
patterns of global virtual teams. IEEE Transactions on Professional Communication

48, 2 (2005), 191–200. 8

162 Bibliography

[95] PAPAZOGLOU, M. Web Services: Principles and Technology, 1 ed. Prentice Hall,
2007. 3

[96] RAJBHANDARI, S., RANA, O. F., AND WOOTTEN, I. A fuzzy model for calculat-
ing workflow trust using provenance data. In ACM Mardi Gras Conference (2008),
p. 10. 10, 37

[97] REKA, A., AND BARABÁSI. Statistical mechanics of complex networks. Rev. Mod.

Phys. 74 (June 2002), 47–97. 119, 126, 135, 149

[98] RHEINGOLD, H. The Virtual Community: Homesteading on the electronic frontier,

revised edition. The MIT Press, November 2000. 10

[99] ROMESBURG, H. C. Cluster Analysis for Researchers. Krieger Pub. Co., 2004. 11

[100] RUOHOMAA, S., AND KUTVONEN, L. Trust management survey. In International

Conference on Trust Management (iTrust) (2005), Springer, pp. 77–92. 83

[101] RUSSELL, N., AND AALST, W. M. P. V. D. Evaluation of the bpel4people and ws-
humantask extensions to ws-bpel 2.0 using the workflow resource patterns. Tech.
rep., BPM Center Brisbane/Eindhoven, 2007. 8

[102] SALEHIE, M., AND TAHVILDARI, L. Self-adaptive software: Landscape and re-
search challenges. ACM Transactions on Autonomous and Adaptive Systems 4, 2
(May 2009). 2

[103] SALTON, G., AND BUCKLEY, C. Term-weighting approaches in automatic text
retrieval. Information Processing and Management 24, 5 (1988), 513–523. 11, 88

[104] SCHALL, D. Human Interactions in Mixed Systems - Architecture, Protocols, and

Algorithms. PhD thesis, Vienna University of Technology, 2009. 3, 4, 62

[105] SCHALL, D., SKOPIK, F., AND DUSTDAR, S. Trust-based discovery and interac-
tions in expert networks. Tech. rep., Vienna University of Technology, TUV-1841-
2010-01, 2010. 6

[106] SCHALL, D., TRUONG, H.-L., AND DUSTDAR, S. Unifying human and software
services in web-scale collaborations. IEEE Internet Computing 12, 3 (2008), 62–68.
1, 3, 8, 15, 19, 33, 35, 50, 104, 110, 119, 125, 143

[107] SHARON PARADESI, P. D., AND SWAIKA, S. Integrating behavioral trust in web
service compositions. In International Conference on Web Services (ICWS) (2009).
10

[108] SHEPITSEN, A., GEMMELL, J., MOBASHER, B., AND BURKE, R. Personalized
recommendation in social tagging systems using hierarchical clustering. In Inter-

national Conference on Recommender Systems (RecSys) (2008), pp. 259–266. 11,
86

Bibliography 163

[109] SHERCHAN, W., LOKE, S. W., AND KRISHNASWAMY, S. A fuzzy model for rea-
soning about reputation in web services. In ACM Symposium on Applied Computing

(SAC) (2006), pp. 1886–1892. 10, 37

[110] SHETTY, J., AND ADIBI, J. Discovering important nodes through graph entropy
the case of enron email database. In Workshop on Link Analysis at the International

Conference on Knowledge Discovery and Data Mining (LinkKDD) (2005), pp. 74–
81. 11

[111] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. The cycle of trust in mixed service-
oriented systems. In Euromicro Conference on Software Engineering and Advanced

Applications (SEAA) (2009), pp. 72–79. 2, 5, 32, 33, 34, 35, 61, 84, 123, 125, 126

[112] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Start trusting strangers? bootstrap-
ping and prediction of trust. In International Conference on Web Information Sys-

tems Engineering (WISE) (2009), pp. 275–289. 6, 10

[113] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Modeling and mining of dynamic
trust in complex service-oriented systems. Information Systems (2010). 5, 37

[114] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Supporting network formation
through mining under privacy constraints. In International Symposium on Appli-

cations and the Internet (SAINT) (2010). 6

[115] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Trust-based adaptation in complex
service-oriented systems. In International Conference on Engineering of Complex

Computer Systems (ICECCS) (2010), pp. 31–40. 6

[116] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Trusted interaction patterns in large-
scale enterprise service networks. In Euromicro International Conference on Paral-

lel, Distributed and Network-Based Computing (PDP) (2010), pp. 367–374. 5, 12,
100, 104, 117

[117] SKOPIK, F., SCHALL, D., AND DUSTDAR, S. Trustworthy interaction balancing in
mixed service-oriented systems. In ACM Symposium on Applied Computing (SAC)

(2010), pp. 801–808. 5, 10, 119, 140, 144, 148

[118] SKOPIK, F., SCHALL, D., DUSTDAR, S., AND SESANA, M. Context-aware in-
teraction models in cross-organizational processes. In International Conference on

Internet and Web Applications and Services (ICIW) (2010). 6

[119] SKOPIK, F., TRUONG, H.-L., AND DUSTDAR, S. Trust and reputation mining in
professional virtual communities. In International Conference on Web Engineering

(ICWE) (2009), pp. 76–90. 5, 84

[120] SKOPIK, F., TRUONG, H.-L., AND DUSTDAR, S. VieTE - enabling trust emer-
gence in service-oriented collaborative environments. In International Conference

on Web Information Systems and Technologies (WEBIST) (2009), pp. 471–478. 16,
71

164 Bibliography

[121] SRIVATSA, M., XIONG, L., AND LIU, L. Trustguard: countering vulnerabilities in
reputation management for decentralized overlay networks. In International World

Wide Web Conference (WWW) (2005), pp. 422–431. 10, 53

[122] THE ECONOMIST. The role of trust in business collaboration. An Economist Intel-

ligence Unit briefing paper sponsored by Cisco Systems (2008). 10, 70

[123] THEODORAKOPOULOS, G., AND BARAS, J. S. On trust models and trust evalua-
tion metrics for ad hoc networks. IEEE Journal on Selected Areas in Communica-

tions 24, 2 (2006), 318–328. 10

[124] UDDIN, M. G., ZULKERNINE, M., AND AHAMED, S. I. Collaboration through
computation. Service Oriented Computing and Applications (SOCA) 3, 1 (2009),
47–63. 10

[125] WALTER, F. E., BATTISTON, S., AND SCHWEITZER, F. Personalised and dynamic
trust in social networks. In ACM Conference on Recommender Systems (RecSys)

(2009), pp. 197–204. 12

[126] WANAS, N. M., EL-SABAN, M., ASHOUR, H., AND AMMAR, W. Automatic
scoring of online discussion posts. In Workshop on Information Credibility on the

Web (WICOW) (2008), ACM, pp. 19–26. 72

[127] WANG, Y., AND SINGH, M. P. Trust representation and aggregation in a distributed
agent system. In AAAI Conference on Artificial Intelligence (2006). 10

[128] WATTS, D. J. Six degrees: The science of a connected age. WW Norton & Com-
pany, 2003. 58, 117

[129] WELSER, H. T., GLEAVE, E., FISHER, D., AND SMITH, M. Visualizing the sig-
natures of social roles in online discussion groups. Journal of Social Structure 8

(2007). 10

[130] YANG, J., ADAMIC, L., AND ACKERMAN, M. Competing to share expertise: the
taskcn knowledge sharing community. In International Conference on Weblogs and

Social Media (2008). 11

[131] ZADEH, L. A. Fuzzy sets. Information and Control 8 (1965), 338–353. 37, 38

[132] ZHANG, J., ACKERMAN, M. S., AND ADAMIC, L. Expertise networks in online
communities: structure and algorithms. In International World Wide Web Confer-

ence (WWW) (2007), pp. 221–230. 11

[133] ZHANG, J., AND FIGUEIREDO, R. J. Autonomic feature selection for application
classification. In International Conference on Autonomic Computing (ICAC) (2006),
IEEE, pp. 43–52. 9

[134] ZIEGLER, C.-N., AND GOLBECK, J. Investigating interactions of trust and interest
similarity. Decision Support Systems 43, 2 (2007), 460–475. 10, 11, 85, 111, 128

Bibliography 165

[135] ZIEGLER, C.-N., AND LAUSEN, G. Propagation models for trust and distrust in
social networks. Information Systems Frontiers 7, 4-5 (2005), 337–358. 10

[136] ZIMMERMANN, H.-J. Fuzzy Set Theory and Its Applications, third ed. Kluwer
Academic Publishers, 1996. 37

[137] ZUO, Y., AND PANDA, B. Component based trust management in the context of
a virtual organization. In ACM Symposium on Applied Computing (SAC) (2005),
pp. 1582–1588. 10, 12

APPENDIX A

Collaboration Network Provider

Service Specification

The Collaboration Network Provider Service (CNP) is the basis to develop trust-aware ap-
plications, such as presented Trusted Information Sharing, Trusted Online Help and Sup-

port through the Expert Web, and Trustworthy Group Formation support. Thus, CNP is the
interface that connects trust inference mechanisms and the actual applications on top. Since
this service is a central component of all presented software frameworks in this dissertation,
we outline its implementation and interface in this appendix.

A.1 Overview of the Service

The CNP is a SOAP-based Web Service with an interface described by WSDL. The ser-
vice provides data describing the Web of Trust, including trust relations between actors of
the Mixed Systems, and their nature, i.e., underlying interaction metrics, and context of
relations. In order to use this service, it is either (i) filled with synthetic data, obtained
from simulations (see Chapter 4, Chapter 9, and Chapter 10); or (ii) (partly) filled with
existing data sets; for instance Slashdot discussion relations and citeulike interest profiles
(see Chapter 6 and Capter 7).

The service is implemented in Java using the Apache Axis21 Web Services Stack, and
uses a MySQL2 database backend.

A.2 Data Representation

All entities are identified by URIs, which are combined of various subparts: (i) a
basepath (i.e., http://www.infosys.tuwien.ac.at/coin), (ii) the entitiy type
(e.g., node) and (iii) an integer id. An example for a full uri that identifies a certain node
is http://www.infosys.tuwien.ac.at/coin/node#19.

The Web service deals with the following fundamental types of entities. Their details
and relations are described by the extended entitiy relationsship model (EER) in Figure
A.1.:

• Node: A node describes either a human, service or HPS.

• Edge: An Edge reflects the directed relation between two nodes.

1
http://ws.apache.org/axis2/

2
http://www.mysql.com/

168 Appendix A. Collaboration Network Provider Service Specification

• Metric: Metrics describe properties of either nodes (such as the number of interac-
tions with any service, or the number of activities involved) or edges (such as the
number of invocations from a particular service by a particular human). Collabora-
tion metrics are calculated from interactions in predefined scopes. Trust metrics are
determined by interpreting Collaboration Metrics.

• Scope: Rules determine which interactions are used to calculate metrics (e.g., only
interactions of a particular type are considered in the trust determination process;
see Chapter 3). Furthermore, they are used to interpret collaboration metrics; see
Chapter 4. These rules describe the constraints for the validity of metric calculations,
i.e., the scope of their application. Currently common scopes are pre-configured and
can be selected through a Web service interface, however they cannot be modified.

Node

Collaboration Metric

1

*

has

Edge

id

name

type

2 1
connects

id

fromNode

toNode

id

name

value

description

type

1

*

has

Trust Metric

id

name

value

description

Scope

1

1

is valid in

id

name

description
1

*

contains

Constraint

id

name

definition

1

1

is valid in

* 1
has

1 *
has

type

timestamptimestamp

Figure A.1: Data model of the Collaboration Network Provider.

A.3 Interface Description

The Collaboration Network Provider enables the successive retrieval of the collaboration
graph (Web of Trust) starting with a predefined node, e.g., reflecting the service user. We
specify its interface as shown in Table A.1. Note, for data retrieval, metrics are merged in
the entities node and edge.

A.3. Interface Description 169

operation name parameters description
getNode nodeURI get the node object with the given URI
searchNodesByName (part of) nodeName get a list of nodes with matching names
getAllNodes – get all nodes (can be restricted to a

maximum number due to performance
reasons)

getEdge edgeURI get the specified edge
getEdges fromNodeURI,

toNodeURI
get all directed edges from sourceNode
to sinkNode

getOutEdges nodeURI get all out edges of the specified node
getInEdges nodeURI get all in edges of the specified node
getScope scopeURI get one particular scope in the network
getAllScopes – get all available scopes in the network
getSourceNode edgeURI get the node object which is the source

of the given edge
getSinkNode edgeURI get the node object which is the sink of

the given edge
getNeighbours nodeURI,

numHops
get neighbors (independent of edge
orientation); the optional parameter
numHops may set the maximum num-
ber of nodes between the specified
node and provided nodes

getSuccessors nodeURI get successors of specified node
getPredecessors nodeURI get direct predecessors of specified

node
getVersion – get version string

Table A.1: Collaboration Network Provider operations.

Listing A.1 shows the WSDL of this service. Note, that large parts of the description,
such as the alternative SOAP 1.1. and HTTP bindings, have been omitted due to the sake
of brevity.
� �
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns0="http://model.collabnwprovider.coin.infosys.tuwien.ac.at/xsd"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:ns1="http://collabnwprovider.coin.infosys.tuwien.ac.at"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://collabnwprovider.coin.infosys.tuwien.ac.at">

<wsdl:documentation>CollaborationNetworkProvider</wsdl:documentation>
<wsdl:types>

<xs:schema xmlns:ax22="http://model.collabnwprovider.coin.infosys.tuwien.ac.at/xsd"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://model.collabnwprovider.coin.infosys.tuwien.ac.at/xsd">

<xs:complexType name="CoinURI">
<xs:sequence>

<xs:element minOccurs="0" name="entityType" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="id" type="xs:int"/>
<xs:element minOccurs="0" name="path" nillable="true" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Edge">

<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="collaborationMetrics"

nillable="true" type="ax22:CollaborationMetric"/>
<xs:element minOccurs="0" name="edgeURI" nillable="true" type="ax22:CoinURI"/>

170 Appendix A. Collaboration Network Provider Service Specification

<xs:element minOccurs="0" name="sinkNodeURI" nillable="true" type="ax22:CoinURI"/>
<xs:element minOccurs="0" name="sourceNodeURI" nillable="true" type="ax22:CoinURI"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="trustMetrics"

nillable="true" type="ax22:TrustMetric"/>
<xs:element minOccurs="0" name="updatedAt" nillable="true" type="xs:dateTime"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Metric">

<xs:sequence>
<xs:element minOccurs="0" name="description" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="metricURI" nillable="true" type="ax22:CoinURI"/>
<xs:element minOccurs="0" name="name" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="scope" nillable="true" type="ax22:CoinURI"/>
<xs:element minOccurs="0" name="type" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="updatedAt" nillable="true" type="xs:dateTime"/>
<xs:element minOccurs="0" name="value" nillable="true" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="CollaborationMetric">

<xs:complexContent>
<xs:extension base="ax22:Metric">

<xs:sequence/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="TrustMetric">

<xs:complexContent>
<xs:extension base="ax22:Metric">

<xs:sequence/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="Node">

<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="collaborationMetrics"

nillable="true" type="ax22:CollaborationMetric"/>
<xs:element minOccurs="0" name="name" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="nodeURI" nillable="true" type="ax22:CoinURI"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="trustMetrics"

nillable="true" type="ax22:TrustMetric"/>
<xs:element minOccurs="0" name="type" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="updatedAt" nillable="true" type="xs:dateTime"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Scope">

<xs:sequence>
<xs:element minOccurs="0" name="description" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="name" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="scopeURI" nillable="true" type="ax22:CoinURI"/>
<xs:element maxOccurs="unbounded" minOccurs="0" name="tags" nillable="true" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:schema>
<xs:schema xmlns:ns="http://collabnwprovider.coin.infosys.tuwien.ac.at" attributeFormDefault="qualified"

elementFormDefault="qualified" targetNamespace="http://collabnwprovider.coin.infosys.tuwien.ac.at">
<xs:complexType name="Exception">

<xs:sequence>
<xs:element minOccurs="0" name="Exception" nillable="true" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>
<xs:element name="getEdge">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="edgeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getEdgeResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return" nillable="true" type="ns0:Edge"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getEdges">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="sourceNodeURI" nillable="true" type="ns0:CoinURI"/>
<xs:element minOccurs="0" name="sinkNodeURI" nillable="true" type="ns0:CoinURI"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="getEdgesResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Edge"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getInEdges">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="sinkNodeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getInEdgesResponse">

<xs:complexType>

A.3. Interface Description 171

<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Edge"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="getOutEdges">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="sourceNodeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getOutEdgesResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Edge"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getNode">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="nodeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getNodeResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getSinkNode">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="edgeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getSinkNodeResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getSourceNode">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="edgeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getSourceNodeResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getAllNodesResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getNeighbours">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="nodeURI" nillable="true" type="ns0:CoinURI"/>
<xs:element minOccurs="0" name="numHops" type="xs:int"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="getNeighboursResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getPredecessors">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="nodeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getPredecessorsResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getSuccessors">

172 Appendix A. Collaboration Network Provider Service Specification

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="nodeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getSuccessorsResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="searchNodesByName">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="name" nillable="true" type="xs:string"/>
<xs:element minOccurs="0" name="isFuzzySearch" type="xs:boolean"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="searchNodesByNameResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Node"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getScope">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="scopeURI" nillable="true" type="ns0:CoinURI"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getScopeResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return" nillable="true" type="ns0:Scope"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getAllScopesResponse">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="return" nillable="true" type="ns0:Scope"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="getVersionResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return" nillable="true" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</wsdl:types>
<wsdl:message name="getSourceNodeRequest">

<wsdl:part name="parameters" element="ns1:getSourceNode"/>
</wsdl:message>
<wsdl:message name="getSourceNodeResponse">

<wsdl:part name="parameters" element="ns1:getSourceNodeResponse"/>
</wsdl:message>
<wsdl:message name="getPredecessorsRequest">

<wsdl:part name="parameters" element="ns1:getPredecessors"/>
</wsdl:message>
<wsdl:message name="getPredecessorsResponse">

<wsdl:part name="parameters" element="ns1:getPredecessorsResponse"/>
</wsdl:message>
<wsdl:message name="getNodeRequest">

<wsdl:part name="parameters" element="ns1:getNode"/>
</wsdl:message>
<wsdl:message name="getNodeResponse">

<wsdl:part name="parameters" element="ns1:getNodeResponse"/>
</wsdl:message>
<wsdl:message name="getEdgeRequest">

<wsdl:part name="parameters" element="ns1:getEdge"/>
</wsdl:message>
<wsdl:message name="getEdgeResponse">

<wsdl:part name="parameters" element="ns1:getEdgeResponse"/>
</wsdl:message>
<wsdl:message name="getEdgesRequest">

<wsdl:part name="parameters" element="ns1:getEdges"/>
</wsdl:message>
<wsdl:message name="getEdgesResponse">

<wsdl:part name="parameters" element="ns1:getEdgesResponse"/>
</wsdl:message>
<wsdl:message name="getSinkNodeRequest">

<wsdl:part name="parameters" element="ns1:getSinkNode"/>
</wsdl:message>
<wsdl:message name="getSinkNodeResponse">

<wsdl:part name="parameters" element="ns1:getSinkNodeResponse"/>
</wsdl:message>
<wsdl:message name="searchNodesByNameRequest">

<wsdl:part name="parameters" element="ns1:searchNodesByName"/>
</wsdl:message>
<wsdl:message name="searchNodesByNameResponse">

A.3. Interface Description 173

<wsdl:part name="parameters" element="ns1:searchNodesByNameResponse"/>
</wsdl:message>
<wsdl:message name="getSuccessorsRequest">

<wsdl:part name="parameters" element="ns1:getSuccessors"/>
</wsdl:message>
<wsdl:message name="getSuccessorsResponse">

<wsdl:part name="parameters" element="ns1:getSuccessorsResponse"/>
</wsdl:message>
<wsdl:message name="getOutEdgesRequest">

<wsdl:part name="parameters" element="ns1:getOutEdges"/>
</wsdl:message>
<wsdl:message name="getOutEdgesResponse">

<wsdl:part name="parameters" element="ns1:getOutEdgesResponse"/>
</wsdl:message>
<wsdl:message name="getNeighboursRequest">

<wsdl:part name="parameters" element="ns1:getNeighbours"/>
</wsdl:message>
<wsdl:message name="getNeighboursResponse">

<wsdl:part name="parameters" element="ns1:getNeighboursResponse"/>
</wsdl:message>
<wsdl:message name="getVersionRequest"/>
<wsdl:message name="getVersionResponse">

<wsdl:part name="parameters" element="ns1:getVersionResponse"/>
</wsdl:message>
<wsdl:message name="getAllScopesRequest"/>
<wsdl:message name="getAllScopesResponse">

<wsdl:part name="parameters" element="ns1:getAllScopesResponse"/>
</wsdl:message>
<wsdl:message name="getInEdgesRequest">

<wsdl:part name="parameters" element="ns1:getInEdges"/>
</wsdl:message>
<wsdl:message name="getInEdgesResponse">

<wsdl:part name="parameters" element="ns1:getInEdgesResponse"/>
</wsdl:message>
<wsdl:message name="getAllNodesRequest"/>
<wsdl:message name="getAllNodesResponse">

<wsdl:part name="parameters" element="ns1:getAllNodesResponse"/>
</wsdl:message>
<wsdl:message name="getScopeRequest">

<wsdl:part name="parameters" element="ns1:getScope"/>
</wsdl:message>
<wsdl:message name="getScopeResponse">

<wsdl:part name="parameters" element="ns1:getScopeResponse"/>
</wsdl:message>
<wsdl:portType name="CollaborationNetworkProviderPortType">

<wsdl:operation name="getSourceNode">
<wsdl:input message="ns1:getSourceNodeRequest" wsaw:Action="urn:getSourceNode"/>
<wsdl:output message="ns1:getSourceNodeResponse" wsaw:Action="urn:getSourceNodeResponse"/>

</wsdl:operation>
<wsdl:operation name="getPredecessors">

<wsdl:input message="ns1:getPredecessorsRequest" wsaw:Action="urn:getPredecessors"/>
<wsdl:output message="ns1:getPredecessorsResponse" wsaw:Action="urn:getPredecessorsResponse"/>

</wsdl:operation>
<wsdl:operation name="getNode">

<wsdl:input message="ns1:getNodeRequest" wsaw:Action="urn:getNode"/>
<wsdl:output message="ns1:getNodeResponse" wsaw:Action="urn:getNodeResponse"/>

</wsdl:operation>
<wsdl:operation name="getEdge">

<wsdl:input message="ns1:getEdgeRequest" wsaw:Action="urn:getEdge"/>
<wsdl:output message="ns1:getEdgeResponse" wsaw:Action="urn:getEdgeResponse"/>

</wsdl:operation>
<wsdl:operation name="getEdges">

<wsdl:input message="ns1:getEdgesRequest" wsaw:Action="urn:getEdges"/>
<wsdl:output message="ns1:getEdgesResponse" wsaw:Action="urn:getEdgesResponse"/>

</wsdl:operation>
<wsdl:operation name="getSinkNode">

<wsdl:input message="ns1:getSinkNodeRequest" wsaw:Action="urn:getSinkNode"/>
<wsdl:output message="ns1:getSinkNodeResponse" wsaw:Action="urn:getSinkNodeResponse"/>

</wsdl:operation>
<wsdl:operation name="searchNodesByName">

<wsdl:input message="ns1:searchNodesByNameRequest" wsaw:Action="urn:searchNodesByName"/>
<wsdl:output message="ns1:searchNodesByNameResponse" wsaw:Action="urn:searchNodesByNameResponse"/>

</wsdl:operation>
<wsdl:operation name="getSuccessors">

<wsdl:input message="ns1:getSuccessorsRequest" wsaw:Action="urn:getSuccessors"/>
<wsdl:output message="ns1:getSuccessorsResponse" wsaw:Action="urn:getSuccessorsResponse"/>

</wsdl:operation>
<wsdl:operation name="getOutEdges">

<wsdl:input message="ns1:getOutEdgesRequest" wsaw:Action="urn:getOutEdges"/>
<wsdl:output message="ns1:getOutEdgesResponse" wsaw:Action="urn:getOutEdgesResponse"/>

</wsdl:operation>
<wsdl:operation name="getNeighbours">

<wsdl:input message="ns1:getNeighboursRequest" wsaw:Action="urn:getNeighbours"/>
<wsdl:output message="ns1:getNeighboursResponse" wsaw:Action="urn:getNeighboursResponse"/>

</wsdl:operation>
<wsdl:operation name="getVersion">

<wsdl:input message="ns1:getVersionRequest" wsaw:Action="urn:getVersion"/>
<wsdl:output message="ns1:getVersionResponse" wsaw:Action="urn:getVersionResponse"/>

</wsdl:operation>
<wsdl:operation name="getAllScopes">

<wsdl:input message="ns1:getAllScopesRequest" wsaw:Action="urn:getAllScopes"/>
<wsdl:output message="ns1:getAllScopesResponse" wsaw:Action="urn:getAllScopesResponse"/>

</wsdl:operation>
<wsdl:operation name="getInEdges">

<wsdl:input message="ns1:getInEdgesRequest" wsaw:Action="urn:getInEdges"/>
<wsdl:output message="ns1:getInEdgesResponse" wsaw:Action="urn:getInEdgesResponse"/>

</wsdl:operation>
<wsdl:operation name="getAllNodes">

174 Appendix A. Collaboration Network Provider Service Specification

<wsdl:input message="ns1:getAllNodesRequest" wsaw:Action="urn:getAllNodes"/>
<wsdl:output message="ns1:getAllNodesResponse" wsaw:Action="urn:getAllNodesResponse"/>

</wsdl:operation>
<wsdl:operation name="getScope">

<wsdl:input message="ns1:getScopeRequest" wsaw:Action="urn:getScope"/>
<wsdl:output message="ns1:getScopeResponse" wsaw:Action="urn:getScopeResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="CollaborationNetworkProviderSOAPBinding" type="ns1:CollaborationNetworkProviderPortType">

<soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<wsdl:operation name="getSourceNode">

<soap12:operation soapAction="urn:getSourceNode" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getPredecessors">

<soap12:operation soapAction="urn:getPredecessors" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getNode">

<soap12:operation soapAction="urn:getNode" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getEdge">

<soap12:operation soapAction="urn:getEdge" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getEdges">

<soap12:operation soapAction="urn:getEdges" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getSinkNode">

<soap12:operation soapAction="urn:getSinkNode" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="searchNodesByName">

<soap12:operation soapAction="urn:searchNodesByName" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getSuccessors">

<soap12:operation soapAction="urn:getSuccessors" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getOutEdges">

<soap12:operation soapAction="urn:getOutEdges" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getNeighbours">

<soap12:operation soapAction="urn:getNeighbours" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>

A.3. Interface Description 175

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getVersion">

<soap12:operation soapAction="urn:getVersion" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getAllScopes">

<soap12:operation soapAction="urn:getAllScopes" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getInEdges">

<soap12:operation soapAction="urn:getInEdges" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getAllNodes">

<soap12:operation soapAction="urn:getAllNodes" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getScope">

<soap12:operation soapAction="urn:getScope" style="document"/>
<wsdl:input>

<soap12:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap12:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="CollaborationNetworkProvider">

<wsdl:port name="CollaborationNetworkProviderSOAPport_http" binding="ns1:CollaborationNetworkProviderSOAPBinding">
<soap:address location="http://madrid.vitalab.tuwien.ac.at:8152/axis2/services/CollaborationNetworkProvider"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>� �
Listing A.1: Collaboration Network Provider (CNP) WSDL

