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Abstract

Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of
numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The com-
position of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity.
The underlying interaction structure reflects social behavior and relations of individuals and determines to a large
degree how well people can be expected to collaborate. In this paper we address an extended team formation problem
that does not only require direct interactions to determine team connectivity but additionally uses implicit recommen-
dations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on
Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off
between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination
of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple
configurations of a simulated collaboration network that features close resemblance to real world expert networks. We
demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of
experts from various social network configurations.

Keywords: team formation, social network, composition heuristic, recommendation trade-off model

1. Introduction

Over the last years, we have observed a trend towards crowdsourcing of knowledge intensive tasks. This novel
model for problem solving received not only attention from academia but also global marketplayers. Currently crowd-
sourcing is mostly applied in cases where a larger task is segmented into many small work items that are carried out
by individual knowledge workers. Usually there is no interaction between those workers. We expect that the tasks car-
ried out in the crowd will become more complex, thereby requiring the complementary skills from multiple experts.
Unlike traditional team-based work, however, members of the crowd are distributed and in many cases without those
obligations as found in companies (long-term contracts or roles) [1]. The crowd presents a pool of experts, who are
connected amongst themselves forming a social network. Relations between experts in this scenario typically emerge
based on previous interactions in context of collaborative tasks. These links are weighted to describe the frequency
of previous interactions. The crowd is self-managing as members are free to join or leave at any time. In this setting,
team composition describes the short-term formation of a set of experts that provide the required skills.

*Corresponding author
Email addresses: cdorn@uci .edu (Christoph Dorn), skopik@infosys.tuwien.ac.at (Florian Skopik),
schall@infosys.tuwien.ac.at (Daniel Schall), dustdar@infosys.tuwien.ac.at (Schahram Dustdar)

Preprint submitted to DKE June 17, 2011



Simply trying to find the smallest group of experts exhibiting all required skills is no longer a valid approach.
A major factor of team success, for instance, is whether a set of experts can work together effectively [2, 3]. The
frequency of previous interactions is one possible indicator of successful collaborations. Crowds dynamics, however,
exhibit a major challenge. The likelihood of finding a strongly connected expert team, providing the exact set of skills
is low as experts dynamically take up work assignments and thus are not always available. For team compositions
we consider following aspects: (i) Skills describe the desirable properties an expert offers to complete a task. For
each skill, a quality metric describes the expert’s experience. The primary objective in workforce allocation is to find
the team with the best coverage of the required skills. (ii) Interaction Distance is an indicator how well users work
together. Previous interactions form a weighted social network. Ideally, every member of a team has already worked
with every other team member before. We assume that strong relations reflect multiple, successfully completed
collaborative tasks. (iii) Load determines the short-term availability of users. Experts that are not available cannot
become part of a new team. Instead of eliminating them from the candidate set, we let them act as referees by applying
their social network for recommending other experts of their respective fields. However, with growing number of
experts and skills, as well as inherent dynamics in large-scale networks, discovering efficient team compositions that
fulfill multiple criteria becomes a complex problem. In order to address this NP complete challenge novel heuristics
are required.

Our salient contributions in this paper are:

o Team Composition Discovery Heuristic. We introduce the application of genetic algorithms and simulated
annealing for determining effective workforces which provide sufficient skill coverage while achieving adequate
team connectivity. Such team configurations promise higher probability of success in future collaborations
compared to team configurations that neglect social relations and account for individual skills only.

o Skill-dependent Recommendation Model. We highlight an innovative skill-dependent, team-centric recom-
mendation model where recommendations are driven by the interaction structure of the current team members,
thus customized for a given situation, and not based on a global reputation metric only.

e Self-Adjusting Trade-Off Model. We apply self-adjusting mechanisms that determine the trade-off between
interaction distance and recommendations in order to unburden users from tedious configuration tasks and
manual management of team compositions.

Our main findings show that a dynamic balance of interactions and recommendations provides better team config-
urations than relying on one strategy alone. Thus our approach can always provide a better trade-off between skill
coverage and team connectivity, regardless of the percentage of unavailable experts.

The remainder of this paper is organized as follows. Related work in Section 2 compares the novelty of our
approach to existing research efforts. The motivating scenario in Section 3 outlines the combination of direct interac-
tions and recommendations and provides an overview of our approach. Section 4 outlines the problem in more detail
and provides an approach outline. Section 5 explains the skill-based recommendation model. Section 6 discusses the
details on the team allocation algorithm. In Section 7 we analyze the performance of our algorithm based on data from
our expert network formation model which replicates the key characteristics of real world expert networks. Finally,
we provide an outlook on future work and conclusion of the paper in Section 8.

2. Related Work

Team formation is an intensely studied problem in the operation research domain. Most approaches model the
problem as finding the best match of experts to required skills taking into account multiple dimensions from technical
skills, cognitive properties, and personal motivation [2, 3, 4]. Such research focuses only on properties of individual
experts that are independent of the resulting team configuration.

Recent efforts introduce social network information to enhance the skill profile of individual members. Hyeongon
et al. [3] measure the familarity between experts to derive a person’s know-who. Cheatham and Cleereman [5] apply
social network analysis to detect common interests and collaborations. The extracted information, however, is again
applied independently from the overall team structure. These mechanisms present opportunities for refinement of the
skill modeling and configuration aspects of our approach but remain otherwise complementary.
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Multiple efforts address related group formation problems. Sozio and Gionis describe the community formation
problem [6]. Given a set of fixed members, the approach expands the team up to a maximum upper size boundary
such that the communication cost within the community remains small. Anagnostopoulos et al. [7] address fair task
distribution within a team. They apply skill matching to determine a team’s ability to fulfill the overall set of tasks.
While their approach takes into account team members’ load and skill dependencies, the underlying social network
structure has no impact on the team’s fitness. Yang et al. [8] apply integer programming to determine the best set of
group members available at a certain point in time. Their temporal scheduling technique considers the social distance
between group members to avoid lacking too many direct links. Craig et al. [9] propose an algorithm for reasonably
optimal distribution of students into groups according to group and student attributes. Xie et al. [10] aggregate a set of
recommender results to optimally compose a package of items given some relation between the individual items and
an overall package property (e.g., holiday package). Datta et al. [11] showcase a demo for skill-based, cohesion-aware
team formation that utilizes common citations for establishing a social network. The authors, however, remain silent
on specific details about the actual algorithm to find an optimal team. An alternative approach is first finding tightly
connected communities [12] and then analyzing the available skills to generate desirable team configurations.

To the best of our knowledge, Theodoros et al. [13] discuss the only team composition approach that specifically
focuses on the expert network for determining the most suitable team. Our approach differs in three significant
aspects. First, we model a trade-off between skill coverage and team connectivity whereas [13] treats every expert
above a certain skill threshold as equally suitable and ignores every expert below that threshold. Second, our algorithm
aims for a fully connected team graph (i.e., relations between every pair of experts). Theodoros et al. optimize the
team connectivity based on a minimum spanning tree (MST). We argue that it is more important to focus on having
most members well connected (i.e. everybody trusts (almost) everybody else) within the team than focusing on having
each member tightly connected to only one other member. Also Singh [14] shows that a densely connected team is
vital for successful open source developer cooperation. Most importantly we apply recommendations instead of direct
interaction links when the underlying network becomes too sparsely connected.

Analysis of various network topologies [15, 16] has demonstrated the impact of the network structure on efficient
team composition. General research on the formation of groups in large scale social networks [17] helps to under-
stand the involved dynamic aspects but does not provide the algorithms for identifying optimal team configurations.
Investigations into the structure of various real-world networks provides vital understanding of the underlying network
characteristics relevant to the team composition problem [18, 19]. Papers on existing online expert communities such
as Slashdot [20] and Yahoo! answers [21] yield specific knowledge about the social network structure and expertise
distribution that need to be supported by a team composition mechanism.

Complementary approaches regarding extraction of expert networks and their skill profile include mining of email
data sets [22, 23] or open source software repositories[24]. Additional sources include (scientific) publications and
financial data [25], social network page visits [26], telecommunication data [27], and online forum posts [28].

Related research efforts based on non-functional aspects (i.e., non-skill related aspects) can also be found in the
domain of service composition [29]. Here, services with the required capabilities need to be combined to provide a
desirable, overall functionality. Composition is driven by the client’s preferences [30], environment context [31, 32],
or service context (i.e., current expert context) [33]. We can take inspiration from such research to refine the properties
and requirements of teams to include context such as expert’s organization or location. Nonetheless, the network
structure remains equally unexplored in service composition.

In contrast, the network structure has gained significant impact for determining the most important network el-
ement. A prominent example of a graph-based global importance metric is Google’s page rank [34]. An extended
version [35] yields total ranks by aggregating search-topic-specific ranks. Balog and De Rijke [36] extract a social
profile from collaborations within intranets to find suitable experts. The Aardvark search engine by Horowitz and
Kamvar [37] leverages social ties for expert finding in a user’s extended network. Inspired by the page rank algo-
rithm, Schall [38] applies interaction intensities and skills to rank humans in mixed service-oriented environments.
These algorithms and frameworks provide additional means to determine person-centric metrics but do not address the
team composition problem per se. The potential of expert finding applications, however, and subsequently the impact
on team formation cannot be underestimated. Social network-based expert finding and subsequently team formation
will soon become central business concerns [39].

The model of recommendation-based link establishment is closely related to link prediction in social networks.
Such models are used to introduce connections between single members of a community by evaluating various prop-
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erties. For instance, work by [40, 41] discusses link prediction based on similarity, focusing on structural graph
properties such as number of neighbors and number of in/out links.

In social trust networks [42] recommendations reflect transitive relations among members. In that case, uncon-
nected nodes in a trust network are connected through an intermediate node that mediates second hand knowledge
among its neighbors. In the future, direct trust between humans will play an evermore important role as privacy re-
mains a largely unsolved challenge [43]. Hence we believe that establishing explicit trust in social networks (e.g.,
[44, 45]), respectively becoming aware of distrust, will become a significant factor in team formation.

3. Motivational Scenarios and Fundamental Issues

In today’s highly dynamic large-scale networks, people are no longer able to keep track of the dynamics, such
as registration of new actors in expert networks and emerging skills and expertise of collaboration partners. Since
interactions and collaborations on the Web are observable, systems can analyze tasks performed in the past in order to
determine network structures and member profiles automatically [46, 42]. Based on these assumption, our work aims
at discovering effective member compositions, i.e., teams, in collaborative network for given tasks that demand for
particular skills. For that purpose we do not only consider skills and expertise of single members but also their social
embedding in their respective communities.

3.1. Application Scenarios

Here we demonstrate the wide applicability of our approach in a large area of motivating use case scenarios:

e Crowdsourcing. Suppose that an IT consulting company outsources work to a crowd where a set of experts
processes assigned tasks on demand. The incentive for processing tasks can be based on monetary rewards or
other community based reputation schemes. However, the allocation of experts depends on people’s skills and
expertise. Especially complex tasks demand for compositions of experts having a wide variety of skills and
expertise. In that case, also social structures need to be taken into account, for instance, to ensure compatibility
of collaboration behavior and working styles.

e Open Web-based Collaboration. A typical example for open Web-based collaboration is Wikipedia'. Here,
people can freely interact with others to discuss issues of articles and potential improvement in order to increase
overall quality. Groups of authors who frequently co-edit articles deem to be more efficient than totally unrelated
authors. The reason is that authors already know each others quality standards and detailed capabilities to share
work efficiently.

e Cross-Organizational Processes. Establishing cross-organizational social networks that span thousands of
people across different departments and even organizational boundaries has been in a research focus since
years. With the recent availability of fast and reliable communication networks these large-scale systems are
being realized. A major focus of research in this area is to link geographically distributed people to build virtual
teams assigned to global processes. One indicator for efficient team collaboration is the amount and density of
interactions among its members. Once a team successfully performed a set of tasks, this composition should be
encouraged and maintained to be reused for future work.

3.2. Problem Outline

Increasing complexity of tasks demand for the assembly of multiple people to teams. This team assembly process
is based on numerous constraints, including the set of demanded skills which a candidate group of workers needs to
cover. In the following (Figure 1), we outline inherent problems in detail and discuss various concepts and techniques
that assist the composition of workforces.

Figure 1a shows an interaction (collaboration) network comprising members (nodes) and interaction links (edges).
Each edge is associated with a weight depending on performed interactions (depicted by the line thickness). Let us
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consider 9 members of this network whose profiles match at least one required skill?. In particular, the skills of each
node are given as A {p2p}, B {p2p}, C {ml, p2p}, D {we}, E {we, dm}, F{ml}, G {ml}, H {dm}, and J {dm, ml}. An
optimal composition in this case can be established based on skill matching and weighted links between nodes. Thus,
the optimal composition in this scenario is given by combining the capabilities of nodes B, C, and E.

Especially in large-scale and highly dynamic environments, however, the availability of people frequently changes
and greatly influences the ability to utilize the skills of certain network members. Availability of people must be con-
sidered when composing a workforce. Suppose that C, H, and J are not available (see also red colored nodes in Figure
)b in this given setting. As C is not available, another candidate team solution comprising all required skills is the
set {A, D, E, G}. The connectivity of this team is, however, rather low. The metric interaction distance is an indicator
for the structural connectivity in collaboration networks. One of the novel contributions in this work is to use recom-
mendations to identify suitable experts for replacing unavailable members. As shown in Figure 1b, a match yielding
tighter relations (based on interaction weights) can be obtained when considering {B, E, F}. Recommendations are
based on skills (e.g., {ml} associated with the profiles of, for example, C and F), thereby introducing new links between
nodes. For simplicity, we augment the visualization of the interaction network by showing these links as dashed lines.
Recommendations help establish new collaborations between members of a network. In Figure 1b, C recommends
F to B, which subsequently results in forming a new link from B to F. The strength (weight) of the recommendation
depends on the interaction-based distance of B and C as well as C and F.

While finding a suitable team in the given example is rather simple, the team formation problem becomes much
more challenging in a large social network. With a linear increase in experts, the number of combinations to check
grows exponentially. At the same time, the best connected experts — which are usually also the best skilled ones —
display an increasing number of relations. Consequently, checking for recommendations becomes computationally
expensive.

3.3. Approach Outline
Three major stages describe the progress toward team composition:

1. Network Establishment. First, we establish a group of experts and corresponding social network (Figure 2a)
that provides the weighted interaction links among them, the respective skill profiles, and information about
expert availability.

2. Candidate Selection. From this network, we select the set of team candidates which need to be available and
provide at least one required skill (Figure 2b). However, the top ranked experts provide the highest expertise
but usually come with low connectivity.

3. Heuristic Optimization. Finally, team composition aims to find a better connected team based on direct interac-
tions and recommendations while maintaining high skill coverage (Figure 2c).

a) Expert with annotated skills and their interaction b) Introduce new links through recommendations to
network. Intuitive best choice: {B,C,E}. compensate C's unavailability. Best choice: {B,E,F}.

Figure 1: Expert crowd interaction network (full lines) and recommendations (dotted lines). Line thickness represents
the experts’ distance based on weighted interactions, red/shaded nodes depict unavailable experts.

2Skill abbreviations: p2p (peer-to-peer), we (web engineering), dm (data mining), ml (machine learning)
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a) Expert Network b) Candidates ¢) Team Composition

Figure 2: Lines represent weighted edges based on previous interactions; unavailable experts are marked in red
(a). Dashed circles are the top experts for each skill amongst the team candidates (bordered area). The final expert
configuration (black, filled circles) provides the best combination of skills and distance (c). Colors online.

4. Multi-Objective Team Composition

4.1. Preliminaries

A team composition consists of experts, a weighted social network structure, and a set of skills S. The social
network is modeled as an undirected, weighted graph Gsn(U,E) where the vertices are experts u € U, and the
edges represent collaborations in joint activities. The edge weight w, describes the distance between two experts.
A small edge weight represents frequent collaboration between two experts while a high edge weight describes rare
collaboration. The proximity (Eq. 1) of an expert to itself is zero (prox(u;,u;) = 0). The proximity prox(u;,u;)
between two experts is defined by the shortest hop path (SHP) with minimum edge weights. We sum across all
traversed edges and take the hop count (%) to account for the number of intermediary experts.

prox(ui,uj) = (hx=h—-1)+1)* Z wp Ywy, € max[S HP(u;, u;)] @)
k

An expert’s skill profile $; contains for each skill a corresponding expertise level g;(s). The expertise level is
measured on a scale from O to 1, where 1 describes the maximum achievable expertise. Set of required skills for a
team is denoted as Sg € S. A valid team configuration 7 (Us, Sg) consists of experts Uy € U, such that for each
s; € Sg there exists at least one expert u; € Uy providing that skill (g;(s;) > q(8)min With ()i = 0). We identify
the expert u assigned to provide skill s within team 7~ as us(s).

We establish the collaboration network and skill profile through observation of user interactions. Each interaction
takes place in the scope of an activity which in turn is associated with exactly one skill. The sum of all involvements in
activities produces the expert’s skill profile. Specifically for each skill, there exists a mapping function f;(&, — qu(s))
that determines the expertise level from the set of an expert’s edges &,.

Figure 3 (top left) displays an excerpt from the interaction log of users Alice, Bob, Carol, and Dave.® Alice and
Bob have interacted together three times in a p2p related activity and once in a dm related activity. In total, Bob applied
his p2p skills 6 times, his dm skills once, and his m!/ skill also only once. In this example, the mapping function f
from edges to expertise level is a linear transformation. For each skill, we take the maximum skill occurrence (e.g.,
p2p = 6), thus deriving Alice’s expertise level of gajic(p2p) = 0.5.

In addition to the skill profile, each expert provides load information to indicate his ability to participate in a new
team. Load is modeled as a boolean value [, = true|false where true denotes an available expert, while false denotes
an overloaded expert.

3We omitted detailed log information such as timestamps for sake of clarity.
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max(p2p) =6
Interaction Log: max(dm) =1
Participants ~ Skill Participant  Skill Participant  Skill max(ml) =5
1 Alice, Bob p2p 5 Bob, Carol p2p 9 Alice, Bob p2p min(.) =0
2 Alice, Bob p2p 6 Bob, Carol p2p 10 Alice, Dave ml
3 Alice, Bob dm 7 Alice, Dave ml 11 Alice, Dave ml p2p:3>  q(p2p)=0.5
4 Alice, Dave ml 8 Bob, Dave ml 12 Bob, Dave p2p dm:1 > q(dm) =1.0
ml:4 > q(ml) =0.8

p2p: 6>  q(P2p)=1.0
Bob) dm:1 - q(dm) =1.0
ml:1 - q@ml) =02

p2p:2 >  q(p2p)=0.33

1N
0.25 0.5 0.5
S8

Figure 3: Deriving skill profiles and weighted social network from interaction logs.

p2p: 1> q(p2p)=0.16
ml:5 2> q(ml) =1.0

4.2. Problem Definition

Given a set of experts U, a social network Ggy, and required skill set Sg, find the team configuration 7~ that
provides the best match of user skills to required skills while reducing team distance as much as possible. Having a
multi-objective function, we aim at maximizing the skill coverage function Cy-, while minimizing the team density
function Dy. Additionally we need to satisfy following constraints: for each skill there exists a lower threshold
q($)min that defines the minimum expertise level within the team, and a set of team configuration constraints G.
Example constraints restrict the maximal number of skills a single expert may provide, or the minimum size of a
team. How such constraints are formulated in detail is irrelevant at this point. Formally we can describe the team
formation problem as follows:

maximize C(T)

minimize D(T)
such that:

M‘T(S) > q(s)min Vs e SR
g(T) = true Vge @G

Brute-force testing of every possible combination quickly becomes unfeasible. Testing m experts for |Sg| skills
has O(m!**') computational complexity (i.e., already for 10 experts and 10 skills, we would need to analyze 10 billion
combinations). In the next subsection, we show that the described team formation problem is NP-complete and thus
requires a heuristic to derive good solutions. We further analyze the computational complexity for calculating a team’s
quality when discussing the heuristics in Section 6.7.

4.3. NP Completeness

We demonstrate that the multi-objective team formation problem is NP complete by reducing it first to a single
objective problem. We assume that for a particular skill s all experts with an expertise level above a certain threshold
are equally well suited (g(s) > req(s)). Thus, the problem is reduced to finding the team structure with the strongest
ties in-between all members.

This problem is related to determining a clique in a weighted graph. At this moment, however, it is unclear which
and how many experts are part of the best team. Also it is unlikely that this team actually exhibits a fully connected
subgraph. Consequently we cannot directly search for the best clique yet. We model skills and interaction structure
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as a weighted complete k-partite graph. A k-partite graph consists of k distinct sets of nodes so that there are no
edges between any two nodes in the same set. Edges exist between nodes of different sets. In a complete k-partite
graph, every node is connected to (i.e., is adjacent to) every other node outside its set. For our problem, the set of
required skills corresponds to the k sets in the k-partite graph. The nodes within each set are 2-tuples of expert and
skill < u, s >. An expert providing multiple skills above the threshold produces a tuple in each corresponding set.
Ultimately, each set in the k-partite graph consists of tuples that contain the same skill s and all experts providing
that skill. The edge weights between two tuples in different sets is given by the proximity measurement (see above)
between the two corresponding experts.

Ultimately, a selection of exactly one tuple from each set constitutes a valid team where each tuple is connected to
every other tuple in the team. The edges between the tuples determine the team’s density. The tuples in the selection
determine which experts is to provide what skill. When flattening the k-partite graph into a regular graph following
properties hold: (i) any valid team will be a clique and (ii) the maximum clique size is k. The best team is then a matter
of finding the minimum-weighted clique. This is trivially transformed into a maximum clique problem by inverting
the edge weights. It is generally known that the maximum clique problem is NP-complete. We, thus, can infer that
also the observed team formation problem is NP-complete.

4.4. Modeling the Objective Functions

To obtain a team’s skill coverage C(7") (Eq. 2), we take the experience level of each expert assigned to provide
a particular skill s within team 7. Ignoring any team constraints, the best possible composition consists of the best
skilled experts (i.e., an expert having maximum experience level g(s) = 1) for every skill s € Sg. One user potentially
covers multiple skills.
2.8, U7 ()
N

We denote the best possible composition (C(77) = 1) as Top(Sg). This top expert composition, however, usually
does not yield tight relations between the experts. Hence, we try to reduce a team’s distance D(7").

The distance function reflects our assumption that a-priori acquaintance of any two team members is crucial to
successful collaboration. The direct team distance (Eq. 3) is thus defined as the sum of link weights between members
plus a penalty distance for non-existing links. The number of non-existing links are determined by calculate the
maximum possible number of links between members, and subtracting the number of existing intra team links (|&,|).

CT) = whereu € T Vs e Sg 2)

WeT) = Z We(uiy up) + (T 1+ (1 T1=1) 0.5 = |&]) * B+ max(we) — Yuj,u; €T 3
T

The penalty parameter 8 determines the impact on distance when we drop an edge with maximum weight max(w,).
For B = 1, we treat two experts yielding link of max(w,) as if they were not connected at all. If we set 5 too low,
non-existing links are not penalized and we will not be able to find a better connected team than Top(Sg). If we set
S too high, only fully connected teams will yield low distance and thus be considered. A sensible value derived from
our experiments is 8 = 4 which we will use throughout this paper.

We inverse the distance objective function and instead of minimizing distance we aim to maximize the distance
improvement (Eq. 4) compared to the Top Team.

W)
D)= We(Top(Sr)) @

where W,(Top(Sg)) is the team distance of the Top Team.
We aggregated the objective functions in order to determine the best team. The overall composition quality Q(7")
(Eq. 5) is given as a linear combination of skill coverage and distance improvement. The trade-off parameter @ encodes

a preference towards best coverage (a 4 1) or towards minimum distance (e 4 0).* The optimum team configuration
is then given by the composition with maximum quality.

“Throughout this paper we interpret x - y as variable x being close to or identical to value y.
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C(T) [ WD) [ 0T [ WaT) | 0'(T)
Top(Sg) = Tsipa | 100 | 1.00 | 050 || 1.00 | 0.50
Tpips | 100 | 050 | 075 || 1.00 | 0.50
Tpiag | 093 | 025 | 082 || 050 | 0.72

Table 1: Effect of multi-skill aware distance calculation on overall team composition quality.

QT)=a+xCT)+(1-a)*(1-D(T)) with o = [0, 1] 4)

For a required skill set Sg = {p2p,ml} and @ = 0.5, the best workforce of experts in Figure 3 comprises users
Alice and Bob. For 7 g = {Alice, Bob}, the skill coverage is C(A, B) = 0.93, the distance amounts to ‘W, (A, B) = 0.50
(already applying the multi-skill per expert aware distance function as outlined in the next subsection). The overall
quality yields Q(A, B) = 0.72. There is an alternative set 7 p = {Bob, Dave} that exhibits better coverage (C(B, D) =
1) but higher distance (‘W,(B, D) = 0.5), which overall yields only Q(B, D) = 0.5.

4.5. Multiple Skill Provisioning

So far we have assumed that each expert in a composition provides exactly one skill. In some situations, it
is beneficial to have an expert provide multiple skills. For a set of required skills Sg = {p2p, ml, dm}, Bob can
provide p2p and dm skills, while Alice provides ml. We need to create a new composition view to correctly calculate
recommendations and ultimately also distance. We simply split an expert profile that provides multiple skills and
create a virtual profile for every skill. In Figure 4, Bob’s profile is separated into Bob1 and Bob2, one for p2p and dm
respectively. Bob’s social network edge set is replicated for each virtual profile.

Distance needs to reflect the fact that an expert potentially provides multiple skills. So far teams with experts
that provide multiple skills would yield lower distance. For the above listed example skill set Sg we have three
composition candidates: T pa = {Bobl, Dave, Alice} happens to be the Top team, 7| p s> = {Bobl, Dave, Bob2},
and T 148 = {Bobl, Alice, Bob2}. Table 1 left part provides the coverage, interaction distance, and overall quality
for the multi-skill unaware distance calculation. Apparently, a composition of Alice and Bob is preferable over a
composition comprising Alice, Bob, and Dave; which in turn outperforms a combination of Bob and Dave. When we
compare 7 g1 pa and 7y p g more closely, we notice that both provide the same skill coverage. 75 p 5>, however,
yields a better distance ratio as the distance measurement is unaware that Bob provides two skills.

The distance is more accurately represented when the distance calculation is based on the network including the
virtual experts. This requires introducing an interaction link between the virtual expert profiles. In Figure 4 the
additional edge is displayed as a red, double line. As we assume that provisioning of two skills by the same expert
does not raise any expert internal conflicts we apply the minimum possible interaction edge weight w,(u;, u;) = 0.

Applying this new distance calculation we determine new distance measurements. The superscript v is used only
in this section to distinguish between calculation with and without virtual profiles. Later calculations are virtual profile
aware by default. The right part of Table 1 provides the multi-skill aware distance and quality measurements. We
still observe 71 452 as the best composition, however, 71 p g is now considered of equal quality as 7 p4 as its
distance is the same. Note that the distance calculation does not include recommendations yet. We outline in the
following section how to integrate interaction weights and recommendations.

5. Expert Recommendation

The goal of recommendation is to increase skill coverage and/or density by considering experts that are not directly
connected to the existing team composition of experts 7. When Alice has frequently worked with Bob, and Bob in
turn has frequently interacted with Carol, then Carol might be a suitable candidate in a composition with Alice when
Bob is not available. Adding a non-connected expert to a composition, however, will greatly increase the team
distance. In this section, we discuss how to use recommendations in the distance calculation to mitigate the effect of
missing links.
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Figure 4: Splitting an expert profile for Bob who provides multiple skills to correctly calculate recommendations
and distance. Edges labels display the interaction weights (w,.). The weight of the interaction edge (red/double line)
connecting profiles Bobl and Bob2 obtains the minimum possible interaction edge weight (w, = 0).

Recommendations are skill dependent. For a given single recommendation in Figure 5 between Alice and Carol
(the recommendees) via Bob (the recommender), we observe which skills the two (disconnected) experts provide
within the team. Here, Alice contributes skill dm while Carol is contributing skill p2p — Bob’s particular role in the
composition is irrelevant in this recommendation. The recommendation reflects then how well Bob can evaluate the
expertise of both recommendees.

The recommendation’s strength depends on two factors. First, both the expertise level of recommending expert
and the expertise level of the recommended experts have impact. Two experts can increasingly well evaluate each
other the higher their corresponding expertise levels are. Thus, the recommendation strength will be equal for a low-
skilled expert recommending a high-skilled expert or whether the recommendation occurs in the opposite direction.
In the former case, one cannot expect the low-skilled expert to give an accurate recommendation, while in the latter
case the high-skilled expert will not fully endorse the low-skilled neighbor.

Second, the amount of past collaborations determines how well the two experts were in contact to obtain a correct
view on their neighbors’ skills. So far we did not consider which skills where involved in the common activities that
formed the direct edge weight w,. When calculating direct distance, we primarily want to answer who are able to work
together successfully. For the purpose of giving recommendations, on the other hand, we must base our calculations
on skill-centric edge weights wy. It reflects how often two experts have collaborated within the scope of a particular
skill s. When an (unavailable) expert u, gives a recommendation (Eq. 6) between expert u, (providing skill s;) and
expert u, (providing skill s;)s/he can only do so if s/he is qualified in the two involved skills (sg, s;). It reflects the
confidence u, has in the recommending expert u, that s/he can correctly judge the expertise of u,. Therefore the link
strength of w,(u;, u,) is limited to interactions in scope of s;) and vice versa the confidence of u, in u, to judge u,
correctly. When considering all skills, that (unavailable) expert u, might have no personal experience in how well
any of the other two experts provide their respective skill and therefore cannot give reliable recommendations. For
example, the edge between Alice and Bob for skill p2p has wy = 3. A single recommendation rec; between two
experts (uy, uy) via a connecting expert (u;) is subsequently defined as:

recy(Uy, Sk, Uz, Uy, 51) = 0.5 % (qx(sx) * gz (sp) * Ws(Uy, Uz, Sp) + q,(s1) * q(s1) * wy(uz, uy, s))) Vgq; # 0 (6)

where s; and s; are the skill contributed by u, and u,, respectively. When at least one expertise level g = 0, then the
recommendation chain is considered broken and rec; = 0. Note also that the recommendation is not reciprocal as the
recommending expert would have to apply different edge weights, i.e., rec(uy, Sk, Uz, iy, 5;) # reci(uy, Sk, Uz, Uy, S1).
A recommendation between two members is not limited to a single common neighbor. Instead we aggregate the
recommendation of all joint neighbors (Eq. 7). This has the advantageous side effect of making use of the social
network structure of overloaded experts. The links of all members—regardless of the member’s availability—provide
the input to recommendations. Figure 6 introduces two additional experts—John and Jane—and their respective
expertise levels.” When calculating the aggregated recommendation weight between Alice and Carol, we consider

5We have not recalculated the expertise values of Figure 3 for sake of simplicity.
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reci(Alice, dm, Bob, Carol, p2p) = 0.5 + 0.33 = 0.83 Figure 6: Aggregated skill dependent recommenda-
tions via experts Bob and John. Unavailable experts

Figure 5: Single, skill dependent recommendation via ex- are red/shaded (colors online). Link labels provide
pert Bob. Alice provides skill dm, while Carol provides the skill-centric edge weights specific to dm, respec-
skill p2p. tively p2p.

only Bob, Jane, and John—the three joint neighbors. Although Jane has strong links to both Alice and Carol, she does
not contribute to the recommendation as she does not share the dm skill with Alice. In case, however, Alice would
contribute the m! skill, Jane’s recommendation would weigh in heavily at rec(Alice, ml, Jane, Carol, p2p) = 0.75.
Ultimately, only Bob and John produce the aggregated recommendation w,(ity, Sk, Uy, 57):

Wi(Uy, Sk, Uy, 57) = Z rect(iy, Sk, Wi, y, Sp) Y u; | Ae(uy, u) A e, uy)} @)
1
This definition ensures that a recommendation is skill dependent. Only links from common neighbors determine the
recommendation’s strength. A particular expert might exhibit a large number of strong interaction links. If those links,
however, do not end at common neighbors, they will not yield a strong recommendation.

A single strong recommendation between two experts is insufficient to decide whether they should form a com-
position with others. Instead, we need to calculate recommendations between the non-connected expert and all other
experts in an existing composition. Recommendations exist also between directly connected experts. Take the seg-
mented team in Figure 7a as an example. Initially recommendations exists only between Alice and Carol as well as
between John and Jane. An additional single link that combines the two segments (Figure 7b) causes a substantial
rise in recommendations. In order to avoid a distortion by a single new link, we also calculate the recommendations
between directly connected experts (u,, u,) by aggregating rec (uy, Sk, Uy, Uy, 57) and recy(uy, Sk, Uy, Uy, 5;). The overall
team recommendation weight ‘W,(7") is then defined as:

W.(T) = Z wi (Ui, Sk, Uj, S7) Yuj,uj €T Ni# j (8)

5.1. Aggregating Interaction and Recommendation Weights

For testing various composition candidates, we need to be able to compare the effect of including a non-connected
expert to including a weakly connected expert in terms of interaction edge weight. Our approach is to derive also
recommendations for already connected experts (as outlined above), and evaluate the distance based on a linear com-
bination of interactions and recommendations.

We can avoid comparing interaction distance and recommendations directly. The expert team formation problem
is rather focused on how much interaction distance decreases, respectively the recommendation weight increases,
compared to the initial expert configuration Top(Sg).

We replace the pure interaction-based sum as the sole distance measurement as introduced in Section 4. In partic-
ular, we apply a linear combination of interactions “W,(7") and recommendations “W,(7") according to the trade-off
factor y = [0, 1] (Eq. 9). Note that we aim to minimize distance, respectively maximize recommendations. The over-
all quality function Q(7") assumes distance to decrease with better team configurations. Thus, we minimize 1/W, to
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Figure 7: Recommendation links: a) a segmented team has limited pairwise recommendations. b) Introducing a
single connecting link increases recommendations substantially. ¢) Pairwise recommendations between Alice, Carol,
and Dave when Bob is unavailable. Full lines are interaction edges (edge labels are skill-centric weights), dotted lines
represent recommendations. The recommendation between Alice and Dave includes also the direct recommendation
measurement which is 0, however, as Alice and Dave have only interacted applying skill ml.

obtain a correct overall distance function D(7").

W(TY Wi (Top(Sgr))
DT)=y* oo+l =y s — ©))
We(Top(Sg)) WHT)
The interaction distance W, penalizes missing team edges. By choosing 7y close to or equal to 0, we no longer analyze
those direct edges and instead rely on recommendations only.

5.2. Interaction and Recommendation Tradeoff

In highly connected networks, we risk having the recommendations overpower the direct interaction links. Espe-
cially social networks that lack a rich-club structure (see [18]) are prone to produce compositions of non-connected
experts. The rich-club phenomenon describes a type of network topology where the highest-degree nodes are well
connected among themselves—they form a ’club’. This club would provide a team of top experts which result in
low distance and also high recommendations. However, investigations of the rich-club phenomenon in scientific col-
laboration networks (e.g., [19]) have shown that such tight collaborative groups exist only within particular research
domains but not beyond. Without a rich-club structure, the highest degree experts exhibit a large number of less skilled
neighbors. These have tight links to multiple top-ranked experts (see Figure 8) and thus produce strong recommenda-
tions. In such a setting, these recommendations are likely to dominate over direct interaction links. Consequently, we
need a careful balance between recommendations and direct interaction links (i.e., a suitable value for y).

Figure 8: Example for a social network without rich-club structure: experts composition of Jane, John, Jim, and Joh
comes with strong recommendation links (dashed lines) while the experts have not interacted before (solid lines).

We analyze the number of links between experts to determine the best value for y. Figure 9 displays three simple
social network examples. In each case, the experts Alice, Bob, and Carol are the available the experts from which we
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aim to find an optimal subset. The set of available experts for a given formation problem is defined as the candidate

graph Gegna S Gsn-
) /@“
L U

a) Unconnected b) Fully connected ¢) Semi-connected

Bob

Figure 9: Candidate expert graphs Geang = {Alice, Bob, Carol} for unconnected Gc,ng, fully connected Geang, and
semi-connected Gcyug. All interaction edges (full lines) and recommendation edges (dashed lines) are assumed to
yield weight w = 1.

Recommendations are most important when there are no or hardly any direct links between experts. In the extreme
case (see Figure 9a) no direct links can be applied to derive the distance. Here we have to rely solely on recommen-
dations and consequently set y = 0. In case of the other extreme (Figure 9b), all candidate experts are connected to
each other. Here, we do not need recommendations. Hence, we set v = 1 and apply only interaction edge weights.
Most of the time, however, the candidate graph’s structure will remain within those extremes (e.g., Figure 9c).

We apply the concept of graph density (Eq. 10) to determine a suitable value for y. The graph’s density describes
the ratio of existing edges to maximum number of possible edges (i.e., a full graph):

2 % |&|
densg = V=1V = 1] (10)
Particularly, we compare the candidate graph’s density with the social network’s density (Eq. 11). When the two
values are identical, then y = 0.5. In the interval [dens(Gsy); 2 * dens(Gsn)] v increases towards 1, whereas it drops
to zero when moving from dens(Gsy) to 0:

1 if dens(Geang) = min[2 = dens(Gsn); 1]
y = {dens(Gcana) * min[2  dens(Gsy): 117" if 0 < dens(Geana) < min[2 * dens(Gsy); 1] (11)
0 otherwise

The example social network in Figure 9c has dens(Gsy) = 8/15 and candidate graph density dens(Geana) = 2/3.
Hence with y = 2/3, there is more focus on direct links rather than recommendations. In the evaluation we apply
also fixed values of y to analyze the effect of applying only direct interactions (i.e., y; = 1), respectively only
recommendations (i.e., yp = 0), to determine distance.

6. Heuristics for Multi-Objective Team Composition

Our goal is to find a better connected team than the aggregation of the top experts for each skill but not necessarily
the best possible solution. As demonstrated earlier, the multi-objective team formation problem is NP complete,
thus we require a heuristic to find good solutions. Whether a given solutions is also optimal, however, cannot be
determined. Simulated Annealing [47] (SA) and Genetic Algorithms [48] (GA) are two common heuristics suitable
for the underlying problem type. We outline in the following subsection how to solve the team formation problem
with these two heuristics and how they differ in finding a solution.

Simulated Annealing and Genetic Algorithms are similar as both test candidate teams, evaluate their quality (for
SA denoted energy, for GA denoted fitness). Both algorithms continue from good teams to improve on the quality
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until the improvements become too small or the maximum number of iterations is reached. GA and SA differ in their
techniques to determine subsequent team candidates, and which candidates to maintain for further exploration. The
candidate team with the highest utility at the end is the team formation solution. Figures 10 and 11 outline a schematic
procedure of the genetic algorithm, respectively simulated annealing.

5 a5
»
| Crossover Operator | e r e
/ \‘ —Pl Expert Selection Function |
e Pl ocl e es oes crommorolIgyoze
>
G0 ||G—® G—® @O0 -0 0‘@' 9‘@' e‘@'
| N W | Temperature
@next round + + + +
Expert Selection Function (Mutation Operator) | | Caloulate Team Utiity |
T Populati
e(smnex(()?g:n:n + + + + + + + nrg (ABDE) < nrg(ABCD) I—I suctl:ess
| Calculate Team Utility | 2
—| Calculate new Temperature |
\ // Team @ next round:

e‘oe' O |j e‘oe' O eg@, O Figure 11: Simulated Annealing overview:

new team configurations are derived from the
Figure 10: Genetic Algorithm overview: Crossover and mutation in- current best team, which gets replaced by any
crease the current population of teams (new teams in dashed boxes). improved team configuration. The number of
The team utility function restores the the population size through se- better teams (success) determines the tempera-
lection of the fittest teams. ture in the next round.

6.1. Genetic Algorithms

A genetic algorithm treats the team formation problem as a population of individuals with different chromosomes.
Individuals (i.e., various teams) of each generation mate and generate offspring: the new generation. Individuals with
higher fitness as defined by their chromosomes (i.e., team configuration) are more likely to survive and multiply. The
dominating individual of the last generation is deemed the best team configuration. An entity’s chromosomes consist
of a set of genes, where each gene represents one skill. The gene value is then the expert that provides that skill.

In each generation, GA utilizes two genetic operators to search for better team configurations:

Crossover generates new individuals by combining genes from two individuals. The two individuals are chosen
randomly. Thus each individual has equal chance to be selected for mating, however, only fit offspring will
survive into the next generation. During crossover, a randomly chosen gene position divides the chromosomes
of two individuals (A and B) in two parts. One new individual obtains the first section of genes from A and
the second section of genes from B. The second new individual obtains the inverse genes. In our case, two new
team configurations arise each receiving part of their new experts from the other team. We check the next team
configurations for constraint violations before these are added to the population pool.

Mutation takes the chromosomes of an individual and randomly changes one or multiple gene values. The individual
itself remains unchanged, rather a copy including the mutation effect is added to the population pool. The
amount of change is defined by the mutation rate. This corresponds to a random exchange of one expert for
another. Here we ensure upfront, that only experts can be chosen that do not violate any team formation
constraints. The expert selection function, as also applied by Simulated Annealing, is detailed further below in
subsection 6.4.

Crossover and Mutation increase the population size through mating and mutation (Algorithm 1 lines 5+6). Next,
GA evaluates the fitness (see subsection 6.3) of all individuals (line 7-9) and then selects the best ones to keep the
population size constant (line 10). These best individuals are the new generation of team configurations (line 11). In
the last generation, the team with highest fitness is selected as winner (line 14).
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Algorithm 1 Genetic Algorithm GA(maxlt, popS ize, mutRate, xoverCount).

1: function GA(maxlt, popS ize, mutRate, xoverCount)

2 Pop < initRandomPopulation(popsSize)

3 generation < (0

4 while generation < maxIt do

5: Pop < Pop U addSolutionsByCrossover(Pop, xoverCount)
6 Pop < Pop U addSolutionsByMutation(Pop, mutRate)

7 for T € Pop do
8 fitnesss < calcFitness(7)
9

: end for
10: Pop,e, < selectBestSolutions(Pop, popSize)
11: Pop « Popye,
12: generation « generation + 1
13: end while

14: return 7 < getBestSolution(Pop)
15: end function

6.2. Simulated Annealing

Simulated Annealing treats the team formation problem as a dynamic/hot system (representing a team configura-
tion) that undergoes sequential transitions (changing the team) until it settles in a desirable stable/cold state (best team
configuration).

In Algorithm 2 lines 2+3, SA takes an initial team configuration and derives the corresponding energy (see sub-
section 6.3). Simulated Annealing continues to evaluate team configurations (line 9+10) as long as the temperature
has not reached zero and there are more available iterations (line 6). A new team configuration is always accepted
when it comes with lower energy (lines 11-16). Worse teams are accepted with probability ps4 defined as:

Senergy

psa =e (12)

where Oeergy 1s the energy difference between the current and new team configuration and temp is the current
annealing temperature. Accepting teams with higher energy is possible as long as the temperature remains high,
and/or the energy difference is very small.

The freezing process describes the system’s progress towards settling in a stable state. Freezing thus depends on
the cooling rate and current iteration state. As long as the number of successful transitions is high (i.e., success close
to count) the system remains in a search space region that still provides many solutions with lower energy. Thus
while hot, the SA searches for configurations that are comparatively different to the current team. To obtain a new
configuration, SA applies the same expert selection function (see further below in Section 6.4) as the GA mutation
operator: one expert from the team is replaced by another available expert who doesn’t violate the team formation
constraints. The system cools down when compared solutions are worse than the currently team configuration. In
this case, SA assumes the system to be near a global optimum. It then tests team configuration that are comparatively
similar to the current configuration to get closer to the optimum. The function for determining the temperature for the
next iteration (line 18) is defined as:

success
count

(limitgecepr— )xcount

tempy = rcooling

* temp (13)

where count, coling, and limitycc.p; are configuration parameters.

6.3. Team Utility Function
GA and SA share the team formation objective function but differ in how they interpret the actual quality value.
Using their respective terminology, GA aims at maximizing a team’s fitness (Eq. 14), while SA aims at minimizing a
team’s energy (Eq. 15). For GA, the fitness function for a team configuration 7 is defined as:
-«
it(T) = 14
ST = = ca) + (A~ @ = D7) (1
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Algorithm 2 Simulated Annealing SA(maxlt, startT emp, count).

1: function SA(maxlt, startTemp, count)

2 T « Top(Sg)

3 nrg < calcEnergy(7)

4: temp « startTemp

5: iteration < 0

6 while remp > 0 and iteration < maxit do
7 success < 0

8

9

for 1 .. count do > Expert selection function provides a new team configuration
: newTeam «— calcNewExpert(7,temp)
10: Nrgnew < calcEnergy(newT eam)
11: Ocnergy = NTg — NI &new
12: if doTransition(denerey, newT eam, temp) then
13: T « newTeam
14: Nrg < Nrguew
15: success < success + 1
16: end if
17: end for
18: temp < calcTemperature(temp, success)
19: iteration « iteration + 1
20: end while
21: return 7

22: end function

The corresponding SA energy function is the inverse of the GA fitness function:

ax(1-CT)+0-a)*DT)
l-a

nrg(T) = (15)
where dividing the aggregation of coverage and distance by 1 — « ensures that regardless of @ the Top(Sg) team and
other proportional tradeoffs will yield nrg = 1. Top(Sg) provides an upper boundary for the possible coverage. As
no team configuration can yield higher coverage than the top experts, any team with higher distance than 2;,, will
yield nrg > 1 (respectively fit < 1) and thus can safely be ignored. Consequently, any better configuration must
exhibit lower energy/higher fitness by reducing the distance D(7°). Expert compositions that additionally come with
lower coverage need to yield proportionally even lower distance. The improvement ratio is determined by the tradeoff
factor . Thus, any configuration that reduces coverage and distance to similar extent (as defined by «) also yields

nrg = fit = 1.

6.4. Expert Selection Function

The expert selection function generates a new team configuration given a current configuration. The function
needs to be able to (a) traverse the search space in short time and (b) find neighboring configuration with similar
quality. The first requirement guarantees that both heuristics are able to reach all states in a timely manner, thus
potentially identifying the optimum solution. The second requirement ensures convergence of Simulated Annealing
as a random solution is more likely to be worse (rather than better) than the current solution.

Our expert selection function addresses both concerns. We randomly select a required skill s and exchange the
current expert u,;; with another expert u,,, with probability p,; (introduced below). Depending on the trade-off
parameter y we have to apply a different ranking criteria to identify suitable candidates. We apply the interaction
proximity (prox) when vy 4 1 and direct interactions determine the team’s overall distance. In contrast, we apply
expert candidate degree (degree.,,q) when ¥ 4 0 and recommendations determine the distance. We calculate the
degree in the candidate network G...s as the candidates provide a minimum level of expertise and thus can give
and receive significant recommendations. The complete social network based degree, in contrast, is an unsuitable
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indicator as it would promote also experts that primarily link to non-qualified neighbors—which therefore are not in
the candidate set and subsequently can give only weak recommendations if at all.

We rank each expert (Eq. 16) according to proximity (prox) and degree (degree.unq), wWith y defining the weight
distribution between the two metrics:

(y * rpmx(ui) + (l - 7) * (1 - rdegree(ui))) - mm(u,)
r(u) = . (16)
max(u;) — min(u;)

where r is the rank of expert u; in the interval [0, 1] such that the highest proximity, respectively largest degree results
N 7proxidegree = 1 and the lowest value results in 7,,oxdegree = 0. The overall rank r(u;) is normalized to the interval
[0, 1].

The selection probability p,; = [0, 1] (Eq. 17) depends on the chosen heuristic. The probability is determined by
the current temperature in SA p,;, = temp/maxTemp and by the mutation rate in GA p,;, = mutRate.

1 .
m lf r(u,-) < Suh

_ . (17)
(1= r(u)) * (1 = pa)™"  otherwise

DPun(u;) = {

where m is the number of candidate experts, u; € Gcang are all candidates that provide a minimum expertise level of
the selected skill (g;(s) > g(s)min)- This prevents the selection of experts that are in close proximity, respectively yield
high degree, but who do not provide the required skill. The expert selection function ensures that experts similar to
the current solution are more likely to be selected when either the mutation rate is low or the temperature is low. Here
similarity is determined by the prevailing distance measurement (i.e., direct interactions and/or recommendations).

6.5. Heuristic Differences
GA and SA differ in following three main aspects:

e Number of team configurations available in the next round: GA keeps a population of team configurations
while SA keeps only the best team. Hence, GA can simultaneously develop multiple team configurations to
avoid getting stuck in local optima.

e Team configuration change operators: GA applies crossover to generate radically different teams (where poten-
tially more than one member is new) and mutation to introduce small, random changes. SA in contrast relies
only on exchanging a single expert.

e Search progress: SA analyzes the number of improved versus worse team configurations to determine the
system’s temperature. It then utilizes that temperature to determine how far a new expert member can be from
the current team. GA on the other hand remains unaware of the quality of teams within a population.

6.6. Selecting Suitable Heuristic Parameters

Selecting parameters for SA and GA is not straight forward as there are no general rule applicable to every
problem domain. The three main GA parameters are population size, crossover, and mutation probability. Previous
work suggests dynamic adaptation for crossover and mutation probabilities [49], whereas [50] applies clustering
techniques to determine suitable values. The correlation of population size and cross over is investigated in [51].
These three exemplary works, however, address very different problem domains. In the case of simulated annealing,
work on optimizing parameters is similarly problem specific: [52] addressing a graph partitioning problem, [53]
focusing on the longest common subsequence problem, and [54] dealing with distributing workload across multiple
processors.

As these efforts demonstrate, suitable parameters depend greatly on the the underlying problem type. We thus
argue that more research effort is required to completely understand the impact of parameter values on SA and GA
in the team formation domain. A rigorous analysis of suitable parameters, however, is definitely outside the scope of
this paper.
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Team Coverage Cr O(Sx))

Team Interactions W(T) (M)

Candidate Proximity prox(Cand) O((|Ecanal + |Cand| log |Cand)|) = |Cand|)
Single Recommendation | w,(uy, Sk, Uy, 51) O(avgCommonNeighbors)

Team Recommendations | “W,.(7") O(Sg|? * avgCommonNeighbors)
Expert Selection pun(Cand) O(|Cand)|)

Team Quality QCr, Wo(T), WAT)) | O(S|* * avgCommonNeighbors)
Genetic Algorithms GA O(maxlt = popSize = Q(T))

Simulated Annealing SA O(maxlIt * maxRounds * Q(T"))

Table 2: Runtime complexity of the heuristics and functions applied in determining a team’s quality.

Here, we discuss our settings based on our experience. We applied the simulated annealing algorithm as provided
in the JUNG 1.7.6 framework®, setting tries = 200, count = 100, 7cpoting = 0.99, and limit,ccep; = 0.97. Example
JUNG code provided initial parameter values which where then minimally adjusted through experiments. It took
about 10 experiment iterations to fine tune those parameters, so we expect similarly low effort when applying our
approach to other social network domains. For GA, we utilized the Java Genetic Algorithms Package (JGAP) 7. We
set the population size to 200, the same value as SA tries to obtain comparable runtime behavior. Crossover applies
to 35% of the population and the mutation rate is 8.3%, both the default values used by the JGAP framework. We
expect that values for SA and GA are suitable for social networks with similar link structure and skill distribution.
Our experiments demonstrate that these parameters work for networks of various size.

As for tuning of the tradeoff parameter o and skill threshold values g(s),,;, we propose following mechanisms.
Parameterless multi-objective algorithms such as NSGA-II [55] provide multiple pareto-optimal solutions to the team
formation problem without setting « to any particular value. The user then inspects the results of a test run and derives
from the most "usable’ solutions the corresponding « applicable in SA and GA. The skill threshold reflects the number
of evaluated experts and thus has an impact on execution time. For high thresholds, only the very few top experts make
it into the candidate set. Consequently, the heuristics potentially converge soon but might not find the best tradeoff.
For very common skills and low threshold values, on the other hand, every expert in the social network becomes a
candidate and the search space increases dramatically. In practise, an upfront analysis of the distribution of each skill
is necessary to find suitable thresholds. We assume domain dependent analysis results, but expect the analysis to be of
limited effort to conduct. We introduced a single, general limit for each skill as in our simulation all skills are equally
common. That limit was 20% of the experts in the overall social network and ¢(s),,;» = 0.2, whichever applied first.

6.7. Scalability Aspects

We listed the computational complexity for the main functions in Table 2. The number of skills |Sg| seem to
have a significant effect on team interaction distance and recommendations due to the quadratic runtime complexity.
However, we expect no negative performance impact as the number of independent skills within a team is usually low.
We propose clustering of commonly collocated skills when a larger skill set is required.

The set of candidate experts has a similarly low impact on performance. Here, we propose precomputing the
interaction distance between all candidates. Finding a single shortest path is in O(|[Ecguq| + |Cand| log |Cand)|) [56].
Both heuristics subsequently apply those distance values during every team transformation (i.e., expert selection) and
team quality evaluation. The precomputation is also feasible even for larger candidate sets when distance values
remain stable over a larger period of time, e.g., a month. Optimization strategies such as constraining the distance
calculation (e.g., assigning a default distance beyond 3 hops) brings an additional performance boost.

A-priori calculation of recommendations, however, is too computationally expensive. There are potentially |Sg| =
(ISg|—1) different recommendations a single expert u, can give between two experts i, and u,. There exist O(|Cand 1)
of those triples in the form < u,,u,,u, > set when the underlying the candidate set is a fully connected graph.
While this assumption is unrealistic in most cases, it still prohibits the precalculation of recommendations. Thus the

®http://jung.sourceforge.net/
"nttp://jgap.sourceforge.net/
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heuristics calculate the recommendations on the fly as needed. Several performance measures are applicable: for
small team transformation, such as when only a single member of the team is exchanged, only the recommendations
involving the leaving member(s) and the new member(s) need to be determined. Further more, we propose the caching
of recommendations for even quicker access.

There are additional measures that go beyond tuning the computation of distance and recommendations. Incre-
mental search, for example, starts with a small candidate set that quickly returns results. If the user is not satisfied
with the proposed team configurations, s/he can retry with a larger candidate set. Alternatively, the search in a larger
candidate set can be carried out in parallel to the initial request. Starting with a small core team that needs to be as
well connected as possible is another strategy. Once a core team is established, experts for less important skills that
need not yield so good connectivity join the team. The detailed discussion on the implications of these strategies on
team quality and algorithm performance is beyond the scope of this paper.

7. Evaluation

In this section, we focus on three aspects of the team formation heuristics: (i) we observe the improvement of team
quality to demonstrate the heuristics’ ability to find better team configurations than the initial Top Team (Top(Sg));
(ii) we analyze the impact of the dynamic trade-off factor y as compared to pure interaction and pure recommendation
driven composition to motivate the need for dynamic y; and finally (iii) we compare the performance of the genetic
algorithm and simulated annealing.

We evaluate the performance of our workforce composition algorithm based on an synthetic data. Thus, we first
outline the generation of the social network structure, distribution of skills, and the strategy for selecting overloaded
experts. Second, we present the results for various network and skill configurations and display an example of initial
and final team configuration. The analysis also includes a comparison to a real world data set which demonstrates the
viability of our simulation model.

The experiment results demonstrate the effectiveness of dynamically balancing interaction-based and recommendation-
based distance calculation. The dynamic adjustment of trade-off factor 7y achieves best results in social networks
lacking a rich-club phenomenon and which rapidly become very sparse when experts are overloaded. Both heuristics
are able to identify team configurations with significantly improved team distance and while maintaining high skill
coverage. The Genetic Algorithm, however, consistently outperforms Simulated Annealing.

7.1. Experiment Model

Most social networks yield a power-law degree distribution [57, 58]. In such networks most nodes exhibit only
a few neighbors while a few nodes are extremely well connected. For simulation purposes such a degree structure
emerges from preferential attachment of edges [59]. For our experiments preferential attachment generates an undi-
rected graph yet without edge weights. This mechanisms has new nodes (e.g., node N in Figure 12a) link preferably
to well connected nodes (eventually to node A in Figure 12b).

The plain network graph serves as foundation for defining edge weights and distributing skills. We mimic collabo-
rative behavior by selecting a node and a subset of its neighbors. For this node we now determine a skill depending on
the set of distinct, already acquired skill and the maximum allowed amount. The skill counter is then increased on all
edges connecting the chosen node and neighborhood subset (e.g., skill p2p for nodes A, B, and C in Figure 12b). At
the same time, also the skill counter of the involved nodes increases by 1. We repeat this step degree * nodeCount % 10
times.

The underlying power-law distribution causes the node and skill selection process to produce a rich-club free edge-
weight structure. Whenever we select a low-degree node, the randomly selected neighbor subset is more likely to be
of higher degree than equal or lower degree (Figure 12b). Analogous, a selected high-degree node will exhibit more
low-degree neighbors. Consequently, edges in-between high degree nodes and in-between low-degree nodes have
significantly lower weights than edges connecting high-degree with low-degree nodes (represented by line thickness
in Figure 12c). The second side effect is that high-degree nodes have higher expertise scores than low-degree nodes
as they are more likely to participate in collaborations (i.e., neighborhood subsets).

Finally, we introduce the strategy for selecting overloaded experts. We apply degree-based preferential selection
of experts rather than a random set. Well-connected experts are more likely to become part of a composition and thus
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are more likely to be overloaded, respectively unavailable. Hence, high-degree nodes have a higher probability for
being marked as unavailable than low-degree nodes (see also Figure 12c¢).

7.2. Experiment Configuration

We simulated two expert networks with 200 (Experiment 1.1, 1.2), respectively 1000 experts (Experiment 2). In
the experiments, the overall skill set S comprises 30 and 100 skills, where each expert can acquire a maximum of 8
and 15 skills. The skill distribution mechanism selects for each expert a subset of 5 and 15 neighbors. The required
skill set Sg consists of 8, respectively 10 randomly selected skills. In addition we apply composition constraints
during the team formation process to replicate real world settings: in experiment 1.1 each expert could provide only
a single skill, while for experiment 1.2 an acceptable team solution is required to have a minimum team size of 6. In
experiment 2, teams must consist of a minimum of 7 experts.

We tested for the effect of expert overload by marking 0%, 10%, 20%, 30%, and 40% as unavailable based on
degree-based preferential selection. The benefit of trading off interactions-based and recommendation-based distance
becomes apparent when comparing fixed values of y (yg,y;) with dynamically calculating y. Results for each of
these configurations derive from the average of 10 iterations with different initialization of the underlying network
structure and skill distribution. During all experiments we set the trade-off parameter @ = 0.1. This value reflects the
fact that coverage can drop sharply when low-quality members join the team, while distance can never reach zero.
Thus, we put more weight on reducing distance than aiming for members of high expertise. Experts had to yield
q($)min = 0.2 to be considered for a particular skill s to ensure a minimum level of coverage. Experts that did not
provide a single required skills were temporarily removed from the social network to improve processing speed. The
candidate network G4 for the two experiments exhibits on average around 120 and 470 experts, respectively.

7.3. Effect of the Dynamic Interaction-Recommendation Tradeoff

Figure 13 depicts the impact of fixed and dynamic y when applying the Genetic Algorithm for increasing levels
of unavailable experts. Figure 14 provides the same visualizations for the Simulated Annealing heuristic. In each
subfigure the green boxes provide the values for dynamically calculated y. Blue circles depict the results for y = 1,
respectively the red triangles for y = 0. Where applicable, the turquoise crosses on dotted lines provide the values of
the starting Top team (T'op(Sg)). We compare both heuristics in Figure 17. Higher values are preferred for coverage
C and recommendation distance W,. In contrast, lower values for interaction distance W, and overall team distance
improvement D signify better performance. The error bars illustrate the standard deviation of 10 experiment runs.
Note that we shifted some results +.5% along the x-axis and occasionally printed only the upper or the lower error bar
for sake of visibility.

a) Preferential attachment b) Skill distribution ¢) Availability Selection

Figure 12: Simulation process: (a) creating a power-law graph via preferential attachment (dashed line thickness
represents link probability), (b) selecting random node {C} and neighborhood subset {A, B} for skill distribution, and
(c) marking nodes {A, B, C, F'} as unavailable based on preferential selection.

20



7.3.1. Impact on the Genetic Algorithm

Inherent to our multi-objective team quality function, any team configuration that comes with merely slightly re-
duced coverage, needs to yield only equally small improvements on distance (and vice versa). Consequently, with
fixed gammag focusing only on interactions and thus ignoring direct interactions results in consistently higher cov-
erage, higher interaction distance®, and higher recommendations (Fig. 13). We obtain the inverse result with fixed
v1. This nicely demonstrates that the team formation problem consists indeed of conflicting optimization functions:
maximum coverage and minimum direct interaction distance.

As the trade-off suggests, the dynamically calculated y has direct interactions W, and recommendations W, always
between the fixed y, and 7y, settings. Values for dynamic y tend to be closer to the results for y, rather than vy, as
the network never experiences extreme fragmentation. Thus the fact that W,(y) never reaches the same level as pure
recommendation (yp) is negligible as recommendations serve merely as substitute for direct interactions and thus are
not the main objective. However, dynamic y does converge towards y, as more experts become unavailable.

Most importantly, with dynamic vy, the genetic algorithm simultaneously achieves higher recommendations (W,)
and lower interaction distance W, than the top team. In the case of coverage, dynamic yy even outperforms both fixed
configurations (yy, y1): occasionally in experiment 1.1 (Fig. 13a) and 1.2, and consistently in experiment 2 (Fig. 13d).

Comparing coverage and direct distance with y; highlights the effect of increasingly unavailable experts. In ex-
periment 1.1, coverage remain stable, but distance increases (Fig. 13b), while in experiment 2 low distance (Fig. 13e)
can only be maintained through reduction in coverage. The dynamic threshold mitigates expert unavailability by suc-
cessfully exploiting recommendations. This strategy thus maintains high coverage while still improving on distance
and recommendation when compared to the Top Team. Experiment 1.2 provides similar results as Experiment 1.1,
thus respective figures are excluded here but reported in Annex A (20a-c).

7.3.2. Impact on Simulated Annealing
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Distance W, (c,f) for experiment 1.1 (a-c), and experiment 2 (d-f).

8Remember that we aim to reduce interaction distance.
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Figure 14: Simulated Annealing results for: Coverage C (a,d), Interaction Distance W, (b,e), and Recommendation
Distance W, (c,f) for experiment 1.1 (a-c) and experiment 2 (d-f).

Overall, SA has similar result characteristics (Fig. 14) as the GA. For experiment 1.1 and 1.2, dynamic y has
direct interaction distance (W,), and recommendations (W,) between both fixed strategies (y1,yo). When comparing
coverage, we notice large deviations for ;. In experiment 2, SA with y; cannot find significantly better teams than
Top Team for more then 30% unavailable experts.

Notice the proximity of W, and W, to the Top Team values (dotted line in Fig. 14e+f) combined with high cov-
erage. SA with dynamic y, however, provides similar improvements over the Top Team across all expert availability
levels and all experiments. Again, experiment 1.2 provides similar results as Experiment 1.1, thus respective figures
are excluded here but reported in Annex A (20e-f). Overall, the data demonstrates that both heuristics provide bet-
ter solutions than either composition strategy by itself when applying the dynamic combination of interactions and
recommendations.

7.4. Example Team Formation

An excerpt from experiment 1.2 demonstrates the improvement in team distance as achieved by the genetic al-
gorithm (Fig. 15a) and simulated annealing (Fig. 15b). Table 3 provides the corresponding skill, team, and metric
information. The initial team (Top Team) consists of seven members ([U7, U21, U23, U109, U83, U76, U143] from
a network of 200 experts) provide the eight required skills (SO — S§7). The Top Team is weakly connected, with U76
and U83 having no previous interactions with any of the remaining members. The normalized team density® of 0.321
is rather low.

Both heuristic exploit the composition restriction (minimum 6 experts) to the full extent and reduce the initial
number of involved experts. The genetic algorithm preserves three members from the Top Team ([U21, U23, U143])
but assigns U21 a different skill. All three additional members come with high skills (g(s) > 0.7) and considerably
reduce the team distance. The normalized team density is comparatively high with 0.893 due to U23 and U22 linking
to every other member, and only U143 featuring less than three intra-team relations. Simulated annealing improves
similarly on distance, but not as successfully. Two members from the Top Team U21 and U143 join 4 new members

°Le., the number of actual links divided by the maximum possible number of links in a graph
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all having skills higher than 0.45. The lower normalized team density of 0.607 is largely due to two experts (U143 and
U161) having only a single link, and only a single expert (U22) yielding previous interactions with all other members.

In direct comparison, the genetic algorithm manages to maintain higher coverage while achieving lower distance
than simulated annealing. Inverting the energy metric we obtain the team quality: GA more than doubles the team
quality, whereas GA provides only a 58% increase (compared to the Top Team that has quality and energy always
equal to 1). Teams produced by GA and SA highlight a general property of the formation process: at least some
members of the Top Team will always be part of the best found team. In this example, GA and SA produced rather

similar final teams (overlap of 5 members). Later in Section 7.5.1 we test for correlation of GA and SA to determine
if this is usually the case.

€
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Figure 15: Team formation result with Genetic Algorithms (a) and Simulated Annealing (b) from Experiment 1.2,
40% unavailable experts, using dynamic 7y for trade-off between W, and W,. Full edges between best team members

(green squares, and hexagons), dashed edges between Top Team members (yellow hexagons). Thicker edges represent
tighter links.
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7.5. Comparing GA and SA for dynamic y

In our experiments, the GA consistently outperform SA. Figure 16 compares the average fitness values for the best
final teams. For full expert availability the genetic algorithm delivers a 2.3x to 3.5x fitness improvement compared to
the initial Top Team. SA in contrast increases fitness only by a factor 1.1x to 1.9x. The difference becomes smaller
with declining y. For 40% unavailable experts, GA improves fitness by 38% to 92%, whereas SA ranges between
37% and 68% respectively. Looking in more detail at coverage and distance, we note that the GA performs better at
finding densely connected teams while maintaining consistently high coverage.

For both heuristics, coverage C remains comparatively high regardless of the amount of available expert, even
though we have put more focus on achieving lower distance than high coverage (o = 0.1). Across all experiments and
both heuristics, average coverage resides above 0.6 even though we have set the lower limit for expertise to g(s)in =
0.2. SA produces teams with higher coverage than GA but simultaneously delivers smaller distance improvements.

When applying genetic algorithms, distance 9 decreases linearly and converges to roughly the same level as
simulated annealing as an increasing number of experts become unavailable. GA thus clearly outperforms SA below
30% unavailable experts. Given the large standard deviation in distance improvements and also coverage, the results
are closer together for 30% and 40% missing experts. While SA failed to produce a better final team than Top(Sg)
25x across 150 experiment rounds (50 rounds each in Ex1.1, 1.2, and 2), GA only failed to do so 6x. This also
explains simulated annealing’s spike in distance improvement for 10% and 20% in Experiment 2 when 3 out of 10
team configurations could not be improved.
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Figure 17: Coverage and Distance for experiment 1.1 (a), 1.2 (b), and experiment 2 (c) for SA and GA. Error bars are
given in one direction only for sake of clarity.

7.5.1. Heuristic Correlation

As indicated by the error bars in Figure 17, both heuristics yield a significant amount of deviation in distance
improvements and also coverage. We therefore test these two metrics for correlation to determine if one heuristic
performs better in cases where the other heuristic performs poorly and vice versa and thus complement each other.

Comparing SA and GA with the pearson correlation coefficient, we specify the null hypothesis p = 0 for all
experiment sets. We obtain following values for coverage (ogy1.1 = 0.27; pgx12 = 0.14; pgx = 0.41), and distance
improvement (0gy1.1 = 0.28; pgx12 = 0.43; ppy = 0.11). With sampling size 50 and a significance level for two-tailed
test of 0.01, p needs to be greater than 0.354 to be significantly different from zero, respectively p needs to be smaller
than —0.354 for inverse correlation. Hence, we accept the null hypothesis for coverage (Ex1.1, Ex2) and distance
improvement (Expl.1, Exp2) that there exist no correlation between GA and SA. There is even a small, but significant
relationship between SA and GA for distance improvement in experiment 1.2 and coverage in experiment 2. Given
these correlation measurements there is no evidence that the two heuristics complement each other.

In addition we inspect the few instance where GA or SA were unable to find better teams than the initial Top Team.
As mentioned above, GA failed to so 6x, while SA failed 25x. Out of the 6 unsuccessful GA attempts, SA similarly
did not provide a better solution and provided only little improvement for the remaining 2 attempts. In contrast, GA
found significantly better teams for the remaining 19 SA misses. This supports the correlation measurement above:
simulated annealing and the genetic algorithm are not complementary.
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7.5.2. Comparison to Real-world data

We compare the data generated by our experiment model and a real-world data set to validate our results. Slashdot
is an IT-centric news site where each posted story receives extensive discussions. A reply posting between two
comment authors becomes an interaction link. The skills are extracted from a news story’s subdomain. We derived an
expert network from the Slashdot postings from January 1st 2008 to June 30th 2008, covering the subdomains apple,
ask, entertainment, mobile, linux, developers, games, news, slashdot, and it. We didn’t, however, run detailed team
formation experiments on the Slashdot data set as the number of available skills is limited and thus does not allow for
sufficient experiment variations necessary to generate reliable results.
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Figure 18: Degree vs. Score for synthetic network of 200, Figure 19: Effect of increasingly unavailable experts on y
1000, and 10000 nodes and Slashdot with 12000 nodes.  for synthetic and Slashdot networks.

General social network characteristics of the Slashdot postings are discussed in [20]. In this paper, we focus
on the correlation of degree and expertise to demonstrate that our simulation model correctly reproduces real-world
settings. In addition we compare the effect of unavailable experts on the candidate network density. Figure 18 depicts
the degree of an expert printed against his/her total expertise score g(-). The compared data sets comprise the two
networks used in the evaluation (blue circle, green plus), a larger synthetic set (10000 experts, red crosses) and the
Slashdot data set of 12000 experts (purple squares). All four data sets derive from a difterent overall skill, required
skill, and expert count configuration'?, yet we observe in every case a linear correlation between degree and score.
The slope is defined by the amount of required skills (theoretical maximum score is the amount of skills) and the
maximum degree.

The power-law network topology has a profound effect on the results of our team formation algorithm. The strat-
egy for marking experts as unavailable directly affects the connectivity of the observed candidate network. Degree-
based availability reduces the connectivity rapidly as predominantly well connected experts are marked as overloaded.
Here y drops from 0.75, respectively from 1, to 0.39. Already with 10% (experiment 1), respectively 20% (experiment
2), of experts unavailable, vy is below 0.6. The effect of degree-based node removal in power-law networks is well
analyzed (e.g., [60]) but briefly repeated here to highlight its significance on the trade-off between interaction-based
and recommendation-based team formation.

We visualize the effect of expert unavailability on y in Figure 19. The complete Slashdot network (purple squares)
comprises 8 out of 10 skills from 12000 experts. A second network (a subset of the complete Slashdot expert network
(red triangles)) contains 6 skills, from which we select 5 to generate the candidate network. Degree preferential

19Experiment 1: 200 experts, 8 out of 30 skills; Experiment 2: 1000 experts, 10 out of 100 skills; Experiment 3: 10000 experts, 8 out of 200
skills; Slashdot: 12000 experts, 8 out of 10 skills.
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selection of Slashdot experts shows an even more swift decrease in density than our model: vy drops in both Slashdot
data sets below 0.4 when removing 10% of experts and then converges to 0.05. We have to assume an inverse
rich-club effect, stronger than in our model. Thus we can safely assume that a trade-off between interaction and
recommendation-based distance is even more significant in real world expert crowds.

8. Conclusion

Team composition requires a balance between maintaining sufficiently high skill coverage and adequately con-
nected team members. Finding a suitable team for a given trade-off between skills and connectivity is NP complete.
The problem is further aggravated in crowds as the top experts are most popular and thus become easily overloaded.
The social network structure of crowds usually lacks a rich-club structure. When a small fraction of top experts
(= 10%) becomes unavailable, the social network becomes too sparse to compose a team based on direct interactions
alone. We thus propose to apply skill-dependent recommendations to substitute direct interactions. In addition, the
introduced team-centric recommendation model considers only the recommendations of the team members’ common
neighbors. Our approach then analyzes network density to dynamically adjust the importance of direct interactions
compared to recommendations.

Genetic Algorithms and Simulated Annealing are two suitable heuristics to address the multi-objective team com-
position problem. Genetic Algorithms apply cross over and mutation of team configurations to approach the best team
while Simulated Annealing relies on a cooling schedule. Experiments have successfully shown that both heuristics
are able to find significantly better solutions than the simple set of top ranked experts. The Genetic Algorithm, how-
ever, produced better and more stable results, especially for smaller networks. Analysis of increasingly unavailable
experts demonstrated that our trade-off model accurately guides the transition from from direct interaction links to
recommendations. Consequently the composition mechanism focuses on direct links as long as possible before ex-
perts are integrated into the team based on recommendations. Such dynamic adaptation enables to obtain teams that
yield both higher recommendations and lower distance than the initial top team. Ultimately we were able to obtain
team configurations that exhibit desirably low team distance, while maintaining consistently high skill coverage even
when removing up to 40% experts from the social network.

We intend to continue our research in multiple directions. First, we plan to evaluate our approach with other real-
world data sets which exhibit a larger skill set. The DBLP dataset is one possible candidate. This effort however has
to go in hand with a rigorous analysis of skill distribution and therefore was not attempted in the scope of this work.
Second, we intend to investigate how to exploit interaction patterns [61] to more accurately interpret the link strength
between experts. Finally, we expect exciting results from exploring how our approach can enhance existing work on
team-aware process management [62] in terms of composing an optimal team for executing a process.

Acknowledgment

This work has been partially supported by the EU STREP project Commius (FP7-213876), the EU IP project
COIN (FP7-216256), and Austrian Science Fund (FWF) J3068-N23.

References

[1] D. Brabham, Crowdsourcing as a model for problem solving: An introduction and cases, Convergence 14 (1) (2008) 75.

[2] E. L. Fitzpatrick, R. G. Askin, Forming effective worker teams with multi-functional skill requirements, Comput. Ind. Eng. 48 (3) (2005)
593-608. doi:http://dx.doi.org/10.1016/j.cie.2004.12.014.

[3] H. Wi, S. Oh, J. Mun, M. Jung, A team formation model based on knowledge and collaboration, Expert Syst. Appl. 36 (5) (2009) 9121-9134.
doi:http://dx.doi.org/10.1016/j.eswa.2008.12.031.

[4] A. Baykasoglu, T. Dereli, S. Das, Project team selection using fuzzy optimization approach, Cybern. Syst. 38 (2) (2007) 155-185.
doi:http://dx.doi.org/10.1080/01969720601139041.

[5] M. Cheatham, K. Cleereman, Application of social network analysis to collaborative team formation, in: CTS ’06: Proceedings of the
International Symposium on Collaborative Technologies and Systems, IEEE Computer Society, Washington, DC, USA, 2006, pp. 306-311.
doi:http://dx.doi.org/10.1109/CTS.2006.18.

[6] M. Sozio, A. Gionis, The community-search problem and how to plan a successful cocktail party, in: Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD ’10, ACM, New York, NY, USA, 2010, pp. 939-948.
doi:http://doi.acm.org/10.1145/1835804.1835923.

URL http://doi.acm.org/10.1145/1835804.1835923

26



[7]

[8]

[9]

[10]

(1]

[12]

[13]

(14]

[15]
[16]

(17]

[18]

(19]

[20]

(21]

(22]

[23]

[24]

[25]

[26]

(27]

(28]

A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, S. Leonardi, Power in unity: forming teams in large-scale community systems, in:
Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM *10, ACM, New York, NY, USA,
2010, pp. 599-608. doi:http://doi.acm.org/10.1145/1871437.1871515.

URL http://doi.acm.org/10.1145/1871437.1871515

D.-N. Yang, Y.-L. Chen, W.-C. Lee, M.-S. Chen, On social-temporal group query with acquaintance constraint, Proc. VLDB Endow. 4 (2011)
397-408.

URL http://portal.acm.org/citation.cfm?id=1978665.1978671

M. Craig, D. Horton, F. Pitt, Forming reasonably optimal groups: (frog), in: Proceedings of the 16th ACM international conference on
Supporting group work, GROUP *10, ACM, New York, NY, USA, 2010, pp. 141-150. doi:http://doi.acm.org/10.1145/1880071.1880094.
URL http://doi.acm.org/10.1145/1880071.1880094

M. Xie, L. V. Lakshmanan, P. T. Wood, Breaking out of the box of recommendations: from items to packages, in: Proceed-
ings of the fourth ACM conference on Recommender systems, RecSys ’10, ACM, New York, NY, USA, 2010, pp. 151-158.
doi:http://doi.acm.org/10.1145/1864708.1864739.

URL http://doi.acm.org/10.1145/1864708.1864739

A. Datta, J. Tan Teck Yong, A. Ventresque, T-recs: team recommendation system through expertise and cohesiveness, in: Proceed-
ings of the 20th international conference companion on World wide web, WWW ’11, ACM, New York, NY, USA, 2011, pp. 201-204.
doi:http://doi.acm.org/10.1145/1963192.1963289.

URL http://doi.acm.org/10.1145/1963192.1963289

S. Fortunato, Community detection in graphs, Physics Reports 486 (3-5) (2010) 75 — 174. doi:DOI: 10.1016/j.physrep.2009.11.002.

URL http://www.sciencedirect.com/science/article/pii/S0370157309002841

T. Lappas, K. Liu, E. Terzi, Finding a team of experts in social networks, in: KDD ’09: Proceedings of the 15th
ACM SIGKDD Int. Conference on Knowledge discovery and data mining, ACM, New York, NY, USA, 2009, pp. 467-476.
doi:http://doi.acm.org/10.1145/1557019.1557074.

P. V. Singh, The small-world effect: The influence of macro-level properties of developer collaboration networks on open-source project
success, ACM Trans. Softw. Eng. Methodol. 20 (2010) 6:1-6:27. doi:http://doi.acm.org/10.1145/1824760.1824763.

URL http://doi.acm.org/10.1145/1824760.1824763

M. E. Gaston, J. Simmons, M. desJardins, Adapting network structure for efficient team formation, in: AAMAS-04 Workshop on Learning
and Evolution in Agent Based Systems, 2004.

C.-C. Chen, A multi-level study of free-loading in dynamic groups: The importance of initial network topology, in: Intelligent Networking
and Collaborative Systems (INCOS), 2010 2nd International Conference on, 2010, pp. 16 —23. doi:10.1109/INCOS.2010.96.

L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, and evolution, in: KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA,
2006, pp. 44-54. doi:http://doi.acm.org/10.1145/1150402.1150412.

J. J. McAuley, L. da Fontoura Costa, T. S. Caetano, Rich-club phenomenon across complex network hierarchies, Applied Physics Letters
91 (8) (2007) 084103. doi:10.1063/1.2773951.

V. Colizza, A. Flammini, M. A. Serrano, A. Vespignani, Detecting rich-club ordering in complex networks, Nature Physics 2 (2006) 110-115.
V. Goémez, A. Kaltenbrunner, V. Lopez, Statistical analysis of the social network and discussion threads in slashdot, in:
WWW °08: Proceedings of the 17th Int. Conference on World Wide Web, ACM, New York, NY, USA, 2008, pp. 645-654.
doi:http://doi.acm.org/10.1145/1367497.1367585.

L. A. Adamic, J. Zhang, E. Bakshy, M. S. Ackerman, Knowledge sharing and yahoo answers: everyone knows something, in:
WWW °08: Proceeding of the 17th Int. Conference on World Wide Web, ACM, New York, NY, USA, 2008, pp. 665-674.
doi:http://doi.acm.org/10.1145/1367497.1367587.

C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan, Mining email social networks, in: MSR ’06: Proceed-
ings of the 2006 Int. Workshop on Mining software repositories, ACM Press, New York, NY, USA, 2006, pp. 137-143.
doi:http://doi.acm.org/10.1145/1137983.1138016.

P. Chundi, M. Subramaniam, D. K. Vasireddy, An approach for temporal analysis of email data based on segmentation, Data & Knowledge
Engineering 68 (11) (2009) 1253 — 1270, including Special Section: Conference on Privacy in Statistical Databases (PSD 2008) - Six selected
and extended papers on Database Privacy. doi:DOI: 10.1016/j.datak.2009.04.011.

URL http://www.sciencedirect.com/science/article/B6TYX-4WB3N78-1/2/ca0fcdcf7cccd593416a6c32092cad23

C. Bird, D. Pattison, R. D’Souza, V. Filkov, P. Devanbu, Latent social structure in open source projects, in: SIGSOFT ’08/FSE-16: Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, ACM, New York, NY, USA, 2008, pp.
24-35. doi:http://doi.acm.org/10.1145/1453101.1453107.

D. Duan, Y. Li, Y. Jin, Z. Lu, Community mining on dynamic weighted directed graphs, in: Proceeding of the 1st ACM international
workshop on Complex networks meet information &#38; knowledge management, CNIKM 09, ACM, New York, NY, USA, 2009, pp.
11-18. doi:http://doi.acm.org/10.1145/1651274.1651278.

URL http://doi.acm.org/10.1145/1651274.1651278

F. Provost, B. Dalessandro, R. Hook, X. Zhang, A. Murray, Audience selection for on-line brand advertising: privacy-friendly social network
targeting, in: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD *09, ACM,
New York, NY, USA, 2009, pp. 707-716. doi:http://doi.acm.org/10.1145/1557019.1557098.

URL http://doi.acm.org/10.1145/1557019.1557098

Z. Dong, G. Song, K. Xie, Y. Sun, J. Wang, Adequacy of data for mining individual friendship pattern from cellular phone call logs, in:
Proceedings of the 6th international conference on Fuzzy systems and knowledge discovery - Volume 5, FSKD’09, IEEE Press, Piscataway,
NJ, USA, 2009, pp. 573-577.

URL http://portal.acm.org/citation.cfm?id=1801874.1801997

M. Bouguessa, S. Wang, B. Dumoulin, Discovering knowledge-sharing communities in question-answering forums, ACM Trans. Knowl.

27



[29]
[30]

[31]

(32]
[33]
[34]
[35]

[36]

[37]

(38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]
(48]
[49]
[50]

[51]

[52]

[53]

[54]

Discov. Data 5 (2010) 3:1-3:49. doi:http://doi.acm.org/10.1145/1870096.1870099.

URL http://doi.acm.org/10.1145/1870096.1870099

S. Dustdar, W. Schreiner, A survey on web services composition, Int. J. Web Grid Serv. 1 (1) (2005) 1-30.
doi:http://dx.doi.org/10.1504/IIWGS.2005.007545.

Y. Yang, F. Mahon, M. H. Williams, T. Pfeifer, Context-aware dynamic personalised service re-composition in a pervasive service environ-
ment, in: UIC, 2006, pp. 724-735.

R. Quitadamo, F. Zambonelli, G. Cabri, The service ecosystem: Dynamic self-aggregation of pervasive communication services, in: Software
Engineering for Pervasive Computing Applications, Systems, and Environments, 2007. SEPCASE °07. First International Workshop on, 2007,
pp. 1-10. doi:10.1109/SEPCASE.2007.11.

Z. Maamar, D. Benslimane, P. Thiran, C. Ghedira, S. Dustdar, S. Sattanathan, Towards a context-based multi-type policy approach for web
services composition, Data Knowl. Eng. 62 (2) (2007) 327-351. doi:http://dx.doi.org/10.1016/j.datak.2006.08.007.

L. Baresi, D. Bianchini, V. D. Antonellis, M. G. Fugini, B. Pernici, P. Plebani, Context-aware composition of e-services., in: TES, 2003, pp.
28-41.

S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, Computer Networks and ISDN Systems 30 (1-7) (1998)
107-117, proceedings of the Seventh International World Wide Web Conference. doi:DOI: 10.1016/S0169-7552(98)00110-X.

T. Haveliwala, Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search, IEEE Transactions on Knowledge and Data
Engineering 15 (4) (2003) 784-796. doi:10.1109/TKDE.2003.1208999.

K. Balog, M. De Rijke, Determining expert profiles (with an application to expert finding), in: Proceedings of the 20th international joint
conference on Artifical intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007, pp. 2657-2662.

URL http://portal.acm.org/citation.cfm?id=1625275.1625703

D. Horowitz, S. D. Kamvar, The anatomy of a large-scale social search engine, in: Proceedings of the 19th international conference on World
wide web, WWW °10, ACM, New York, NY, USA, 2010, pp. 431-440. doi:http://doi.acm.org/10.1145/1772690.1772735.

URL http://doi.acm.org/10.1145/1772690.1772735

D. Schall, S. Dustdar, Dynamic context-sensitive pagerank for expertise mining, in: L. Bolc, M. Makowski, A. Wierzbicki (Eds.), SocInfo,
Vol. 6430 of Lecture Notes in Computer Science, Springer, 2010, pp. 160-175.

F. Bonchi, C. Castillo, A. Gionis, A. Jaimes, Social network analysis and mining for business applications, ACM Trans. Intell. Syst. Technol.
2(2011) 22:1-22:37. doi:http://doi.acm.org/10.1145/1961189.1961194.

URL http://doi.acm.org/10.1145/1961189.1961194

D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in: International Conference on Information and Knowledge
Management, ACM, 2003, pp. 556-559.

C.-W. Hang, M. P. Singh, Trust-based recommendation based on graph similarity, in: 13th AAMAS Workshop on Trust in Agent Societies
(Trust), 2010.

F. Skopik, D. Schall, S. Dustdar, Modeling and mining of dynamic trust in complex service-oriented systems, Information Systems 35 (7)
(2010) 735-757. doi:http://dx.doi.org/10.1016/j.i5.2010.03.001.

K. Falahi, Y. Atif, S. Elnaffar, Social networks: Challenges and new opportunities, in: Green Computing and Communications (Green-
Com), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and Social Computing (CPSCom), 2010, pp. 804 —808.
doi:10.1109/GreenCom-CPSCom.2010.14.

J. Caverlee, L. Liu, S. Webb, Towards robust trust establishment in web-based social networks with socialtrust, in: Proceed-
ing of the 17th international conference on World Wide Web, WWW °08, ACM, New York, NY, USA, 2008, pp. 1163-1164.
doi:http://doi.acm.org/10.1145/1367497.1367707.

URL http://doi.acm.org/10.1145/1367497.1367707

M. Sirivianos, K. Kim, X. Yang, Facetrust: assessing the credibility of online personas via social networks, in: Proceedings of the 4th
USENIX conference on Hot topics in security, HotSec’09, USENIX Association, Berkeley, CA, USA, 2009, pp. 2-2.

URL http://portal.acm.org/citation.cfm?id=1855628.1855630

D. Schall, Human interactions in mixed systems - architecture, protocols, and algorithms, PhD Thesis, Vienna University of Technology,
Karlsplatz 13, 1040 Vienna, Austria (2009).

B. Suman, P. Kumar, A survey of simulated annealing as a tool for single and multiobjective optimization, Journal of the Operational Research
Society 57 (10) (2005) 1143-1160.

URL http://wuw.palgrave-journals.com/doifinder/10.1057/palgrave. jors.2602068

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 1st Edition, Wiley, 2001.

M. Srinivas, L. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms, Systems, Man and Cybernetics, IEEE
Transactions on 24 (4) (1994) 656 —667. doi:10.1109/21.286385.

J. Zhang, H. S.-H. Chung, W.-L. Lo, Clustering-based adaptive crossover and mutation probabilities for genetic algorithms, Evolutionary
Computation, IEEE Transactions on 11 (3) (2007) 326 —335. doi:10.1109/TEVC.2006.880727.

K. A. D. Jong, W. M. Spears, An analysis of the interacting roles of population size and crossover in genetic algorithms, in: Proceedings of
the 1st Workshop on Parallel Problem Solving from Nature, PPSN I, Springer-Verlag, London, UK, 1991, pp. 38-47.

URL http://portal.acm.org/citation.cfm?id=645821.670188

D. Weyland, Simulated annealing, its parameter settings and the longest common subsequence problem, in: Proceedings of the
10th annual conference on Genetic and evolutionary computation, GECCO 08, ACM, New York, NY, USA, 2008, pp. 803-810.
doi:http://doi.acm.org/10.1145/1389095.1389253.

URL http://doi.acm.org/10.1145/1389095.1389253

M.-W. Park, Y.-D. Kim, A systematic procedure for setting parameters in simulated annealing algorithms, Computers & Operations Research
25 (3) (1998) 207 —217. doi:DOI: 10.1016/S0305-0548(97)00054-3.

URL http://www.sciencedirect.com/science/article/B6VC5-3SX6XDK-5/2/59aefca9874d9f2a4458c44aba791670

H. Orsila, E. Salminen, T. D. Himildinen, Parameterizing simulated annealing for distributing kahn process networks on multiprocessor socs,

28



[55]
[56]

[57]
(58]

[59]
[60]

[61]

[62]

in: Proceedings of the 11th international conference on System-on-chip, SOC’09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 19-26.

URL http://portal.acm.org/citation.cfm?id=1736530.1736534

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii, Evolutionary Computation, IEEE
Transactions on 6 (2) (2002) 182 —197. doi:10.1109/4235.996017.

M. Fredman, R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Foundations of Computer Science,
Annual IEEE Symposium on 0 (1984) 338-346. doi:http://doi.ieeecomputersociety.org/10.1109/SFCS.1984.715934.

R. Albert, H. Jeong, A.-L. Barabdsi, The diameter of the world wide web, CoRR cond-mat/9907038.

R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Reviews of Modern Physics 74 (2002) 47.

URL http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0106096

A. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512.

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, Network robustness and fragility: Percolation on random graphs, Phys. Rev.
Lett. 85 (25) (2000) 5468-5471. doi:10.1103/PhysRevLett.85.5468.

S. Dustdar, T. Hoffmann, Interaction pattern detection in process oriented information systems, Data & Knowledge Engineering 62 (1) (2007)
138 — 155. doi:DOI: 10.1016/j.datak.2006.07.010.

URL http://www.sciencedirect.com/science/article/B6TYX-4KRY749-1/2/10ace51a52186445e4c1048£911d4£35

W. M. P. van der Aalst, A. Kumar, A reference model for team-enabled workflow management systems, Data & Knowledge Engineering
38 (3) (2001) 335 — 363. doi:DOI: 10.1016/S0169-023X(01)00034-9.

URL http://www.sciencedirect.com/science/article/B6TYX-4447T69-4/2/7fc8ebe39be4d6a51301e9ff1£294e76

Annex A - Extended Experiment Results
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Figure 20: Experiment 1.2: Coverage C (a,d), Interaction Distance W, (b,e), and Recommendation Distance W, (c,f)
obtained by the genetic algorithm (a-c) and simulated annealing (d-f).
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