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L. INTRODUCTION

Our main focus in these lectures will be to trace the
theoretical treatment of electromagnetic interactions - especially the
Compton amplitude from very low to very high energies. We will
especially note the similarities between the various techniques in the
two domains. We shall emphasize physical aspects rather than unduly worry
about rigour. The emphasis will be on current problems, and where
further problem and research areas still lie,

We will especially try to understand the theoretical setting
for the study of the hydrogenic atom. Since we will not want m, /Mp - 0

necessarily, the Bethe -Salpeter equation will be a basic tool. A simple physical
derivation is given,including the main techniques used for actual calculations

of the energy levels. The Lamb shift physics and derivations will also be
discussed,.

In the second part of the course we will discuss high energy
aspects of field theoretic electrodynamics, and go on to conzider problems
concerning the nucleon itself, especially Compton scattering and inelastic
electron scattering, We will briefly review the work of Cheng and Wu and
others on eikonal techniques at high energy. We'll then go on to discuss
the parton approach to electromagnetic interaction, as developed by
Feynman, Bjorken and Paschos, and Drell, Yan, and Levy.

Some parts of these lectures are based on those given at
Brandeis University in 1969 [Gordon and Breach, to be published, 1971 7. .
Further information on the current status of Quantum Electrodynamics (QED)
may be found in the review by S. Brodsky and S. D. Drell, Ann.Rev. Nucl.
Science, 1971.

1I. THE FREE ELECTRON VERTEX

One of the concepts which will recur most frequently in this
course is that of the form factors for the one-photon vertex of the electron
or muon.

Later we shall be interested in the case of the bound lepton,
but for now consider the free lepton pP'*= pP*= m?
Using parity and current conservation, the general form of the vertex is
(see e.g., Bjorken and Drell, 1964).
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By the definition of the unit of charge, F1 (0) =1, and
we identify F g (0) =a = (g-2)/2 as the anomalous magnetic moment

of the lepton, i.e. the part of the moment beyond that given by the Dirac
equation. Note that the total vertex yields the interaction
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for the nonrelativistic electron in an external static magnetic field.

For the case of the proton, there are excellent measurements
of F and F, for 0.01 BeV)? < |g®| < 25 (BeV)®. but as yet no
fundamental understanding of the results. For the case of the electron,
QED, in principle, completely predicts the form factors.

. 2
For iqzl << m- the second-order correction to the vertex
irom QED is
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which yields the Schwinger (1949) coefficient a = /2w,

We shall require the Fl (qz,) part of ["'“ in our Lamb=-ghift

discussions. For now we note the following:

(1) A charge renormalization in the proper vertex graph
is required to keep F1 (0) =1. [ This cancels against the wave function

renormalization (improper vertex) diagrams’ .

(2) Fl (qz) is infrared divergent for qz # 0, and a photon

"mass' A is required to keep the result finite, Of course, this dependence ‘
on A cancels out when one calculates the electron scattering event rate for
an actual experiment. At order a one must include in the calculation of the
rate the cross section for scattering plus the emission of a low-energy
photon, since for any given experimental energy resolution, photons emitted
at sufficient low energy will be undetected. Very soft quanta are always
radiated by the scattered electron,

The total experimental rate through order o corresponds to
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and is finite for A ~» 0, (See Yennie, 1363 ; Yennie, Frautshi, and
Suura, 1961; and Meister and Yennie, 1963).

The most recent theoretical result for the electron anomalous
moment is [ Levine and Wright, 1971 - see also Brodsky and Drell] ,
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I, THE HYDROGEN ATOM

The low-lying lovels of the hydrogen atomic spectrum are shown
in Fig.3-1. If one ignores '

(1) proton recoil, finite size, and magnetic moment
corrections, and

(2) the fact that in the real world electrons can absorb and
radiate light; i.e., take the limits

m
& _po, Rrotonmsize 4 4w 0 (1L 1)
M Bohr radius

(but leave Zao, thI:a binding parameter, finite), then the hydrogen atom can

be exactly described in terms of the eigensolutions and eigenvalues of the
Dirac equation for an electron in a Coulomb potentirl given 40 years ago by
Darwin and Gordon, [ Complete discussions and references are given in Bethe
and Salpeter (1957) 7.

One cof the goals of these lectures is to deséribe the apparatus we
have irom QED which, in principle, exactly describes the physical atom both
in vacuum and in its interactions with external fields. In particular, we shall
try to postpone taking the m e{Mp —>»0 limit for as long as possible, We do

this for three reasons:

(1) Nontrivial proton recoil corrections of order

(Z c«)5 (m&/Mp)me log Za are required to compare with the experimental level
shifts in hydrogen;
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(2) in positronium, no such expansion exists, and
(3) avoiding the infinite mass limit gives a new
perspective to understanding the atom.

As we shall see in Lecture 5, such an extended viewpoint is quite essential
in understanding the spin interactions of the atom in an external electric field.

I 1, The Energy Levels of the Atom and an Experiment

Let us now consider the theoretical description of an experiment
which measures the total absorption cross section for photon scattering on a
hydrogen atom at rest. Using the optical theorem, we can calculate this cross
section from the imaginary part of the forward scattering Compton amplitude.
The general result of time-dependent perturbation theory for the Compton
scattering matrix element is (w = [ }Sl )

Sz -2 S(EL v - Eg-a') Mg
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where

# In the complete reduction of the S-matrix, correction terms occur
for M i corresponding to "non-pole” diagrame such as

and also renormalization graphs for the external lines, etc. Such

contributions have negligible effect on the experiment of interest here.
(See Low, 1952). '
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corresponding to the diagrams in Fig. 3-2.
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Figure 3-2

A fundamental postulate of QED is that the interaction takes
the form

Homz |83 3, (x,0)2 e\ B30 | @y

where A comnects states differing by one photon
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The current, j (x,9), whose matrix elements will be discussed in detail

later, can connect the ground state of the hydrogen atom {i > to all
excited and continuum electroa-proton states | j> p&\s states containing
extra electron-positron or proton-entiproton pairs. 7 For illustration
we shall use this "old-fashioned' perturbation theory expression for

M f to calculate Compton scattering on a free electron. Restricting

ourselves to lowest order, the intermediate states which can contribute
are shown (crossing the dasghed line) in Figure 3-3

{0} {b)

Figure -3

# Further, since there is no energy constraint, the proton could be excited
in the intermediate states. A complete dyramicsl analysis would require
extra "seagull" terms added to M 3 corresponding to 2-photon interactions
with virtual pions and other bosons.



-7

The matrix element in QED for the current between free
electron states is
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and we immediately see the general result thaf 3-momentum is conserved
at each Hem vertex. For diagram 3-3(a) we obtain
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—_
2) £, w(3 A LU{?J'k)ut(P-rk)@a.’e‘
= _% (Zﬂ)&% —K‘--P‘ \f \ Q_(@ spin - 7 - =l ::UL( o7
ZM'ZQ)' (k +F A \ (E) E*%CQ" "(\&*g\}i*mz “ g g) ( . )
where.
Z»“"»@uﬁ(-c&)" A-\-(c‘\:\: Eqrg e pr , Bq = C}_z* wmt (I11. 8)

#

is the positive energy projecticn operator.

For the "Z" diagram 3-3(d) the matrix of the curzent
between an electron and an e” et e™ state for the bottom vertex is

* 24,)

| i(pep)X
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where after integration over &, the positron momentum isp =-p-k. The
vertex at the top vertex must differ in sign because cof Fermi statistics:

CPLLORL R, B) = ~ <RI, Par, BV

. \
MR v eyau () (ILL. 10)

# Our notation differs slightly here from Bjorken and Drell (1264),



Thus we obtain for dlagram 3-3(d)
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projection operator:
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We now note the following important identity:
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for which we identify
q, = wrEx v €, gtz (kv )
=4

The total of dingrams 3-3(a) and 3-3(d) thus gives
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which agrees with the Feynman rules for diagram 3-4{g) (see, e.g.
Bjorken and Drell, 1964).
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FIGURE 3-4



Similarly diagrams 3-3(b) and (c) sumn to the crossed Feynman diagram
3-4().
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Energy and momentum ars conserved at each vertex of the Feynman
diagram.
The identity (3.13) shows that the Feynman propagator

((-m+ig )"1 contains the electron and e e"e+ contributions automatically,
Widening our view, we see that graphs 3-3(a) and (d) have the same vertices.
The Feynman propagetor automatically contains all time orderings of the
interactions along the electron line,

Further discussion and interpretations may be found in Sec. 6
of Bjorken and Drell (1964), Sakurai (1867), and, of course, the original
articles of Feynman (1949, 19590). Many of the original pspers on QED are
reprinted in the volume edited by Schwinger (18958).

We should also note that
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Thus disgrams 3-3(a) and (d) give
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corresponding to the Az/ 2m vector potential term iz the Schrodinger
equation for nonrelativistic electrons. In addition 3-3(a) and (c)
vanish for w =w' -~ 0 (p=p'=0); the Thomson limit for Compton
scattering on the electron thus arises from the "Z' diagrams.



111, 2, Definition of Energy Levels from Measurement

Let us return to our study of photoabsorption ard Compton
scattering on the atom., Obviously M f as it stands in (3. 3} is singular
when E i +w=E j | Formally, this catastrophe is alieviated by the radiative
corrections to the bound electron propagator (see Lecture 6) and leads to
a replacement

Es -Lg > E._“"‘“.T/Q_ (T11. 18)

This just corresponds to giving the state lj » & decaying state time
dependence,

SLHE ek - AT -
2 = ¢ : 2 (1. 19)

For a rigorous treatment of the quantum theory of dscrying
states and the line width see the text Quantum Mechanics by A. Messizh
(Morth Holland Publishing Company, Amsterdam, 1262), Vol. @, Chap. XXI~-13.

Exercige: Prove tlfis sterting from the cefinition of Mﬁ from time-
dependent perturbation theory.
. 2 .
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where T is the time-ordering operator and
Hi= emt’&&; (%, &‘LH\:? S-‘H‘x (x,0)83x= Hem (O1.21)

If the width of state | j > is narrow tie first term (the

"direct channel) clearly dominates Mﬁ when

D Ek":’Ei (I1L, 22)



Operationally, we may define the energy levels of the atom to be the
energy values of w + Ei such that the photoabsorption cross gection peaks,

The apparent shift in energy due to other, nonresonant, terms in the sum

(I11. 3) is of order ofZ a)&m and can be neglected (see Low, 1952). Aside
from the fact that the recoil energy is included in E i {a nogligible effect,

except perhaps for pesitronium) the definition (II. 22) matches up well with
the usual Breit-Wigner analyais of the atomic-beam experiments.
111, 3. Physical Derivation of the Bethe-Salpeter Equa ticn

It is now of interest to compare Mﬁ with the expression for

the Compton matrix elemert as cbtained from the QED Feynman rules, as
given, e, g., in Bjorken and Drell (1964), The relevant diegrame are shown

in Figure 3-b
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FIGURE 3-3



and the correspondine (divact channel) matriv elomonte are
he) ~i
X (AL 1
L~ :
(He = V) Ky~ we)

+ gau’qv. 1 \2 3 -;-*--f}‘:fé—.'m(?-.) (TIL. 23)
(20 (- ) (B -van)  (Fe W) (Fem ™e)

where F represents the matrix element of the current between bound and
fres electron-proton states and V. cc ’yﬂ {1 /’qg‘; v# represents one

photon exchange.
Energy and moment are conserved at each vertex 6o

Pek+Ps R~
TR (I, 24)

We cen formally sum up il the dingroms contributing to the scatiering
amplitude if we use the propagator

K= 1 - 1 AL+ gxX)
F-w ) F-me) -G G- e F- ) (TIL. 25)

to represent the eleciron~proton diagrams where
G=)., V (111 26)
Lrredutihle

s The sumrastion ia clearly only over irraducible '"kernels”
V(‘), 1.e. tha effective acattering potentiais which cannot be separated into
other kernels by crossing a line only through free electron and proton lines.
Notefhat by including just the one-photon-exchange kernel all of the '"ladder"
graphs are generated for electron-proton scattering.

Exercise: Interpret Eq, (IIL. 25) in position-space

representation whore <X X, P wed x.l' xz' » is the two~body Green's

function,

1If Feynman diagrems are to yield the resonant scattering form

(Ifl. 3) for w + Ei = PQ = Ej’ we must have (up to a factor)
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Then, multiplying the rocursion relation (III. 25) forK by (P0 ~E) =0
we immediately obtain the Bethe~Salpeter equat ion (Salpeter and Bethe, 1051)

(Fo- ) (B~ W)V D) =GV, (R v = v) (1. 26)

an eigenvalue equation for 'Mj = PO -P° .

In position-gpace representation we have

kL aé - \'V\e,}‘i"lu }c};} - A ?)?-:\3 (7\3)7‘-?)* (%X:&}(XQ; X?} (111, 29)

where
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- - 2
since |j > is an eigenstote of total 4-momentum: 1’? =5 i - sz = MZ; .

We kave used hare ¢, m. and relative coordinates

X = to_xa\. il T“Xb

% 3 Ao~ X»

, . (I 31)
Tm s \'V\Ox‘/ (vy\&w Y\'\\D>’ ‘Cb: \"\f\\3 I (‘iV“\Q* \,\,\b>

We shail 8lso reguire the Bethe-Szlpeter equation in
momentun space. Iatroducing total and relative momentum variables,

?‘ Par Do

P Tefa~ Taly (IT1. 32)
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one obtains
[, (Ta®+ o) wad(XP0 (T T 8 =il b (0 9)
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which is an eigenvalus equation for fixed Pz = P% - P2 %2 .

The sbove derivation of the Bethe=-Sslpeter equation is
admittedly nonrigorous, but it does clearly show the connection of the
BS equation with msasurement. Rigorous derivations from field theory
have been given by Geli-Mann and Low (1951), and Schwinger (1951).
Further discussion of the more formal agpects of the equation and
references may be found in a book by D. Lurie (1968). Also see
Mandelstam (1955). '

Exercise: Replace the interaction with the proton
in Fig. 3~5 by a Coulomb potential., Use the above method to "derive"
the Dirac equation.

1. 4, Kernels for the Hydrogmzjmom

Some of the BS kernels which must be included to understand
the H-atom spectrurm to an accuracy comparable with experiment are shown
in Table 3-1.# The effccts of the various kernels will be discussed in detail
" in later lectures.

IIL.'5. Reduction tn the Dirac Equation

It is often customary in various applications - especially
in hadron physics ~ to specialize the Bethe~Salpeter equation to ladder
approximation i. e., only consider one kernel - usually corresponding to
one boson exchange, G = G(p-p'). Although the Schrodinger equation is
obtained from the ons~photon-exchange ladder approximation BS equation
for me/Mp —+ 0, it is not generally appreciated that the Dirac equation
is recovered in this static limit only if crossed graph kernels are retained.
To see this, consider e-p gcattering in fourth order, The relevant Feynman
graphs are shown in Fig. 3-6.

# Technically, in the calculation of transverse photon exchange and order -«
gelf-energy contributions ons must retain Coulomb exchange diagrams to all
orders in Za., [ See Sec.6.7.
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Table 3.1. Exact calculation of the hydrogen spectrum
Bethe-Salpeter equation

Tanrg 3-1. Exact caleutation of the hydrogen spectrum

Behte-Salpeter cquation
(x b mC‘) ’F Y"\F X

G=Gn.+6

crossed + Gvoc pol.
& B
¢ ii- ot
P -—6{‘ P
; D:roc preion
+ Gseh‘ enc«’gy + 6 nuctear polarization o

ii T

any excited hadron stata
Gly GCoulomb -+ (’lmnncric
1
% % tr'\nn:rse q
i=],2
Geoutoms ~+ Scheddinger equation, proton finite size correction
4 Giransverse — reduced mass corrections, HES splittings

+ GED o — Dirac equaticn, relativistic reduced mass correction

+ Cricopor. I Geatt.canrgy -+ Lamb shift, radiative corrections to HFS
+ Gauer, por, —+ correction to HES

Expansion Parameters: x, Z«, m{M,, (nucicon size)/(Bohr radius)
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It is easy to see that only the Coulomb exchange terms

(ul =0, My = 0) survive for M ~—» o . Algo in thie limit, ihe proton

line factor in the matrix element is

b S(ph Bttt o Berdat M ou(g)

M= (Pov A= Miate (£ Q)M e
. lim { 1 w4 ___ }

P <o @+ Qg ie —cix 47 faM e (G, ) am 4L (I, 34)
= —zm‘.g(w‘)

i 2
where we used w,_: ~(-0“*'E.""E = - Cd - (aw*c\rl) /ZM.

The § (w,) expresses energy conservation for scattering in a static field
- and reduces the 4~dimensional Feynman integration over d4q] to 3~dimensions -

‘appropriate {o the matrix element from the perturbation expansion of the Dirac
equation to second order in the Coulomb field, Clearly the cross graph is
essential to this resuit.

The proof for e-p scatteri ng can be readily extended to all
orders in perturbation theory. ¥ The n diagrams which arise for n-photon
exchange can be combined to give & single proton line factor

# Our discussion here is similar to a proof given by D. R. Yennie
(Private communication).
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which provides the (n~1) § ~functions required to reproduce the Lippman-
Schwinger series for an electron scattering in a Coulomb potential.

To explicitly derive the Dirac equaticn within the Bethe-Salpeter
formalism, let us return to the two~body kernel f{ in the ¢, m, system for
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We can then show, using the same techniques as for the peattering
problem,

[ X 1 ’\g i Ye 1

Fm )T MO () (Fi-ty) T (B we) - M)
e ),
e Me (Fe-wie)(Fp- My)
(I11. 37)
e
where \6,, Wc, = Ve is the Coulomb potential for the electron
lincluding 13 (Oyo) 7. Identifying
o N SR LPASY (IIL. 38)
Po— E; 2 LE
for Py = Ej, then gives for PG" — Ej
—~w3liy = K o .
(Fe-w)\iy = ¥ \3y , (9= &), (. 39)

which is the required equation,
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Again, crossed diagrams are essential to obtain the Dirac
result. As a general note, the ladder approximation to the Bethe-Salpeter
equation can be expected to fail when terms second order in the potential
are required.
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In the last lecture we saw how one is inevitably led to the
Bethe~Salpeter equation in order to describe the two-body system in
relativistic quantum mechanics. As it stands the Bethe-Salpeter equation
is quite unwieldy and certainly requires an approximation scheme; i, e.
an approximate, tractable, two~body equation which will give reasonably
good results by itself, and a perturbation theory to take into account neglected
terms and possible external field interactions. The necessary perturbation
theory can be easily developed from the techniques of the last lecture and is
briefly discussed below. The required approximate equation has been given
by Salpeter (1952) and is reviewed in Section IV.3. An alternate scheme
based on an effective potential for the one-body equation has been proposed
by Yennie and Grotch and is discussed in Section VII. 2.

Iv.1 Perturbation Theory in the Bethe~Salpeter Formalism

Perturbation theory for the relativistic atom can be readily
developed from the expansion of the two-body propagator near an energy

pole. Suppose we wish the perturbation of the energy E i for a bound state

of fermions a and b due to sn extra irreducible kernel § G. For
P = B = E3°—\- SE:,

A ¥ 139<3)
(o= ma) [P wv)~ (G°+ 2G) B - (B§° + 8E)+iE av.1)
3 N o AT E TR Lt
) By ) - Qo (- ma) (Fly -mi)-Geo (Be-Eyowie)?

= - 136)¢ia Ba Be 5G MY Lol
(B-gy ~te) .2

We write

\3> = \.'\o> + \8:)))
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where

Ci\By7=0, <eliey = <3isy + 0 (BG)*

Iv. 3v)
Then
(\ oo \t{a. b&(}- ;\‘\
or in momentum space,
o - ¢(3d*?(3 w (\? e RG( D Rt L(Bp) (V. 5)
)
The normalization condition consistent with this result can be found by
choosing a § G for which we know a priori what § E j must be. Again
we consider
la><ad 3 L .{)_C‘ ?g:
B,-g; ~ e (B =) (B - ) - G {Iv. 6)
for o e ~
E@ ?-: EJ ?CL * rb ch
Note that Po is just & parameter in this relation. Let us change its value
toP +§5P , where §P is smail:
o o o
NP, ) - R S St
D« o, -8y e LR~ Wi (- vy - (_:jl+ %2\&{%- ma)(..g:i,m\',) -G\ 3 ?;g %;Ea e Yo .
Thus
&'-3::.""0—- L(? \"’\cs\)(_?(" ""u)"%_\gk‘ Iv.8)

must produce an energy shift § E f = =§ P ; consequently we must

? Actuaily, the orthonormalization condition takee the form <n [ Q{ m>»= 6
where Q is proportional to the total charge operator.
See equations (IV.9) and (IV.15).
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have (in memsntum spacé)

", Sa“p‘aw? '\?L?,P‘)«% (T ), B ) 8°(20)
~ GCR PP w(Re) = 1. (v.9)

This is the general normalization condition of the relativistic wave function.
Other derivations are given in Lurie (1968) and Smith (1968). In ladder
approximation, 0 G/d P‘0 = 0 and

(=) (o)
- a“P{;’(? P} ___Ml . 8; (ﬁ’ VY\\))*\- MW\b __éejf'rﬁ(mob w(?)?):l,
v » VW g+ Wiy Yo+ Wiy (IV‘ 10)

iv.2 The electromagnetic Current of the Composite System

We shall also use the technique of the previcus section to
derive the first-order interaction of the atom with an external field. The
obvious application is to the general derivation of the Zeeman effect for the
atom in a static magnetic field. A careful analysis of radiative and recoil
corrections to the Zeeman effect is of more than historical interest. The
apalyses of all the fine-structure and Lamb~ghift measurements depend on
a precise (up to 1 ppm) theoretical extrapolation of experiment results from
high ¢ 3500 gauss) to zero magpetic field. In view of the gerious dis~
agreement of the Lamb-shift measurements and the theoretical predictions,
it is especially worthwhile to be critical of the standard treatments of the
Zeeman effect (Lamb, 1952 ; Rcbiscoe, 1968 ; Brodsky and Parscns, 1967)
which are based on an additive interaction Hamiltonian appropriate to free
particles (X8 = x<=t)

a a) ) w0 ‘
Hewm = eo:ée( )X\i A“(x"‘)* Qb\{:b \é!"( AHCXB} (v.11)

+ anomalous moment contributions.

It should be noted that this Hamiltonian involves approximately a many-time
formalism where each particle has not only its own x, butalsot, bya
single~time formalism.

Again we return to a description of the Compton scattering
experiment - but this time an external field A, . ( x) is present.
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The dominant dingrem for ¥ En-Ei, W T Ea- B

3

is shown in Figure 4.1. For photon enevgies in these regions,
~ <8N R \"D(V\\ \”\&',7.\;\\‘\/\7(m\ Helt, §>

M&(_ = - " s
(Elw wW-Em e Eg+w' = En ~i&)
(Iv. 12)
P N
] ifﬁ*
m n
;o |
I
M
Aext
FiGure 4-1
By matching this up with the Feynman-diagram description we find
' bl \ .
) mﬂ\\m} = -Lgaw?a»?sdsg Py, () V)J)‘«CP‘,?, o, 7) A
(Iv.13)

A (- 2)unte W

where the two ~body current j# is calculated from the effective kernel

and irreducible di agram expansions are shown in Figure 4-2.

Jn’

© © p P e Gy P <
proton

= + -t o '
etectrcén .  e— 5_ g 3 = e___é__é,?}:,__
: <

(a) {b) (c) (d)

Figure 4-2. + -+ + proton line tf\serinons ‘
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Diagram 4-2(c) gives the anomalous moment a/2x coupling to the

external field. [ Cempare with Eq. (IL 2) for the free-electron vertex. ]
Diagram 4-2(d) and similar graphs containing additional exchanged photons
give a binding correction to the anomalous moment interaction, For
consistency (and gauge invariance), if one retains a certain set a(i)

of kernels in the Bethe~Salpeter equation then one must keep only the

corresponding irreducible diagrams for j;x corresponding to attaching the

external photon on all charged lines, The first derivation (from field
theory) of these results was given by Mandelstam (1955),

In ladder approximation, only graph 4-2(z) is retained and

Bor b (B w8 (Rl e+ e bR m) 84 (R2-%0) (V.14

where an inverse fermion propagator must be used to tie the legs of the
Feynman graphs together properly. It is easy to check that this current
is conserved [ again in the ladder approximation] . Thus by the definition
of the total charge (Y= { a%x 3, (%)

QAN = (€a+ @)

o a (o) -
— gd“t? L\)ﬂ L?) ?)(‘Q_G_\éé )(ﬁ, W\D “ Qb\ga (.ﬁ' V‘/\qﬁ\,\)v\ (?)?)
(Iv.15)

which is consistent with the normalization condition Eq. (IV. 10) for ladder
approximation. We might also note that one obtains the same results in ladder
approximationfor a static external potential from the equation (Schwinger, 1951)

(oo Ca A (Ro)-ma [ £~ 26 Aere(26) -y |1 = Glp (IV. 16)

which is valid to all orders in Ae <t Other interaction terms in Aext must
be explicitly added if G contains kernels beyond one boson exchange,

Before completing the analysis of the Zeeman theory it will be
necessary to study an approximate form of the Bethe-Saipeter formalism.
After this is done we will be zble to understand how the conventional Dirac
results emerge and what are the sizes of the correction terms.



IV. 3. The Salpeter Equation

Since the Coulomb interaction is the domirant interaction
in the H-atom it is appropriate to focus our attention on instantaneous
kernels: |

G (roe %y) = “‘%("“"‘b)g("g“"ﬁ) (IV.17)

In momentum space the interaction has no 9, dependence. Introducing

total and relative momentum variables

P‘—' Yar T° Tofa Talu= (™Mo~ W‘“?b)/( Wig, W‘b) (Iv.18)

the BS equation becomes _
(8% (Ta® e »)-m[E 5 (T B-p) - mo W (R, v)

3»1}_”&&“?‘8(”-2‘)\33(_?, ?) (IvV.19)

ZnA

where

-9}z - 2o* 1 2 =\,
%’C(\i ?.) (Z;:)s G:_‘*\:)Q , e%=lmx E= ) (Iv. 20)

for the Coulomb case,

The Bethe-Salpeter equation in instantaneous ladder
approximation can be taken as a simplified first approximation to the
complete analysis.

Since the interaction can be instantaneous in only one frame,
let us restrict ourselves to the c.m. frame P =0, p =P, =p.

Defining free~particle projection operators

A (2 = LBl = Mo (BN /2Ea (R,

Ea(Ra)= |2~ m¢ .2

Ha(j_)@\: %-T“-\- @amq
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a b
we obtain four equations for Weasy = Na o Na, P (Sa,5p= 1Y)

[Tals ~Saa(T)~ Pl ToBam S0EulTy) = To) Waasy, (PasPo)

a - SVA -1 v . ! i
) ”g;L[\SuAsb\éo \éc de? %(Ev?— )w(?‘*’?b) = rf’cxgb (IV. 22)

One is then able to integrate over p
% = °
Proy (D= | MRt o, (Ba)

-l

it

Lo

W

S a‘)c rSa,Sb ’ 1 E
) (TaBe SaBalB) * R B5e) [To Bommen (B8 + L858,

_ - - 2
= {850,)+§ 85\,,-\4 853,)-\5>Sb,—\x AT

[
, \;’“&’Shav. 23)

{The Feynman contour prescription corresponds to negative imaginary parts
of m, and mb). Note that ({2, . = (f- 4 =0

~ ayb
Adding these equations together gives the Salpeter equation (1952)(% =‘éo Xo %\)

@ © b |
[Po-Hatr) - Wb D)= (NL AL =AW (e 20008) v, 20

which is an eigenvalue equation for Po’ The elimination of the p o

dependence is a consequence of the instantaneous kernel, Also we can
define an auxiliary 3-dimensional wave function 7 (p) such that

[®,~ Ha-Rain ()= &3”? ‘%LE*E‘)\P eH (V. 25)



Then 3 is completely determined in terms of 1 :

q) o (e AN P, = Saa~ %€y .
5‘5.(Van - (= =} - ~ - — ——— "\ Sa5 (T
LR ] s 2“ [ LQ_EQ - ..1)(_\? A ?.: TVOSO‘“'TT;\ :‘O'Sht b"‘?o-‘\' L‘bs h‘\__\' (IV* 22:’
and the normalization condition (IV. 10) becomes
, P § b L N
gdw (OLAL AL~ ACAZ PRy = 1 av. 20

Thus, if the interaction is instantaneous the dynamics can be completely
specified by the X, = 0 wave function ¢ (p). In general, however, the

relative time coordinate X, or po is essential to take into account the

relative time~orderings of the interactions.

A peculiarity of the Salpeter equation is the presence of the
A, operators in the potential term. The consequence of this is that ina

time-ordered perturbation theory development of Eq. (IV. 24), the double V2"
states i.e. ete”, Bp) occur, but single "Z" intermediate states do not.

This is an expected result for ladder approximations with an instantaneous
kernel (see Fig. 4~3).

JE S PR — ._._.I — P UL TR SO
Pl % | kA
N SIS S 5. et
14 P | P F I
(a) (h) (c)

ot 4-3

The absence of diagrams IV-3() and (c) in the Salpeter perturbation
theory shows why the Salpster equation cannot give Dirac results for
Mp —2 @, In fact, one obtains in that limit

) — . . q iy
[tCL~ ¥\“L—E§XW4>::“f\w-§§‘+>3

{Iv. 28)

’ [ S
which is the Dirac equation with (e e e contributions to intermediate
states eliminated.

The Salpeter equation (IV, 24) bears a strong resemblance
to the Breit equation for two particles (Breit, 1929).

(8 -Wal®) - Re ) Pg(®) = g‘awgurz'w%cg‘) (1V. 29)

/
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\
The Breit equation is considerably easier to handle than the Salpeter x
equation and unlike the latter, reduces to the Dirac equation for !

m_ /Mp — D, Despite the fact that the Breit equation is not

fully relativistic, it is found to be useful toc compare results of the
Salpeter equation calculations term by term with the corresponding
Breit result - especially in isolating contributions which just correspond
to reduced mass corrections (Salpeter, 1952}, When terms of relative
order .me /Mp are considered in a given calculation, the Breit and

Salpeter equations may only yield results accurate to first order in the

#

binding ’. The Salpeter equation, however, can be made as precise as
required by the inclusion of crossed graphs through the perturbation theory
given in Section IV.1.

If the additional perturbation is also an instantaneous kernel,
the energy shift from Eqs. (IV.5) and (IV. 26) is just

-

) ‘r lCN , . ~ .
AE= Xd‘?*? EMGE RS SRS “Q**(E‘)ggkt»z’)@_-kfﬂ (1v. 30)

We will apply this result to the calculation of radiative level shifts in
Section VI. Inthe nonrelativistic limit with me/Mp —20, ¢ — 0,

)

by —2V NR and the energy shift reduces to the usual expression

in nonrelativistic perturbation theory.

# The Breit equation leads to errors of relative order . szxe/M
in the fine and hyperfine structure formulas.
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V. 4. THE ATOMIC ZEEMAN EFFECT #
We now return to the discussion of the interaction of the

atom with a static magnetic field. Using Eq. (IV, 26) for the explicit
P, dependence of the wave function, one can perform the contour integrals

overp andp ' indicated in Eq. (IV.13) for <un| H . | m>. The
position-space result for ladder approximation is
/ (ag d‘s . * % S
&Y‘\\Heﬂt\ \’V\»“—‘- \ Xo }‘\h Lpn( —0&}5)Hextq>m (EQ))_(*’> (IV. 31)
~J
where Eq = l—f_i - Wik
@) (8 () (q) (oﬁ) ,(03) (9] (e
H® = AL eads &0 AL eaXe B0 AGKQ)A
(“) @& ~ .
+\/\f\ e VA ALY g (%)
E:;“' ?W"’ Eat E-o. 8
../\‘f_“’ea‘éé‘“)‘é(q)- AN 2’3
P T “"»« Ea=* Ea
‘\
-+ (_V\cw._, w\«)\—-\. _‘I -+ ov.___g,}.g (V. 32)

# This discussion follows Brodsky and Primack (1969)



The formidable terms proportional to the bindiag potential are necessary

to compenssate for the Ai‘_ &: deficiences in the Salpeter wave function

and insure agreement with the Dirac theory for M —» . 7 The
most important result, however, is that simple perturbation theory for
the Breit equation with

B AP (o)
Hoxe = eaXs A (%a)~ eb\gg A (%) (IV. 33)
will yield the same energy shift as obtained from Eq. (IV, 31) in the
Salpeter formalism, to first order in the binding.

In fact, since the Breit formalism is exact for Mp —— 0,

the energy shift due to an external field A: <t 28 calculated from the Breit

equation is correct except for terms of order

[e . Agz/"“&‘&‘“l

The possible error for the Zeeman effect of the hydrogen atom is thus of
relative order (Z a)4me/Mp. In addition, however, there are cther

contributions to the Zeeman effect from neglected kernels for the current
(see Figure 4-2):

# But only to first order in g. Higher orders require the
addition of crossed graph kernels to the Salpeter theory.
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(i} The self-energy and vacuum polarization kernels
yield anomalous moment contributions (which can be added on to the Breit
interaction) plus errors from binding corrections of relative order

oz(Zoz)z. (See Brodsky and Parsons, 1967; Lieb, 1955). These
corrections correspond to the change in the Lamb shift itself due to the
magnetic field,

(iiy The crose-graph kernels give a contribution of
relative order (2 oyt (which is included in the Breit equation) plus

errors of order (Z oz)4 me /Mp. Similar estimates hold for non~Coulomb

contributions of the photon interaction.

V. THE ATOM IN AN EXTERNAL FIELD g

In this lecture we will construct a model relativistic wave
function for the hydrogen atom which exhibits the full 16~component
spinor structure of the 2-fermion system. For our purposes we will only
require a wave function which is consistently accurate to lowest order in
the Coulomb potential. Accordingly we will use the Breit equation to
treat the electron-proton interaction.

V. L AN APPROXIMATE WAVE FUNCTION

We specialize first to the c.m. system where the Breit
equation takes the following form:
v b , _
[0t P v 37 Mam o™ B EWme v U =TT} Py = O V.1
Since U is taken as the Coulomb potential 7 it containg
no Dirac matrices.

£

The material in this lecture is based on work done with J. BR. Primack
(Brodsky and Primack, 1969).

7 In general, the transverse Breit potential should also be included. We

also ignore commutators of w, with Wy



We write

AR \ . '
P (‘ﬁ) ® (‘*’b) CTPMX SM (V.2)

where w, and w, are 2x2 matrices and functions of p and ¢

b = ~a,b’
®
itk

is a one~component function of the relative cocrdinate and

K SM1 (S =1,0) is a constant spinor and eigenstate of total spin

2
8, = 3 @,"9y), and S°.

The Breit equation is satisfied if we take

3. = 1 6&1 D, = 1 6 (- P).
@ 2WM,+ Ko P e 2w+ K- =® ("> (V.3)

and if ¢ /n gatisfies a '""Pauli" relativistic two#aody equation

(Gep ot P+ e b 1 6 prurw By X5V, 9

- qu*\(q Zmb‘fkb
Here W is the binding energy,
WE Mg+ Wy - TIL 7O (vV.5)
and
ko= Ma (UAW),  Wy= Me (WaW) (V. 6)
& ey W T Wyp

and kinetic energy operators: if ka could be commuted withg . p,
then -

(ko> YQ/ZW\Q +~O( EQ/W@).

Note that if spin-orbit and other relativistic terms are dropped, Eq. (V. 4)
reduces to the two-body Schrodinger equation in the c.m. frame,

( Ej + W -fW.) ¢m30

2w v.n
= ¢+
where m =m mb/ (ma + mb). It should be noted that due to the

neglect of the transverse potential, £q. (V. 4) will be incorrect for
obtaining reduced-mass corrections to the fine structure.



- 33 -

The ¢.m. solution for total snin 3 and projection S, =M

takes the following form in position space # ‘

Pro (Ra%p, K)oz | 220 [RI+ oo {f&m\._b 1z
(2m)¥2 \ 292 1P

1 1
x(§a-\3‘ ®| -2, F ;qu(.\i)xsmex?(b?m~L'7Y1Ka>

AMerKa D, +Kp
\ / ;
(V. 8)
where
Xz K- %oy X =TaxatTews, PO = [Pamiy
"y by A~ 2oty T E a,b V.9
The normalizationof j is compatible with IV, 27) if
JNL
) q
gcﬁp&\dﬁm( E)ﬂ =1 (V.10)
V.2 THE WAVE FUNCTION OF THE ATOM IN MOTION

Equation (V. 4) provides an excellent starting point for
determining the wave function required for the Salpter theory; corrections
to the wave function can be readily handled in perturbation theory.

In calculating the matrix element of the interaction with an
external field, the initial and final states will in general have different

. -1
? The ordering (2ma + ka) e a " 9),,igunderstood here.

-
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total momenta. It will consequently be neccsﬁ:—iry to know how to
transform the ¢.m. wave function io an arbitrary retercace irame
and then form wave packets corresponding to superpositions of
states with different total momenta.

It should be emphasized that we shall always consider the
bound state of the atom to be in a definite state of total spin §= §a + §b

as defined in its c.m. As is well known, spin does not commute with
Lorentz boosts to a moving frame; it must always be defined with
respect to a gpecific Lorentz frame.

The transformation of the Bethe-Salpeter wave function
from the c.m. system to a state of total momentum P is given by

Rerp (%o X0 Jam = Sa l)Sp MK o (xe o)y (V.11)
where
AN. [ B0 (1« <_>_<o,i‘>
Se ()= [EET (1 Ged (v.12 |
and
Xa= N¥Xar K= AXs, (,8)=A (T, 0) (V.13)

Thus to obtain the moving wave function ng £ (:)) o) ﬁ:\\:.\) oM

‘corresponding to total spin S, and pro;ectzon 5§, = M in its c.m. sysiem)
one evaluates the c.m. functions at FaNS Yeau» /\y.,
and applies the spin transformations S v () -

This can be compared with the transformation for a free electron wave
function from rest to momentum P.

SalNyuloe ‘= |- 2w (1+ e E >\0>€

Cmk Bx'-
_ Ly - P -
= w(Ple w(P)e ® V.14



- 35 -

The effect of the transformation on the spinor structure of the two-fermion
wave function is rather unexpected:

1 | 1+ &ab Ga \
’ M AE  ZvaatKa
e.p |7 ) e (V. 15)
- i (5' e . P \} .
2t / TR &mw: Zma*Km’

The small (lower) component is just ~ Ga- Py /’(ZW\M'K@ where P,
is the momentum of fermion & in the moving atom. However, the

large component has an extra term for P ¥ 0 which, as we shall see, leads
to corrections to the spin-dependent interaction with an external electric
field. In addition, the moving state is not an eigenstate of S=5,+%y

From a physical point of view, what appears as a spin triplet (5 = 1)
state of the two spin -§ fermions in the ¢.m. frame appears partially
as & spin singlet in the moving frame (McGee, 1367).

We can now congtruct a wave packet for the atom from a
super-position of total momentum eigeunstates: #

Cae fm
(Horte, X,) = \['Ztﬂﬁl’i.} E qD(P)Cp”(X“’X X) (V.162)

# We have ignored here the X dependence of the bcosted state. This

is an approximation: the wave function can 6n1y be chosen at equal
time in one Lorentz frame, which we chooge as the c.m., where the
potential is also defined as instantaneous,
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where

) \
@ _ = ExT0 a’p S+ Wa Pb°+m5,>/?‘
©8 T TmL Jew¥r\ zel 29

1« @QE , @c&'? 1.. éb‘g -
% M +E 2g K, e mN+E ?‘"‘\b" Wp
\ - 4 p , ©
\ Ga-( 5« F \/ e (& /
7“*"" 2vnaria m+E Zmb-r K
x By (D) Kgpm explip:E + LB R exp(-tEXe) . (V. 1603

This satisfies the Salpeter normalization condition Eq. (IV. 27) if

g\@(g)\l 3P=1, iﬁl’ﬂtbmcp\% 1.

(V.17)
_ /
We have defined X = Ko, Ry = % Ay in (V.18); this
corresponds to a Lorentz contraction of the wave packet.
V. 3. THE NONRELATIVISTIC REDUCTION OF THE EXTERNAL

FIELD INTERACTION

Let us again consider the atom in an external, static field
A(x). We have shown in Lecture IV that the Breit Hamiltonian, extended to
include the anomalous moment interactions, is an excellent approxina tion
to the exact Bethe-Salpeter resulte. We can now use the explicit spinor
structure in the relativistic wave function Eq. (V. 16) to reduce the 4g4
component form of the interaction to a 282 Pauli matrix form. The result
as obtained by Brodsky and Primack (1969) and also H. Osborn (1969) is #

# Here ea, ma, “a’ and % _ga , are the charge, mass, total magnetic moment
and spin of fermion a and MT =m, + m, . Ngte that 8 = & (_qa +9b) is the
total spin in the c.m. frame. The wave function ¢ (z_ga,)_gb) to be used for

evaluated matrix eiements of H?g in general include the Lorentz contraction

= AX, but in usual applications, this is only important for bound states with
¢2 1. Binding correction factors of order (1 + W/m) are neglected here as
well ag cross terms in the binding potential U and the external field such as
g VU xA,
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-+ "}’“ ( ;'9"" - '_e_-_:’__\: )\e’bggx(\g&_ e&/%.‘o) - €a EQK(E\)' e’b lj‘b)}
T (V.18)

This may be derived from a large component reduction
method (accounting for pair stateg - "Z" diagrams in second-order

perturbation theory via f_xz terms, etc.) or by a Foldy-~Wouthuysen
method (teking into account the fact that the F~W trans formation does not

reduce the wave function to ( ) @ ( y form}. H%n;{ may now be

treated in standard per‘curbafmn Lheory using 2 ® 2 Pauli wave functions
mxms

-1 ; Hem
p B Hyp
are corrections to simple FW additivity (which until 1868 had been assumed

The terms proportional to (MT ma)-]L or (MT m

correct to order maz, almost universally in the literature of atomic and
nuclear physics. The essential point is that matrix elements of the external
potential interaction require knowledge of the bound~state wave function at
different total momenta. This brings in the extrs terms in the large
components of the boosted wave function and in turn leads to the a and b
mixed terms in H;H‘;. For a uniform electric field, the 'spin-orbit" terms
combme to

ZMT Zpa )2::‘ ~ (o -»»‘b)X-E:xE

+RE& + &1 —2\4“) Za -—(o,»J;-‘bS\ Exyp (V.19)

2ovg 2w 2wma
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The first terin may be recognised &s being exactly the
right Thomas term for the atom - taken as a static system with charge e,

mass (/Z/Z = MT magnetic moment g = By + My and spin S (as defined

in the c.m. From general arguments similar to those of Thomag, the
interaction of such a particle with the external field must have terms
(Brodsky and Primnack, 1969, Sec, 7B),

(V. 20)

which agrees with (V. 19). In addition one car derive from general principles
such as special relativity and current conservation (Low, 1954; Gell-Mann
and Coldberger, 1954, Aharbanel and Goldberger, 1968) the low -energy
theorem for forward Compton scattering on any stable target with spin S,
charge e, mass , and magnetic moment . The general spin result

of Lapidus and Kuang-Chao (1860) is

Mg = 4 (2P E,-B)
200

Ki Q'LS/@\,‘ w(‘f -2 \Zgﬁ .g‘xg % O(Loﬂ).l
AL S M (V. 21)

Thus the first two terms in w in the forward amplitude are determined
solely by the static properties. One can explicitly show (Brodeky and Primack,

1969) that by including the corrections to ¥W additivity in H‘;g one indeed

obtaing the correct spin-dependent term for forward Compton scattering on
the atom. :

Exercise: Consider a nonrelativistic atom of two spin-zero particles:

W= (e %&Sy e V

S‘:Q,‘b

2. v

Derive the forward amplitude M & to lowest order in w.
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Instead of using H%;’ and Pauli wave functions in bound-
gtate calculations of Compton scattering, etc. it is often easier to use
the relativistic operators and wave functions directly. The need for the
correction terms to the upper coxmponents is then explicit. In such
calculations one is eventually required to separate relative and total
coordinates. This can be accomplished for g by use of such identities
Bs

Cilga & el
= ’L<3\&Ho)£al.éle WY \t}

e . ) X '. . o Koya
21 (Em €< Ta B e - Lodil ek 2 e TN (y gy

and then separating g&. (For further details, see Brodsky and Primack,
1969, Sec. 6).

The low-energy theoram, together with dispersion relations
has led to construction of a sum rule analogous to the Thomas, Reiche,
Kuhn sum rule in atomic physics. One wriices the forward Comption
amplitude in the general form

Fea) = & A L3 AR /::e
'5\""’\) - %\(m)g‘g *Ei‘-’.%luw ) 2% (V.23)
and agsumes f2 {w 2) is an anslytic and even function of w with a cut
along the real axis w > Wi where by the optical theorem
. —- B e (D
Joo §, (07) = Ga (W)~ Gp (W) (V. 24)

KT

Here ¢ AP (w) 1is the total photoabsorption crosg section of circularly

polarized light on a polarized target. The subscript P(A) refers to the
configuration where the photon helicity and target spin are parallei (anti-
parallels), If fz (wz) -2 (0 on the circle at co, then by Cauchy's

theorem

00
1l dwmfa(w'*)de'?
gz(mi) ==
‘n‘ w\?. — w'?. (V. 25)

e,
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Applied at wz =0, this yields the DHG sum rule (Drell
and Hearn, 1966; S. B. Gerasimov, 1965; Lapidus and Kuang-Chao, 1961;
Hosoda and Yemamoto, 1366)

ol
o0 - ', (9) b (e 15 )
« | 5 J0L (V. 26)
Cn

Agnin, the integration vver final states can be explicitly computed and
verified for the atomic Hamiltonian using the correct wave function and
interaction (Brodsky and Primack, 1969).

The DHG sum rule was originally developed from dispersion
relations in elementary-particle physics. It is an excellent example of
the value of close ties joining the intellectual communities of high = and
low - energy physics. In this example, the high~energy physics has
supplied atomic physics with an important result for the electromagnetic
interaction of a bound system with an external field.

V. 4. APPLICATION TO THE ZEEMAN THEORY

Since the Breit description is adequate fer the interaction
of the hydrogen atom with an external field, we can caiculate the Zeeman
effect due to a constant magnetic field H from the total Hamiltonian

H = eQ_Le,‘E?e, - (2Ce) % D..W
Me

Flele Bo - (2ag) 101 5. W+ W,
Zmp
(V.27
where
A ':.—\»\'_\_ XTe , A =AW xY e = —\el .
-z A (V. 28)

and G\E 0 is the Hamiltonian of the atom with no external field
applied. The spectrum of 3{0 in lowest order is the (n,j) spectrum
of the reduced-mass Sommerfeld formula. The degeneracy with respect
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to { is removed by QED corrections, etc. (see Lecture VI) and the
degeneracy with respect to toial angular momentum f (where £ =L + §e + _Sp)
is removed by the hyperfine interaction.

The spectrum of ¥ can be specified by the state label
In, F,j, !l,mF » . The radial 0 dependence of the eigenfunctions is
described accurately except at very small distances r < mem1 by the
Dirac equation with reduced coordinates (Salpeter, 1952; Grotch and Yennie,
1969).

If one performs the radial interaction for the hydrogen n = 2
states, then (Lamb and Retherford, 1952; Brodsky and Parsons, 1967)

‘.H,':' Mo"’r HD\E\\{_I""\Q&S; -t R:S;* ‘,}_L%RL* iA\_ L?:

+ O (\QZE‘:/'MQ) ,

(V. 29)
wh : 2.
AL Ye;au« §\/fme) For L=0
, =1
Je (b7 %W/Wj’) sor (V. 30)
= \i - S U 2 W/
AL %L(:l“r e Do = 'f:): /W"&)
and
=3
A = -2 (1+Qp)We/Mm, (V. 30b)

ig the Landé factor for the proton =5.58 me/Mp' Here B, = (1=~ me/Mp)

takes into account the nucleon motion about the atomic center of mass, and W

? Also, if £# 0 the tensor part of the hyperfine interaction is not
diagonal in j where J =L + —Se'
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is the binding energy of the n = 2 state:
N % (%CK‘)Q Wie{ L= We/pm 9\)

The binding corrections to A_ and A_ can be obtained from the Dirsc

wave functions. Further corrections to A s of order(Z « )2 me/Mp

and higher are discussed by H. Grotch (to be published) and by R. A. Hegstrom
(to be published).

o
The quadratic Zeeman term < % ez A;’ /me > is approximately

0.01 MHz for H = 1500 G. However all n = 2 levels are affected similarly
and the maximum separation of any two levels ig 0. 001 MHz at this field
which can be ignored, as well as the negligible A4 = 2 state mixing it

induces. One can also show that all An # 0 perturbations can be ignored.

Cne can then proceed to evaluate the energy values of the
total Hamiltonian as & function of field strength. A matrix representation
(up to 5 x 5 dimensions for deuterium) of 3‘: in the n = 2 space can be obtained,
and the eigenvalues can be computed by perturbation theory (Lamb and
Retherford, 1952; R. Robiscoe, 1968) or by a simple numerical
disgonalization via computer (Brodsky and Parsons, 1967). Taking into
account the accuracy of the experimenially determined parameters, and an
order of magnitude estimate of neglected theoretical contributions, the
expected precision of the Zeeman theory results (see Fig. 5~1) should be better
than ippm for the present fine~structure measurements.
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VI. THE LAMB SHIFT

Professor Kleppner has discussed in his lectures (Kleppner,

1969) the experimental history of the measurements of the 281 /2" 2P, /2

separation in hydrogen. It would be impossible to overestimate the
importance of the measurements by Lamb and his co-workers 7 on the
development of theoretical physics of the last two decades. It is also
rather paradoxical that the Lamb shifts in H and D remain the only low-
energy tests of QED which are seriously in disagreement with experiment;

the latest measurements seem to reaffirm a ~ 0. 3% 0.1 MHz discrepancy
with theory. Accordingly, the theoretical calculations certain deserve a
thorough review. In this lecture we can only outline the course of the
calculations and point out the areas not well iravelled. The next section
is devoted to a qualitative discussion of the effects irivolved in the level-
shift formulae. The self-energy effect, unavoidable due to coupling of
the electron with the electromagnetic field, not only contributes te the
electron self-energy and anomalous moment but also yields an effective
charge distribution. The lowest order result is summarized in the order
o expression (II. 2) for the electron form factors. Qualitatively, the
photon emission and absorption cauges the position of the charge to oscillate.
Welton (1948) has given a semi quantitative calculation of the level shift in
such a picture. 7

It might be noted that our language to describe the effecis
of QED is based on perturbation theory and in turn the
smailness of @. The total Hamiltonian consits of 3 parts,

%ot =3%% +‘ﬁém+ : E‘nt,
Wherej’@ describes the atom,;H:em describes the quantized

electromagnetic field and}ﬁm the coupling between them.

The terms electron and photon refer to eigensiates of}’ﬁ and
Jé:em The eventual goal of theory is to understand the

eigenstates of ﬁctot.
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Roughly, the electron charge is spread over 2 distance 1 /m
a fraction « of the time,

To see what a finite charge distribution does to the energy
levels of the atom, we calculate the proton size correction

. The change
in the Coulomb potential
) Zox 7
DV(ey= d3vy @ ”’~3( "‘j‘ N g«:‘%) (VL 1)
Yot

due {o the nucleus baving & charge distribution Z ‘ e ‘ P (rN) of finite

extent, contributes an energy shift [r << & = (mZa) "1]
Jovy= §&3r~ Asr [cf* (o)® p(rN< ?ot -+ Z«“}
r((‘,\/ ¥ 5

¥ \d')n(o)\zioa(%:) g&w "le’(fw)

{VL5. 2)

= 2 (zooq W‘:sgﬂo ’R:
B wn?

The shift only affects S~states. For RN =0.8x 10—13 cm, the contribution
to the n = 2 Lamb shift is 0. 127 MHz. 1t will also be helpful to be familiar

The presence of the form factor
Fih(q ) [ the 3~dimensional Fourier transform of p(rN) 1 changes the
electron-proton potential: (qo -» 0)

with the calculation in momentum space.

~Ex
%2

5P B L Ry o(4)]

(V1. 3
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The second term corresponds to the position-gpace perturbation

Lo 8%(5) R 20X
b

and yields the same energy shift. The use of Dirac instead of Schrodinger
wave functions does not change the result.

On the other hand we can calculate the form factors of
the free electron. Referring back to Eq. (Il. 2), we have the one-photon
correction to the vertex:

M. ML« o (jac m -3
’B%E (9 L s \ >\ 8

[

(V1. 4)

For the bound electron the integration over intermediate photon momenta
is limited to wavelenghts less than the Bohr radius:

Thus we have

A (ax) wliox fo S (V1. 5)
< V> Znd [( ):S‘TT 8(%0:} o

In fact, taking the constant C = 1/7 gives the chserved 2S shift ~ 1050 MHz.

Obviously the above calculation is only meant to be qualitative.
The situation will be rectified in the next sections where we discuss the
actual calculation using the Erickson~Yennie (1965) method.
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Vi 1, THE LEVEL~SHIFT FORMULA

As we outlined in Lectures III - V, the energy levels of
the hydrogen atom can be obtained to arbitrary precision by including
sufficient irreducible kernels. (See Table 3-1). The order ~ «
electron self-energy contributions, which we restrict ourselves to in this
lecture, correspond to Fig. VI. 1.

€’o
Nk * M
Pa Le. £ w 7
Pe—k _
{a) ' (h)
%W‘j + i}i o
pEIYE i sl o
£ 3% S v

{c} : (d}

FiGure 6-1

Figure 6-1(a) corresponds to

3G = - gauk 1. 1 NG
R 2 KZai€ (V1. 6)

If we proceed to the m, /Mp —3 0 1imit, the proton line

can be replaced by a Coulomb potentiel in a Dirac equation description.
The total energy shift of state n corresponding to all the order -~a electron
self-energy diagrams in Fig. 6~1 may then be summed to

AESE; e’ ga“k/"L L A\g, 1 \6\A\n> (VL. 7)

(@2m* J z+le Fl—%&-wmg + LE

T = Py e A (%) (V1. 8)
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and the state l n > satisfies the Dirac equation

(*ﬂ/"me\ Wy =0 (VL. 9)

In position space Tz (Eu- e N, iV -cA f’i))-
Additional terms in the celf-energy of first order in m /Mp could be
retained here corresponding to reduced-mags corrections in the Dirac
equation and the lowest order hyperfine potential in A¥.

As is so often the case the Coulomb potential is involved,
any expansion in powers of the binding potential must be handled with great
care. In particular the final answer will not be apalytic in Za, as already
in evidence by the logZa dependence of our estimate (VI.5). Thug let

us examine some of the features of (VI.7) without attempting any rash ’
approximations.

In position space the bracket in (V1. 7) takes the form

= K= e ~ e

= (a?’x LESIUROTALRE W 1 ¥ 5% 4 ) (VI 10
- \‘oko"“’\e AN

~

The sum over positive and negative (bound and continuous state) projection
operators can be introduced for the propagator as in Eq. (II1.13). The
ko contour integration can then be performed to yield

-+ {S-,Q\.S‘. —~coulomd COV\\YV’D\A'UM_’X 5
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which is exactly the expression one would write in old-fashioned periarbation
theory for the self-energy correction io the bound state shown in Fig. 6~2.
Note that |n'> includes S fornion states which enter with opposite sign.
Further details concerning the reduction to (V1. 11) may be found in Yennie
(1963) and Erickson (1962).

"W transverse photons
UM
‘sf‘

!
1
l
s

n fn

FiGURE 6-2

Note that in general AEn is not real. In fact,

}:\,z_ /SM(AE;) = el g\b\ﬁ (w» "E“)Zz \(\Y\\k N 0\&'\S )i(VI 12)

(2“) N ow

is exactly the rate for the state I n> to decay through one photon emission.
Thus we finally have justification for use of E - ir' in the scattering

matrixdlement (III. 3). Note that for a given separation of levels [ is a
constant, The change in 7 for say the 2P state in a level crossing
experiment due to sweeping the magnetic fle{m? across the line is obviously
negligible,

Let us now return to the covariant expression (VI 7) for the
self-energy level shift. It is easy to show that AEn is invariant under

gauge transformations for the external potential A*. Thus AEn must be a

function of FIV = 2MAY - buA‘u rather than the potential directly. If ol
is zero, AEn does not vanish; the energy shift is, however, identified as
4

a contribution to the electron mass, 7 Since this common shift cancels in

measurements of transition energies we will understand A E is at least
linear in FFV  and must take the form

# This is of course the mass renormalization first recognised by

Bethe (1947). In perturbation theory this contribution, as is well known,
is logarithmically divergent.
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[ . N -
AE\‘\,: 0L<“\GO‘F\*onQ Qﬁoﬁg\n7 (W-ld)
where, because of the transformation properties of AEn, Q“ Y must
be an antisymmetric tensor. The tensors avaiiable are
1 6\;\\) =¥, \A [24 which yields the
magnetic-moment structure
Mz €6 F /2 = e€ leX.E
(VI1.14)
Y V
(Z)TY%%V* ¥ ﬂv\ which gives the structure

Ty oee (T4, 71

W
(3) F a corresponding to

FUFL= &0

~ The 000 represent interspersed scalar functions which can
involve }{, 12, and M or scalar combinations such as ﬂﬂ ooo TIH .

A systematic reduction of AEn to calculable term of the type

(1), (2), (3) has been given by Erickson and Yennie (1965). [ See also
Yennie (1963) : Brodsky and Erickson (1966) 7. The procedure is gauge-
invsriant and avoids "felse' expansions where actual logarithmic dependences
exist. Inbrief, the calculation of AE_ for the case of the free electron

(F - 0) is used as a guide for the calculation for the bound electron (FBV + 0).
The calculations would in fact be identical were it not for the fact that the

components of I do not commute with each other. HRemainder terms which
are at least linear in ‘

[_“\n“»-_l:‘“ P (VL. 15)

are thus obtained.




The dominant contribution to the level ghift is found to be: ?

AEn= 2% (A p{ Log LI,

—
31wt H
)AL 3 B FPY AR (VL. 16)
/

where

Wz (m-F)(wr K)= wi K2 20 £%p0, +V = Eug)

This result exactly corresponds to the expected contributions of the

cf << mz form factors of the bound electron. Theo v F*Y term

matches with the ¢ uy qv AH (g) Fz (0) anomalous moment contribution,

and the p oo {p, A'] structure is the bound electron generalization of

the F (0) (f ¥ (9 contribution of the charge radius. The log (mz/H) ~ log (chz)_2

dependence shows that the bound electron 'yﬂ form factor depends in an
essential way on the binding. For zero binding, the result is, as expected
infrared divergent.

As a first estimate of the contribution (V1. 16) let us take
eﬁ’ =7, V and approximate the Dirac state l n > by Schrodinger wave

# We have not included here interspersed "form factors"

~(1 + pz/m2)-1 which occur in AE . These serve to suppress

the matrix element integration for o l P ‘ = me T~ me -
’
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functions. For the log (m /H) term we insert a complete set of states
(Bethe 1947):

£ -
‘Re AE ‘a-' ZO‘. Z((_p“)gkprﬂ)go‘g

.5 (Eﬂ“é—'\>(@n)2@n>

r')\ C“

(VI. 18)

it

;%«z (e Cp, LVl @,\)&5 m

2|0 En\gy

i

é—ﬁ&.&?‘.}“ wmilog v & fo
ST w3 | 2’\6"‘" e“"“\a.v

Exercise: Derive this result directly from the nonrelativistic dipole
approximation to Eq. (VI. 11).

The net result of the lowest order contributions is (Bethe,
Brown, Stehn, 1850)

 fpq Z2o)iMe 4 N 43 L
\ gﬂﬂ{?’jl % (\EK (_“x‘a: 7w g 5 (5- stake))
Re AE = 3[* _DL(Z‘OL):: AT (’ﬁ. 19)
R "
£ CEU‘\Z e« 3. Ce; . {(vien- S—s‘m&es)'
t 6.,‘ E. \w € 20+1



where

My = mM (e ) = L=m/m

C 4
Cpo = £+1
L3

—__./L_ v= &%
z z (VL. 20)

The 3/8 terms here correspond to the ouv FHV terms in

the second line of (VI.16). The -1/5 is the lowest order vacuum
polarization contribution to the energy shift and will be discussed below,

The value of | €. - en‘ gy ~ 16.64 Ry canbe obtained very accurately
by numerical methods:

For the n = 2 states (Harriman, 1956; Schwartz and Tiemann, 1959)

— 2. 211 16988% (28 25
I @tme 2- 8\ (28) (2%

(VL. 21)
T 2ew-®day | oo3001669%(17)  (29)

Analytical methods for evaluating the Lamb shift in the nonrelativistic atom
have also been developed recently (see, &.g., Fronsdal, 1969).

The contribution from Eq. (VI.19) to the ZSI' " 2P

separation in H is 1051 MHz, including -27 MHz from the vacuum
polarization term. Higher order corrections for the Lamb shift will be
discussed in the next section.

1/2

VI. 2. HIGHER ORDER CORRECTIONS

Higher order contributions to the 281 /2" 2P 1/2 separation

contained in (VI. 7) beyond Eq. (VI.16) arise from corrections from the
Dirac equation, corrections from nelgected propagators, and terms which
are explicitly quadratic or higher in FI-W . In fact, only the second term

in the Fuu geries is required to compare with present experimental

accuracy. Nevertheless, great care must be made in making the field
strength expansion of the level ~shift formula. One must avoid expanding
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powers of Fuu from propagators which, because of binding corrections,

cut off infrared divergence. Similarly, one must avoid expanding too
many powers of the potential such that a singular structure like the matrix

element of r_4 is required. 4 The effective contribution of such & matrix

element is (Zo) 31:&2 rather than the nonrelativistic expectation value

aj = (2 a)4m: . These expansions are false expansions in that the residue

terms will be of the same order of magnitude in Za as the terms which

are kept., In the calculation of Erickson and Yennie (1965) such pitfalls are
avoided by () proceeding in a2 gauge~invariant manner up to the point of
actually evaluating numerical contributions and (b) & simple "'rule of order"
which quickly identifies the order of magnitude (powers of Ze) of a given
term. Although somewhat involved, their procedures are really quite
elegant and probably have application in other areas of atomic physics where
a precise expansion of the Dirac Coulomb propagator is required.

Using these procedures, Erickscon and Yennie were able to
asystematically verify previous evaluations of the level-shift formula through
orders a(Za)S, oz(Zoe)6 1og2(Za). and a(Zcx}Glog (Zo) and to reliably

estimate the contribution of the o(Z o:)6 m [po log (Ze) 7 contributions.
The log (Za) factors either arise from the infrared cutoff or from
expectation values of operators such as r=3 (1~ ®T),

#

The matrix element is not divergent, however; the integration
region r < me is always suppressed by form~factor cutoffs.
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If we write

+Cs(20) %4 [Coy ﬁﬁz(%oc)'h ooy (Zo) % C‘@(a—z)“}

(V1. 22a)
then c:d1 and c40 can be read off of (VI.19), and ,g
11 1 5 |
e, =3l tem= = lOg 2 + e Karplus, Klein, and Schwinger (1952 ‘
5 =5 log oL [Karp ger (1952)
and Baranger, Bethe, and Feymman (1953) 7,
Cag = ~ 3/4 [ Fried and Yennie (1860) 1,

4 log 2 + 63/40 28

1/2
Cg - | 103/240 2Py /2 [Layzer (1960) ] . (VL. 22b)
29 /240 2P3 /2
and
Ce0 = " (%w2+4+410g2 2) 6:0 +bn y
1bni < 5 (estimated) {Erickson and Yennie (1965) ] .
The estimated term inc¢ 60 contributes less than & 0. 04 in the 281 /2-2P1 /2

separation. The inequality is meant to be a limit of error.

For a review of the fourth order contributions to the Lamb
shift see T. Appliquist and S.d. Brodsky, Phys. Rev. 24, 2293 (1970) and
Brodsky and Drell, Ann.Rev. Nucl. Science (1370).
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VI 3. THE VACUUM POLARIZATION CONTRIZUTION

The modification of the Coulomb potential due to virtual
electron-positron pairs (Fig. 6=3) ’

FiGURE 6-3 |

was understood well before the advent of quantum electrodynamics (Serber,
1935; Uehling, 1935), and actually provided the first motivation for the
Lamb-shift measurements.

The change in the photon propagator due to charged pairs
ig, from Lecture I,

oD
1 { .\ ds TS
w ) 5 g e

QV“Q"

W

4 -
where Ti(s) is related to the e ¢ annihilation cross section. The lowest
order of contribution of virtual e'e” pairs turns out to be (Feynman, 1949)

()= Z L+ Zoe\(1- “"2&)‘/2” V1. 29)

Accordingly, the electron-proton Coulomb interaction in position space
becomes

D
“EK Ly mBX o EX | G TV () T
Tﬁ} ~ e g Tz (V1. 26)
Lot

At large r »m;l , the coerrection term exponentially damps leaving

the long~-range Coulomb charge appropriate to particles of charge e and
Z\e[. At small r the electron penetrates the polarization cloud and
the interaction strength increases.
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In perturbation theory for the energy shifts in the hydrogen
atom the q2 integration variable in momentum space is restricted to

32 ~ {Z ozme)z. For gz < < me one obtaing from (V1. 26)

&
.:'ﬁ_.:—_) .l[l"&' .’_O( _‘CZ* C)(Ok \j—}
CU c;z 5% wmE - _f;\.;“ VL 20)
— B = - % - Qﬁ‘l‘i 44(83(\:_)
Y v 51w V1. 28)

the corresponding energy shift is included in Eq. (V1.19). Higher order
binding corrections in (Za) have been given by Wichmann and Kroll (19586)
and are included in (V1. 22). The correction from the fourth-order vacuum
polarization potential (Baranger, Dyson, and Salpeter 1952)

“(EOx? (4 3 Vewdin)
&-T\" 2 W\e,z 81

is included in Eq. (VI. 23).

VI 4. FINITE PROTON MASS CORRECTIONS

We now return to the relativistic Bethe-Salpeter bound-state
formalism in order to extract the finite m9 /Mp corrections to the Dirac

levels. In the procedure adopted by Salpeter (1952), one takes as a first
spproximation the instantzneous Coulomb kernel to derive the Salpeter equation,
Finite mass corrections to the energy levels are then obtained from
perturbations due to crossed graphs and the effects of {ransverse photon
exchange. As the calculation proceeds, it is convenient {o compare the results
against the approximate Breit equation which includes the Coulomb plus
ingtantaneous transverse potentials (Breit interaction) since the latter already
contains the Dirac equation and m, /Mp reduced mass correctiona to the fine
structure.

Grotch and Yennie (1969) have recently given an alternate and
somewhat simpler method for determining finite proton mass correction to
the Dirac levels. Their paper is very readable and we shall only sketch their
results. The central idea is to introduce an effective potential into the Dirac
equation which, to the desired precision, reproduces in perturbation theory
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electron-proton scattering as determined from the Feynman :dingram
prescription. The energy eigenvalues ui this effective Dirac equation
should then give the eneryy levels of the H-atom tc this same precision.

[ Since the proton is treated as a free particle, it might
appear that errors would occur for example in matrix elements involving
the proton lower components which have a (ZMp-Lk )»lg 9p _E‘p structure
[k ~ O(Aa) m /mp R see Eq. (V.3) 7. The corrections, however.

occur at the (Z a)6 (m /M ) m, level for the fine structure and at the

relative order (Zo:)z(me/Mp) in the hyperfine splitting. In fact, such

first-order binding corrections are even included in the Grotch-Yennie
equation if the effective potential is chosen to duplicate e-p scattering
through two-photon exchange 1.

As the first approximation to the effective electron equation
Yennie and Grotch take

(oc g+@me+ E *\/+ Lo, v, = {o.p, 22 Zcxr])qﬁt") BV (1. 30)
2!‘\.9 LMo

The potential includes the effect of the entire Breit interaction (Coulomb
and transverse instantansous) of the electron and nonrelativistic proton.
Mimculmxaly, the equation (up to errors in the energy levels of

or (Zo.') (m /M ) m ] ) can be transformed intc an ordinary Dirac equation

with mod1f1ed pammeters

. 3»'-.‘\"" Z e o
[xprpe - 22 lw= By,

(V1. 31m)

with

wm' = me?\“-'l-»ﬁ’./fv‘ \

LAY
(L= img )™l (V1. 31b)

o 2, M2
o = exfae g |
The eigenvalues and eigensolutions of the effective equation are related to
Eo and Y o through

Eo= B+ (E%wme)/2 M,

= (1+ pN) (1) W, (V1. 32)
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2.1/2
P ]
Sommerfeld formuls for the Dirac equation with m' and o' :

where A = (Mp/me) [1- mi /m and Eo' ig given hy the usual

Eq= m™'§ (V\,j,%oﬂ) (V1. 33)

The eigenvalue E is then obtained by iteration of (VI. 32). The result
ig

E= et et (£(nj 2a) ~1] = (2% wme e
W\Q‘?M‘p 8\/\“ F{;

+ OVL(W\&/MP:) %.s-\ + O[(Me/m)(o@/n’)-) g—.s:l (VL 34)

This gives the expected reduced mass correction to the
fine structure plus a nuclear motion correction which does not affect
the relative separation of the fine-structure levels. This latter term
does, however, lead to small corrections of relative order

(Zoz)z(me/Mp) {1 /4n2) to the determination of the Rydberg.

Further proton corrections, beyond what is contained in
the reduced mass corrections to the fine structure and the hyperfine
potential, occur from

(a) the proton form factor and anomalous moment corrections
at the vertices, and

(b) corrections from multi-photon exchange amplitudes

We have already evaluated the correction due to the proton
size modification of the Coulomb potential in Sec. VI.1. The evaluation of
the corrections from (b) proceeds rather similarly in Szlpeter, the
Grotch-Yennie procedures, and the calculations of Fulton and Martin (1954).

A correction from twoe~Coulomb-photon exchange, not already
contained in the iteration of the effective potential (or the Coulomb potential
in the Breit equation) occurs because of the finite mass of the photon. The
result (to lowest order in me/’Mp, Zo) is

AE. = -k (20° (ﬁa).megﬂo (V1. 35)
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The two-transverse-exchange photon amplitude yiclds the itp*ation of the
transverse potential but also can give spin- independent m /M (Z oe)

A
corrections through the Thomson c. ¢' contribution in Ccvmpton scattering
[ which, we recall, arises through the p(pp) intermediate states] .

The result obtained by the above authors is

a_ = 2(20° (l’i‘:&)me%eour@ 2r 2k (-t e

Me
The log Za occurs because the electron wave function cuts off a

logarithmic integral at r~ {Za me)-l

The contribution of the singie transverse photon exchange
amplitude to all orders in Coulomb exchange is very much analogous to the
electron seli-energy correction. In fact from Fig. VI.4 we can see that
the tranasverse photon contribution is identical to the electron self-energy
contribution except that the photon starts on the electron and ends on the
proton or vice versa.

I1e:, 6-4. Time-ordered second-order perturbation theory for the offect of transverse
photons on the Coulomb-bound e-p aton,

~

The old-fashioned perturbation theory commbutmn iz quite sxmﬁar to
Eq. (VI.11)
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If we write
1 A A (EmmEa) Y (V1. 28)
En"' E»\ < ~k -k E"“ En— W

then the first term gives exactly the Breit interaction

+ Ze* &d‘k Ko o Xr e »

(Zr)3 k*
(V1. 39)
€ v
= %“ % - %.L 3
(X1
which is already accounted for. For the remainder, if we only want
m /Mp corrections we can take
/ SO L
X, .€e TV L P& °
S x S .-p ¢ (V1. 40)
M , ~ P
Alao, to lowest order in (Z a)z
A URiRe (Vi.41)
(_).(e ce = _E__ﬁ..__‘_.§~
(4473

At this point we have exactly 2Z(m /M ) times the non-
relativistic approximation to the Lamb-shift expreessgon (Vi.i8)., It
is interesting to see that the subtraction of the Breit potential plays the
same role as the mass subtraction in the self-energy correction.
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For large k »»> (Z cz)2 me, therz is, however, considerable

difference in the two calculations. In the tranaverse axchange contribution
the retardation factor eik' (xe-xp) serves to cut off at knZ ¢ m
what would be a logarithmic divergence for k —+ m, The resultis

1]

AE-+

5 ’ -
B Zox) W\QZ/P—\? %20{% FocWe o 25

= - = X (VI. 42)
DT\ 2% \t—y\"ey\‘\ov <

in contrast tothelog am /2 | e ~-e _ | ) contribution for the Lamb shift
, e n n 'av
in (VL 18),

In the calculation of the Lamb shift from Eq. (VI.11), the
retardation factors are ineffective at high k since they cancel ! The
cut off at large k comes at k ~ me from the (subtracting) contributions

of the intermedinte pair states | Eq, = En + Zme + O(Za)zj .
Of course, if Eq. (VI.7) is used with the Dirac bound-state propagator, these
contributions are taken cara of automaticaily.

A recent comparison with experiment iz given in Brodsky
and Drell, Ann. Rev. Nucl, Science, 1970.
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VI SIKONAL TECHNIGUES IN HIGH ENFRGY QUANTUM
ELECTRODYNAMICS

An interesting insight into the high energy behaviour of
field theory has been provided in the last two years by the develcpment
of the éikonal approximationin gquantum electrodynamics. The main
re ferences in this development are

H. Cheng and T.T. Wu, Phys. Rev. 186, 1611 (1969)

H. Abarbanel and C, Itzykson, P.R. L. 23, 53 (1969)

M. Levy and J. Sucher, Phys. Rev. 186, 1676 (1969)

H. M. Fried, Phys. Rev. D2 3035 (1870}

R. Blankenbecler and R, Sugar, Phys. Rev. D2, 3024 (1970)
{and references therein).

The main result which has been egtablished is that the
high energy forward (or near forward) scattering amplitude can be written
in an exponential phase form, with the phase given by integration over a
part or ray of an effective potential. We shall find that the main
techniques used for establishing this result are very similar to the methods
used in Chapter 1II, for establishing the Dirac equation for Mp ~—3 0,

Also, some readers will recognise that a great deal of the formalism is
only a slight generalisation of the resulis given by D. Yennie, S. Frautshi.
-and K. Suura, Ann. Phys. (N.Y.) 13, 379 (1961) which demonstrate
factorization of infrared photon behaviour in QHD,

It will be helpful to first review the eikonal approximation
in non-relativistic potential scattering. The scattering amplitude is

fk&‘ = ( LP“.‘:' )‘\[ W‘;;)>

where - we ‘%% is the free solution and Wé ©

is the outgoing wave solution of

+)

2 C 2
IR,
Toevwg = By

Yvy

Write

EZ = (_3"5)2* Q—EE —_ ‘52
2w 2w 2w 2w




Although :1?_ is an eperator, suppose that the potential causes the T
effective value of < P> to deviate little from k., Then we teke

(p-x) <« wt

and KQ: ’Z\‘)

&x-_ﬁva— \;’ééz) + 1\)‘& Wé—\-) - };5__1 U()u)

W z

The solution for ¢ with the behaviour $ip =0, at
Z—> o0 is simply

chﬂ = e v

where

Thus ) s&cquires an eikonal phase n (b, z) obtained by integration of the
potential along the beam direction at impact parameter b.

The scattering amplitude is

0

-~

< . v . < 1
_gv = (ézb e C.‘:-L'Xigc\z“\/(%)i)e n (%) e i
T 3

-0

Note that .
~N wn(b® . ;

22 ®

Thus for the caseof ¢ -~ O (kz = Kz') we have
F

§ = -x ialb‘?';%@ [ e ™M™ _q)

i .
Kk m



%*
where y is the total efkonsl phase:

\OO .
KLYz wib o)z —w % 3.V (b %) at
K

~

Relativistic expansions and perturbation theory corrections to the eikonal
method have been discussed by many authors; see especially Blankenbecler
and Sugar and Levy and Sucher.

The remarkable fact is that in quantum electrodynamics,
infinite classes of a Feynman graph for high energy electron-electron
scattering can be gummed up to a very similar efkonal form. The most
important example includes the summation of the contribution of the
entire infinite series of ladder and crossed graph photon exchange diagrams
(excluding radiative corrections), In the following we will use the -
notation and techniques of Cheng and Wu.

Consider a Feynman diagram for eleciron-electron scattering
involving n-photon exchange. _
q= Z Qi = 2r 1

TZ"Yi > T v T;_"’Y\
qné 3, %a; £z %Oh
4 | ' o 2
U %%(m £0) %cx (7)) 4400
Bty o> : 3-5

M
A preferable, more accurate form is (see Lavy and Sucher)
oy

o (Vb pY+V (}_»’%%)}

-
K
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The Feynman amplitude using fhe 1§ ~Nrall conventions is

m, (9)= (-0 2 (2a) H O ’\jd%w“_ deq, §%(2v, 79:)

where

F,o= ¥, [ﬂz +/‘ -)f,-rm]Y‘m[/, -f/l‘ ~/{' -/[,’t«r m]Ym .
R

Fors Yuted LA, + oyt Doy -+
Coe D@“ f\ - %,(Pn\«rm]\(,, (pr)
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As noted in the figure, P ic a giver npermutation of {-~--n dopending
on the origin on the bottom line of the emitied photons q;-="~q,-

We shall be interested in the limit of high energy

near forward scattering : z, -—> 0o, Tq —p 0, r, fixed.

It is easy to verify that the convection current at each vertex gives the
leading high energy behaviour, i.e. we can take

Nt
F. —-> (1 )-ar!;‘- v‘:"ﬂ! V,'Fl .o r;z',"n 6—;&

with overall helicity conservation, For example, forn=2

a(rl*rl’ X’A'D{tf}f 'ﬂ' -+ MB\{F; b{(;'g’r&)
—> 2(r41),, w640 Yy, u (G-7) + O(4)

— 2(?,,+V.)M¢ Vfu' {‘r.;

Applying the same approximation to F 5 yields
n
FF—> - (L} "x-"&) dia 5-"7-'

(2mY"

This is akey simplification of QED, the leading behaviour in S is obtained
trivially in early order from the simplest approxims tion to the vertex.
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At this peint, the permutations nnlv ocony in . We now shall use

the CM system with ¢ = - wo= i, 1,
2 J ’ at

(] 2
lrz_rs : S dw

3
Also for each q{j’

it is very useful to
introduce
0o = W 4 U . = - Ay
+ / ‘2 3 w

hen, [,.a_,..! . QK(P')]?. -
= 244 (N

7 4 U W

A AR .
fwéi'i« vy et m.ﬂ«,%wt 3 cbne-cuhm}
1

Ao that l i | ‘

PO TR S

‘-t o ey + 18 (Mae Wpdeie) (- Uipmyeie)

&leééar(ﬁ e i P [
Tl (o e (e +ie) (+ U7 +ig)

For the top n~1 de nominators. Note that the crucial eikonal approximation

Jat 9 << L 4Tz bas already heen made here.
It asserts that the integrations over the csj do not involve q's of magnitude

w. We shall be able to verify this & posteriori in QED.

We now recall from Chapter Iil, the identity needed to prove

the Dirac resulis: Aot

%G@a(t’) S [-mé*w]

(’f{‘ w§ gt

It doesn't hurt to symmetrigs over the indices in G1 : {since at this point
evervthing is symmeiric).
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Qt —LEQ = 4+ "’“”’n—'ﬂ[z‘n wh}]

Thus the U and v, i.e. qo and qj are effectively zero we have (n-1)

S - fctors }(2)57 ,)5(%)

Collecting all the factors,

r‘l

z_m (p) = i) (-i€l

R

™ } o
3 a‘,‘u"z' oo

(2ﬁ)2 ne-# V\.!

[ N e
fd%ﬂ---dﬁ") IEX: ',,2-:': 6131')13' [‘qt,i*i}

3.»‘:

2

To see thet this is just the usual eikonal result, write

;' b
d V(z,b) = ezl R
A
= et L K, (\b)
2T
-2 2

- i
where Ko is the Bessel functionand V = -g- e M‘, L ‘7 + Z

is the appropriate coulomb (Yukawa) potential.

T han (‘ 2LE )
M= Zm: -inn Su Sl gy—be‘ o x1]
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m?c

= _;, g g“,z’,.{;*abb“f"}’ Es - e,m?(s;?(\}

which locks extraordinarily like the non~relativistic resulf. Cheng and Wu
note that the imaginary part of the amplitude has the form

T YU = 2713 A?-(hﬁ I: I:a, P‘Pl

(2T

n . et AN f{i- ¥ ]

€, = e,'zjok”b et 7, 'iﬁ\)g{\ _ eLXCE)}

' which yields a separate eikonzl phase for each scattering particle. The factor
1612 {trivial here for the electron) generalises to other problems - especially

for the case of an incident photon (in which case scattering occurs from the vacuum
polarisation loop) where vy-e scattering cen be summed to a similar eikonal form, but

with & much more complicated Y sn
1.3, %)
12 i 1

Cheng and Wu have also given complete results for Delbriick scattering and
photon-photon scattering at high energies. E. Yao has discussed inclusicn
of order a radiative corrections on ths electron-line. Basically, the
exchanged potential iz modified in the expected way by the electron form factors.
For a heavy nucleus, one uses simply,

IN -3 5\17[ Zz e2
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Cheng and Wu have gone on to discuss the summation of 2
more complicated set of graphs in e~e scattering - the "tower' series.

The set of graphs

. o
- D

4 o t4a
- gives a form LS /Laaﬁ at £ = 0.

witha = % T az.

This violates unitarity. However with further assumptions on the integration
convergence, all closed permutations can be included, and a further degree

of exponentiation is obtained, consistent with unitarity. The Cheng-Wu

results are consistent with the usual models proposed for diffraction

scattering : a logarithmically increasing cross section and a shrirking

diffraction peak (corresponding to scattering from a disc whose interior

becomes more absorptive as the energy increases) due to the increasing

chadow of the inelastic electiron-psair channels. It is not clear how directly
applicable to hadron physics this is since non-vector exchange theories do not always
have the property that the large momenta fiow essentially through the outside legs.
For applications in scalar meson theory, see B . Hasslacher, et al, P.R. L.

{1970) and S. J. Chang and T. M. Yan, Phys. Rev, Letters 25, 1586, (1970), and
for pseudo-meson theory (in which double meson exchange generates the eikonal
potential), see C, E. Carlsonand T. L. Neff - SLAC~ PUB - 887 (1971).
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Nevertheless it seems very interesting that diffractive scattering
eventually plays a role even in QED, The fact that higher order
graphs in QED yield constant cross sections (gince Im M~ 5 —>
o'tot - const) and thus can swamp the lower Born processes

(which typically have ¢ ~1/g } is dramatically illustrated by recent

work (see e.g. S. Brodsky, H. Terazawa, T. Kinoshita, P.R. L. 1870}

in colliding beam physics, where one sees that at high energies, two p&oton
processes can dominaie over the usual annibilation cross sections ine e”
collisions at high energies.

A rather ambitious attempt to actually calculate bound
state spectra using eikonal results has been made by E. Brezin,
C. Itzykson and J. Zinn-Justin, Phys. Rev. D1 (1 870) (See also M. Levy
and J. Sucher, Phys. Rev. 186, 1656 {]969) }. - They observe that in
principle, the knowledge of the scattering amplitude for forward electron-
positron scattering for all s will, by analytic continuation, yield the
position of the bound state poles. In fact for the case of a zero mass
photon (A —> 0) the eikonal approximation seems not to be an approxi-
matior at all. For example in the case of non-~relativistic scattering on
2 Yukawa potential, the forward scattering amplitude has the form

n) r ' a - .
R 7 A P A R

@
i {

- -A’&.M e - - R ,
2p.3, + % € ‘ZE' L4 4%}34 L€
2m  2m 2im 2m.

If we change variables to
b

e = 7"‘-‘?&

hen we gimply get
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However for A —» 0, we can preswmably drop the 7&52 terms relative

to 2 151 . The eikcnal result is then appropriate and we get

Y= 2, ip [boas {ﬁ-‘%—zﬁ‘éﬁf’“ - ;}

)\ mJ (27"

this is convergent except for b~ 0 where

Ko (b ~ — Lag (1+ 0(&) + 0(4)

2im 24

W[Z“"‘Z”‘ Ke0] ~ () F

Thus, just like the gamma functiou,
z
P ?: + 3 f d«b e
2

M (p) has gimple poles at F P oy & ﬁ’l - (?a( 2 m
n An
For the case of a relativistic Klein~Gordon partwle,

[(E—v)‘-ﬁ e[y =0

If one drops ke V % terms this is a Schrodinger equation of the form

2-
V] = (552
L2 «V]y - Y
The same eikonal trick then yields
E n = m
\} P+ 224
v %

n
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f
where YL = N+L+] ) ﬂﬁgﬁ

‘ 2 2/ a2
for each degenerate angular momentum state £. The V = (2 d‘) / v

term could be included in the radirl equation for ) if we'd
formally change £ (1) to #(#1) ~ )%= {(T4 1)

This effectively changes £ —» £, and

n—> =& , &= LHd-J () - 2%*

This replacement gives the correct Klein~Gordon spectrum.
In fact, Itzykson has ghown that a similar trick aleo works
rigorously for the Dirac spectrum taking j instead of £ in the above.

Finally, one is tempted to look at the poles in the eikonal
amplitude for forward electron-positron scattering. For the case of

two spin zero particles of masses m, and mz and charges e and -Ze,

the corresponding limit for forward scattering is (in cm)

MGsle b [PU 4 2) 4 (26 [0 e Halb) -]
m,m, N |QLT] Pi(e+0.)

with poles at energies given by

Sp=mPem 4+ 2oty o
+ 2"
U n*

I = e &0
{this in {act gives the result En ml / *J? + 22 &(g;/ﬁa_ )[vv Wy —% ‘)

Since seagulls were not included in the scattering amplitude, it would

seem likely that again we should use then ~>» n - € j trick

to include the spin-dependent terms, and hence obtain the relativistic Balmer
formula of Brezin, et al :

Sﬂ': m:a"i-m.f‘_‘@ Q—*m;m'& .
2,4 2.“"!"2.4
[1+ 2%/ n-gV 17
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a result saited for the spin 3 case as well.

It is then guite intcresting to compare the result with the
known Bethe~-Salpeter results for positronium, ste. (of course nelecting
radiative corrections on the lepton lines and vacuum polarisation).

In fact the fs results are correct through order (Z oe)"‘ for two spin %
particles, but the formula clearly misses the known order

(Z cz)5 m1 /m2 [logZa, 1]

terms from the Bethe-Salpter equation (e.g. energy retardation corrections
to the one-traverse photon interaction). The essential point is that by its
nature the eikonal approximation only retains the longest range 1/r part of
the photon exchange effects, and misses the detailed short range corrections
implicit in the covariant treatment. '

The recent resulis of A. Nandy and R. Sawyer (to be published)
cast further doubt on whether the eikonzal approach will serve usefully as the
starting point tothe bound state problem). They find that the actual Bethe-~
Salpeter calculation of the bound state spectra for two spin zero particles
(including seagull contributions) even in order (Za)* m_ /m_ if£# 0. °
Thus it is clear that the heuristic derivation of Brezin et"al ~(which in
fact ignores short~range forces) is inadequate. However, it may in fact
turn out that the eikonal approximation is in fact a convenient initial
approximation to incorporate the longest range Coulomb parts of the binding
interaction. A systematic effective potential method which correctly handles
the short-range terms has recently been given by 1. Todorov { Phys. Rev. D,
1971 7.



VI INELASTIC ELECTRON SCATTERING IN FIELD THEORY
(a) Brief Introduction and kinematic survey :

In the last part of this course we shall discuss one of the
most promising and exciting areas of badronic physics -~ deep inelastic
electron proton scattering. The recent data from the high energy electron
sccelerators at SLAC and DESY seem to be indicating a new unexpected
composite structure of the proton and neutron. The new tool of study,
large space-like photon mass and large inelasticity, combined with the
loeal structure of the electromagnetic current, provides a sharp probe
of hadron structure at short distance.

We shall first briefly recall the experimental situation
for elastic electron-nucleon scattering. To lowest order in @, the
scattering matrix element is proportional to

ey T AN Ly n RN
< VLTV Y A AT . [ wli’)
‘ NI gt x ! |
; :
\kJ‘t.lh
PR 2
v - P e ‘ i : \
& i
r 1} !‘:
h ! i ’ g e
A
The cross section is the Rosenhlth formula { s ot /
Ut . - . Y {\1? { L E M"
—— - e e vt l e e e 4ot : - . ":‘.i - "l i
341 RGP S S B 4 : 4
:"j r.;i ] r
where ¢ i s e = 0y
[F iy
Experimentally,
J . ;
B l = F‘ Ft Tt l 7y Lty
)
oty e e (e 4
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1 4 *® \I, e 173 ‘i
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.

Thus for Qz beyond ‘several (;ev?'

(v is the lab energy loss) ; the cross sections are again found
to fall off rapidly in momentum transfer. The regions of interest are

- b
: 7 4
s i s
/ R
I ,\L‘ / / /
/

Zi.-q..,,,._,___ / / / e SR l} e
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and the square of the hadron current

i) W E - Y
Al — . - g bl . — Y e | TR (P TN y : C Y
VW, R 'R I LR }"" e Ty L LT N L - p )
3[)‘&:

In general, experiments at high energies have thus fgr = only involved
detecting the gcattered electron (single arm spectrometer experiments),
only specifying qZ, p , but not the specific state In>

Thus what is observed is

)
P
A\ - ™ \af
‘v‘*/ t-’\.j 4,.7,_ W y"\‘}
[al !
/ P BV 4
= - LS N f . :
- = R - ,} W y ! i1 ¥ )
o
§ f P ' - [a
b (7 A P Lo« Vi, (ot
' i [EEY H a5, s - i e (O i
. Lot e [ x ¥ ot f g Vg N W

The above form for the inelastic tensor is dictated from conservation
of current and the sole availability of the 4~ vectors Pand q.

We note for future reforence that W, is related via the optical
theorem to the ferward Compton amplitude T}N for virtual photon (q ) -
proton scattering.

. To order @, the covariant form for inelastic e-p scattering
iz ( iy LL ‘,EI ol ll )

I e . )
(“ §r o & v o Uz B " 4

r . O
- e o - j NS by O [ oLy & ?
Y "'E \ ~ Y g AR % T %
G-\, é}\}. ™ L }J f IT‘J‘Y (2 B
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and in the 1ab (p = m, O)).

1 1
CQ. i 2

= PR T “t

.
(SA Q é;i i:’ u(;—-‘:‘ - E«&\w g Wy 2&\:‘\.5, b :3 4- l \f\l i ("‘.5’{;‘\ ) Covvn
% L - SIS .
1.

Comparing with the Rogenbluth formula, we can read off the single

micleon in) = 1P S contribution :
. v s

i;r\:fa;w (_3‘_” w7 Q’h‘\ ‘ q‘ )

W, = el W G P
- e A
pooter 1 o

s e g ( N i -j %

v\f Y Y !N f} \} e ;

.
C ]

. ot

Nz D ReY ; S R
/

(beyond the resonances), instead of falling dramatically, the data

show that W, and W, have a quite slow dependence on v, a2

This is beautifully {llustrated in figure (8-1), where the
rate of the inelastic crosg-gection to that of a hypothetichl point proton
(with W_=W_ =1) is showrn (from SLAC data: M, Briedenback, et al
Phys. Rev, ~ Letters 23, 235 (1969) )., and compared with a similar
ratio for the elastic cross section. The imelastic cross sections are given
for specific values of invariant mass squared

W Dew o~ O e w

ag a function of Qz. Thus the first striking result is that the data is
qualitatively point~iike.

An equally important observation, is that the data (to good
experimental accuracy) shows that the deep inelastic form factors have
the scale-invariant feature of only depending on the ratio of m¥ and q
This is the realisation of the limit proposed by Bserken in 1866:
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"F(,‘xﬂ.&, Wy = 2.'_‘(%
Q

‘\) » \”\j‘l ‘\\5; Q‘!\t ) = E“L (\J\—\'\

where Fl and F 9 are finite (dimensionless) functions of the variable
wr o= —~ 2N / f{_i‘ '

At this poijit we should note that W 1 and Wz must obey kinematic

restrictions in order to avoid kinematic poles in \f\/tw at q2 -» 0.

Clearly we require

+ 2 .

W, i g0) = G Wy N, q )

g ) ~£ W (v ) = e {~ g )
W, g ) c}’l a “\'5% ] = q Wy N g

where wy and Wz sre kinematic-singularity free form factors.

It is also convenient to define effective total - 'y - p cross
sections for virtual pkoton absorption. Replacing the lepton amplitude
by

e = 7 L1 0 @ 9.
and

r t [ - ‘ -

%'r = F J"Ei: \ © !.J x Loy < )

and using (by convention) a flux factor corresponding to real photons
gives positive cross-sections (fiand)

) T 4y ’:‘T"‘ o _ .
G T K\) , C\ ) = ""“"“-‘“:i;‘“‘ \i\,f " LN , (5\ /
o - M
e
1. 4 7-\‘-: o, o \JL 5 .
oL (v &) = o L Wy U Y)W
A T

Hote that o~ q2 as qz ~ 0, and Wl(y, qz) is positive. Also, as
it should ¢ T (v, 0) is the real total photoabsorption cross section.

L
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| Experimentally, ¢ L/c T 18 found to be small in the deep
inelastic region R = cL/o' r ~*18). A typical scaling result for the deep |

inelastic form factor Wz is shown in figure 8-2.

®) Analogy in Nuclear Physics :

: It will be quite useful to recall the physics of inelastic electron-
nuclear scattering. The nuclear matrix element for scattering on the ground

state nucleus indicated as |p ) to an excited state |n) is

. , o ZE g3
M ~ = ( anljp) fpy ek L%
r & ) R

Since 4 mg_zf’zM is small, Q:a =4 32 and the p = 0 current is dominant,

Disaliowing pair production processes and proton structure, the current

can be taken as the sum of local proton currents :
i

A ¢ CN
T .Sl )/

iegl) = Z 7

t ?*‘

éL »‘ ‘ Li-zl .
Mo = — 7 (nle lp™%
19
and one finds
i e N SRS S N
o v o { . o - N ( . 1 .
i g =TT b Qe Ep-Fo) 2 <Ple fpin @ P
3 8. { ~ }

If we do not detect the final atate, and the limits of the spectrum E n " Ep
are included in the range of y, we use closure to get

g Ly 2im %)

do _  H¥SL ot ey

i
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where fz{gz) is the two-body correlation function. Generally 12
2 -2
is small for g M Rep where

R sep is the mean internucleon-separation. Thus for

2
q 2 (200 o)

2

o

D
aQ
i

Y

dy™ rq

S

Thusg the area under the inelastic scattering curve ~ including continuum

states of the nucleus at 3_2 fixed is just Z-times the point nucleon
cross section. '

s

. SN
ﬂ‘v\,‘\. « "_ P ( ey tie \\\M\
peck \\\\\

résenen e 2y e,

The spectrum alsc shows a quasi-elastic peak at

T
D
\Q pead et e i,

Zm
spread, however, by the Fermi-motion of the nucleons,

Of course, the nucleons appear point-like here since we
are working in the range of &2 and energy y where we need not

consider form factors nor meson-production. Ignoring this we may say

that for sufficiently large energies and momentum transfers, binding

forces and correlations may be ignored, and the scattering is derived from
the sum of scattering on individual target {point-like) nucleons.
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The main question for proton physics is whether there is a
comparable incoherent impulse approximation region .
which may yield a sign of scattering on possible constituents of
the nucleon itself., The new experimental results do seem to be
consistent with a picture of the composite nucleon, with components
which display little sign of structure or form factors in the large
range of Q% and y which has been studied. However there is no
clear sign of a quasi-elastic peak and the integral

| b Wiy, 9 )

which might be expected to teil of the number of charged constituents
(times the average charge squared) is apparently very large or even
divergent. As a final point {llustrating the impulse approximation,
and the incoherence limit, consider elastic Gompton scattering on the
mucleus, At threshold, the amplitude is

"
!
%.
{

bim £ in, )

N oo - Ma
At high energies (y»B.E., but well below meson production thresholds)
Z ’ » “ 2

fve) = 3§ < ¥F = &

m
Vel F 1

$H
o
3

This is the (coherent) impulse approximation: the photon scattering takes
place in a time interval y -1 much shorter than the time for nuclear
effects » = (B.E.)"l. Additionally, for large angles | q| %> R~2_

sep '
the amplitudes all add incoherently,

de . o
=2 - s incoh t
0 £ mﬁ {incoherent)
. ~2
( w >y B E ' g W R )
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Of course, at still largsr qz and v ,» form factor and meson

. production modifications of the Gompton amplitude need to be taken
into account. (see especially work on shadowing corrections to high
energy y~A interactions due to vector mesor production, e.g.

D. R. Yennie and K. Gottfried- S. Brodsky apnd J, Pumplin

Phys. Rev. 1968)

*
X, THE PARTON MODEL IN FIELD THEORY

In this chapter we will discuss the application of field
theory to inelastic electron-nucleon scattering., Most of the results
in this context have been obtained by S. Drell, D, Levy and T. M, Yan
in a remarkable series of papers, (See Phys. Rev. 187, 2159 (1969),
D1, 1035 (1970), 1, 1617 (1970), I, 2402 (1970), and Ann. Phys. (N.Y.)
1971). Many of the results had also been obtained previously on
intuitive grounds by R. P. Feynman (unpublished, and Phys. Rev. Letters
23, 1415 (1969) and by J. Bjorkenand E, Paschos,Phys. Rev. 185 1975 (1869).
An extremely helpful introduction has been given by S. Drell in his lectures
at the "Etore Majoriena International Summer School" Erjce, July 1969

"and SLAC - PUB - 689,

‘ The basic goal in the field theory approach is to try to
understand -

~ (1) whether there is an imimige approximation in renormalisable
field theory which can be deduced from perturbation theory,

(2) whether impulge , approximations could possibly display the
point-like structure of:the bare currents in the theory,

(3) whether other predictions, especially the amalytic cantlmation
tog2 » 0 for e'e” annihilation can be made.

% .
The approach used here is based on work with J. BGunionand
F. Close at SLAC. Isam also indebted to D. R. Yennie
for helpful suggestions.



Thus we assume that the muclecn is the ground state
solution of a local renormalisable field theory. The bare current is
teken as the sum of contriputions from the charged fields("partons™),

;\‘Y,m = 2 e ‘: (x) |

o o» i

and satisfies the free particle equation of motion

oo T U Dey e 1
- The Heisenberg current obeys the full equations of motion
T, 0 = S N TS B

where (neutral) binding fields are included in HI =H - Ha
As usual we choose

J’r 'Uif') R k?f.,‘ﬁ;)
at time = 0, and find

| Jp ety = Yo Gty Uty
-t
where SRt iwt Sy b Hplr)
Uity = e Q = T e :
satisfied
W) = R ) Uity
with « Clnat SNt
HI (\t\} = < H‘I 4

In our calculations we shall require matrix elemedts of the current:

‘ N 1{\55—53,‘}‘{‘" R
L P 3}»(’"‘}!‘\) = ¢ < ‘“..{Z-_){:,) In>

In general, this is complicated {o evaluate directly since the states
|n > and |P > are fully dressed by H .

Thus we use the expansion

. 1t
| P>

i

U tee) | Pe?

= 4 reydmel i, I P
_ MER{WQ F o3t ImeximelH, 1P

+ z"' ‘ﬁh(rot %‘15“‘%)4“‘0‘ HI ‘P)
wmr (Ep = En*ie)Ep~ E, +ie)
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in terms of the bare state (constituents) of the physical proton state.

This is of course the rule for -calculation of matrix elements in
time-ordered 'old fashioned" perturbation theory. The states [R>,

and |m,> represent the free particle expansion of the state iP >,

and cen be further classified In terms of particie number. (The sum prime
indicates exclusion of the | . > state). Z,is the usual (re)- normalisation
constantswhich maintains the normalisation of the state {Ps. The
matrix element of §i2between the bare states is given by the usual

Born point-like results. Because the intermediate states are on-shell
and of definite particle number, the OFPTlis the ;most convenient

form for investigatingthe question of impulse approximation, etc.

An intuitive gueas for the vélidity‘ of impulse approximation
is that at high energies the forward Compton amplitude on the nucieon
reduces to OFPThdiagrams of the type (a) and (b)

s A i’
\“\..L ),.,/r’/ "“1» JNF/
- i £ ﬂ\‘x L S
- N N YN
= 2. O S
. ‘t?\'f.’m“ m{& AL ka'\
- <tnties
‘*A‘\-.ﬂ i v P
e, e
PR S S
* S J
(&)
Ny 4 1 )
e, wt”
A ‘j : ’\J!—L’f‘\f
LS S =R
SN -
| | @y

- - e e -
but that OFPTh diagrams like ()~ involving at least one binding interaction
occurring between the times of interaction. of dia two photans will be small in
the high energy limut, [ Type (a) also includes boson current seagull
contributions to the real part of the Compton amplitude.] Since the form

factors W_ and W_ or g, . { ,qz) are chtained from the imaginary part of th
ST ey 2 s, TV forward amplitude, an impulse P °
approximation for deep imelastic electron-proton scattering would emerge.

Furthermore if the photon mass } qzl is large, there will be negligible
probability for impulse diagrams ltke (b) to contribute unless Hy has
matrix elements which give the wave functions: of the constituents
unreasonably large relative momenta.
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This would then be the desired impulse approximation
with incoherence, yielding inelastic cross-sections from the sum of

individual point-like scattering off the "parton™ bare charged
constltuenta

; | . There is, however, 2 technical difficulty in carrying out
the above hmﬂsﬁc programme . Thmﬂmnt ' in relativistic field

theory has pair-creating matrix elements. Thus we must contend with
additional 'z-graph g™ like |

; -
5 0%
-, 2’ X 4 ,f‘f?}'
[N == |
T ’/ - LA ,A T
\f/ Lt . i 4J
\\’:);
@ (e}

which have less intuitive appeal. However, as emphasised by 8. Weinberg

[ P.R. 150, 1313 (1966) ] an incredible simplicity occurs if we'use: OFPTh.:
in a reference frame with arbitrarily large ("infinite'") total momentum. " In
this case only a relative few of all the possible time orderings which
contribute to the covariant result survive, and in fact, each time-ordered
perturbation theory contribution to the amplitude has a covariant form.

In particular, for spin 0 lines, z-graph contributions can be dismissed
altogether ! In the spin % theory some z-graph contributions survive, but
‘give a simplelimiting real form{ 28 in diagram (d) which is important

for forward compton scattering. It should be emphasised that the to-upsehentum
frame method is just a reference frame device ;and has nothing to do with the
scale of the covariant kinematic variables in the process.

As the simplest non-trivial example, consider the calculations
of the elastic form factor of & spin zero particle:

A,

. ~ 4 1 o N .
e \T (o)l - Lo vl (e
. w\)_ 3 ) ! 2R iy
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We shall calculate F(qz) through order gz from a neutral scalar exchange
interaction. The Feynman diagrams are

- 1} <>
2 N ; ¢
/./\ * [fx 2 R d ?
p /e i w0
/7/ N\ -em \‘\ Lo T -\
(a) A @ N
The time~ordered graphs corresponding fo (¢) are
3
c4
z S TR 1% T N
: g S ey
L\ A S T
A + {2y | > ~ (2) [ - prd
/hiuﬂ‘ \ f/{/' b /,/ N
- e t E o I 4N
{cl) (c2) {c3) L (cd)

In general we would need to sum all 3! individually non-covarient term to

get the corresponding Feynman result for (c). However, using a reference
frame where

. 2 -~
TR T } ) [N A
D 7, m? 1 ( Pa 2 oy
= {{JET ;e )
S Yl s g ) 2 2
o= . - <A PR ! -~ - R
and “-L ( 5P T = | - = \9\ |
N Y o ¥ j’ B ¥oA ¢

{ where we still satisfyp -—m2 p.q. =my’ for P2-> @ ; of
course 2my = Q? for elastic geattering] .
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Then it 18 eagy to soe that diagrame with even ot backward
moving particle (rel.to P =Z ) in an intermedtate state leads
to an energy denominator
1 o O
C"“ + E? h En K-?)
&

whereas if all the intermediate particies move forward -~ as in diagram el
if 0< x<1 as defined below - then the leadmg P terms in the energies oandel
leaving
1
%‘c ¥ E_? -

~ 0(B)

Note, that as defined, q iniroduces small longitudinal momentum relative
tq P

For spin 0 currents and scalar interactions, all the

numerators in the 8 time-ordered contributions have the same P dependence
Thus only the "non~z" diagram el survives
denominators

In detail, the Snergy
(using 3 -momentum conservation and the mass shell)

° > 4 -
“_%‘»’l‘. (Uﬂx‘)p* Ko AN L (\--;r.)P\\
, 2(\-)P

- 4 A

Boe (xPe Rt L, <x~x‘>*9
Zx®

e (%o v (- e W

* 2¢ 2%
>
- k,* 9, x?~vz:~1>
29

O<xx< 1



1 - 1
Jo * Er T (o EprER) P - (O 3P« KL Lx P+ R
2{1-x)® Zx? J
= 2%
A
1 x 2.? p -
Aot Be " (Ery ~ Ex) Wi 2mue T ad o (ki=g fPawm?
(v =) X
= 2P
A‘

Notetbatfii x> 1 orx < 0, the P terms would not cancel.
The phaso space is

{ ask { iﬁ,t Ak ax !
(en)® \ 2k, 2P 25,  (2W3 209 (2x)* ~

S

aaithemmeratar, for the choloce =0 is Pot Ba=% 29 (1-%),

The resuiting covariant amplitude is correctly linear in P and to order q
we identify |

! o\ ax) Pk Vo
F fa2N s e+ o g R T R
4 = Bz (_g'xz IR (- AN

= 1 + _%,_ a‘%gd‘k x (A~ x)

=By  end DD (]

tohere
T (W) = ke Um) Tt = N

= :t: - (\"")‘% '

e x¥
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The first term comes from the . wave - function renormalisation

diagrams orthe Z2 sitilng out in front of o {e0)1P:> We may

vmge . E,= TR to second order' in g.
We can verify that the value L.(2) of the second order term

{from the proper vertex dagram (c) ) at g% =0 equals - B(2), as requirsd

by the Ward identity and thus

Fg =1

The above result for I-‘(qz) of courss can equally well . be derdved from
the Feynman rules. The yarisble x 1s asscoiated there with the parameterk
used  to combine the 'rxg and A2 demominators.

More Ma}]ywemaywritathombexatqzaﬂ in the
form
‘ }1 r‘ -+ 9
I= Z& )‘-cx. gdzk de 'EC&CK') x)

Ot <)

Lo ~

= kade S-“(x)
o=t e

where the sum g over the charged fields (partons of change el ) of the
theory. The function £, (x) is the fractional longitudinsl m ) '
distribution of parton a in ths nuoleon as viewed from an infinite momentim
reforence frame. The definition is clearly extendsble to any order in
perturbation theory. To order g2 in the above theory

‘gﬁ’ﬁ) =t & U=x) =+ i?: _%f_ drk = (-
-~ By 4 (2ry3 ot (K‘"}

and to highero,rder' £ is obtained from the graph

leaving the x-integration undone, =" . wave functfon acrmalisation. «
coatributions also ne«d to be oonsidered here. :
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In Drell and Yan's work, the renormalised nucleon Born term is assumed
to disappear in the final physical result by the choice Z2 =0. This is the
usual statement in field theory for a composite nucleon. With this choice
F (qz) falls rapidly in Q2 in each order in perturbation theory* , and is
normalised to 1 at @2 = 0. In the following we shall keep the Born term
contribution, since it doesn't complicate the results.

We should emphasise here that the results in terms of £{x)
discussed here are general and not specific to the spin 0 theory.

Let us turn next to the calculatio of the virtual forward
compton amplitude T,,w (4%, \J) to order ¢~ in perturbation theory.

Again, we use spin zero electrodynamics to simplify the calculations, as
well as the infinite momentum device. The surviving P =00 time-
" ordered diagrams are

-

Z, ®

4 crossed .

()

In contrast, the entire series including the Born term
exponentiates to a decreasing form factor in soft-photon ~
exponentiated QED,
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Using the decomposition of the covariant and G.1. tensor

(%‘w ___1____V>T (5\ \j) N '; (Q“.m &%1*)(‘)\3* Fc;c"

1 2
we see that Too —_— ﬁ? P Tz and Tii -—>T1

where i is chosen orthogonal to the & direction.

Diagrams B2, B3, (a), (c) and (d) contribute to T,

bh?
U s

\
* B_ (dszdx.hm’X \ (‘ - \>
tew® | °xu—x) (va_q’ ) A

A S VN WP SRR T (v V)
?mv—ch AA A a2

' |
= Lm? I g’*k dx-x(\’x)(é - J—)\
wa—-atgl,l*%m lew® . D » R

§
2 2\ /o i A 2
= 9§ \dZk | ax. x*(-x) 4w [.g S
) ), peeaE ) R

& (_\j‘—bv\}')
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The definitions of A, A', D= D(k™, D = D(k 2') have been
given before, ~ ~

We can check that this agrees with the usual Feynman
result and has the correct threshold resuits, etc. In particular,

hzmit Z T (q , V) -ZLmZTB" " We will return to the Ty

q -y 0 q".bl) v
amplitude below.

Let us now consider the crucial limiting region of large

‘qzl and large v . Fortunately the k1 Zand x integrals here are
sufficiently comvergent such that the limit is straightforward. For

>, . . >, - ‘
2w v K5 , 9 >><K_\.2>,..we may take

S

> )

Al —> Zmv- z-viﬁ..
=
and » '
2 2 o2

e e g (e e s
=B 2.W\\.l'---0t‘,2 fend X (1= x} A“"(Z’.MV-%?#L& i

| o

E3

Y \'\/Q_(_\); 92) = ,_;‘i_' Im T, (v;qf-)v
R Wilw

= Z\ X&x-g (% 8()&- w) ¥, ((O)

[+
where w = fa.‘mv/‘;zz':."f W;g used here
figd o - wa Se- 20,
v .

?mv ﬂ +\e . ZW\

/“.
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This result is clearly much more general than 2nd order perturbation
theory, the crucial step being whether the %2 and x integrals are
sufficiently convergent to allow the limiting form of the A’ propagat or
Generally we need to replace the imaginary part of the intermediate
propagator in ;

Y
I

by the & ~fn. contribution “;m S(x- 8% 2mu)
We ignore in the same spirit vertex corrections :

7
7 »
7] y
7 ¢
L
G T
e e e e e TS

which have a form factor fall off in 3.2

Further Drell and Yan (See paper Ii} have shown in fourth order
perturbation theory that the renormalization factor from

hadronic corrections to the top "parton' line cancel when all time
orderings are considered and the Q2, 2my large limit is taken.
The resulting scaling form for v W,_ = F, (w)

is thus the realization of the Bjorken limit based on impulse approximation
in field theory.

In the case of psuedo-scalar Y spin % theory or
electrodynamics*, the limit A'—» va - q 2

‘yP vector

is not justified since the numerator factors make the resulting residual
integration divergent at high 2, In Drell and Yan's work an ad hoc
transverse~momentum cufoff characteristic of hadronic vertices is used

to ensure the limit. Generally a super-renormalizable theory is required to

ensure the existence of the scaling limit. Note, however. that the
contribution »

* The calculations are slightly complicated by the Z -graph contributions.
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to the proton vertex automatically is convergent because of the
form factors at the m-p~N* vertex, which,in fact,yield

(probably exponential) covariant cutoffs at large X* or small x .

A complete analysis of the structure function f5 (x) in terms of
forward on-shell parton-proton scattering (from u~channel exchange

contributions) will be presented by F. Close, J. Gunion and myself (to
be published). :

We can also note here the remarkable connection between the
structure function and the elastic form factor noted by Drell and Yan. Recall

that to order g2 [We drop the pole term J
:
2\ oc | ax \ Atk _x(1-x)
P ) § & NEORED
[»]

k= w-(-9%

more generally the graph
shown gives an integrand of
the form

H

N (x) \~x)
D(:gx)b(\:‘f:@

The asymptotic form of F(qz) for large Q2 is clearly controlled
by the behaviour of the integrand near xw1. In this region we
can take the integrand in x to be of the form

(i-—x)? a

2
Ty

changing variables to y = (1-x} l—cﬂ shows



F(CV) ~ g gd%) P“““ ML—_*\
Teesd RV

Thus if F(q2) ~ ( Z\Q" 2>?.;_.E for Q-0 , thaen
L0y ~ (j\-x)? at x~l
and -
‘\)’\,\/2 (w): C:\:') £ (é‘o)nvwl (\“é)f, Lor O~ 1
This is the Drell-Yan result; the data seems to be consistent with

p = 3, but there are still ambiguities.

A caution involved in this comparison is that
L.
F(C\’z) = 2; )‘&Fa(q’z )
[+ -3

is linear in the charge 2a whereas yW, is quadratic. In fact,
if the parton(®)- grgton scattering indicated in the figure below

KL}X f kl,x
a i "

is symmetric for parton and anti-parton (as in the case of the
pomeron - Or zero quantum exchange contrlbuticns) then such
contributions contribute to v Wo but cancel for F(q ) Clearly
the Drell-Yan relationship refers to the non-diffractive, etc.
component of v W2 (w).

Next, let us return to the Ty amplitude. Again to second
order in the spin 8 electrodynamics calculation, we find contributions
to Ty; from figures 9-B1, (), (c), and obtain (4, 4 OL }



- Z Zkf [\vx) 1
&'u\' geld Ea—y.(\—x)(%ﬁ?mv) S

for q2 = ch 0, the last term is

™

>2
o “ (\—x)
+y O D-x(-02mv

and fory 32 0 it becomes (by integration by parts on dK2
?-"‘ (=% = (A\=-=)/ D?

Thus
dim T (v 0)= Z{ *byl= 7 =T3oa~ >

AT O =B
- which is the Thomson limit in field theory. On the other hand

at large energies
\
- ‘%f gdzkgdx “‘;;) 'T g '&C") dx
0 o

Lim T, (v,q%)= 2]

Li- 3 S
T 500 By 16

22
Notice that a sharp cutoff in the ‘ﬁi integration at K max would
introduce 8 surface term and violate the Thomson limit. Generally,
we can adopt covariant regularization procedures which will effect
the covergence required in the Drell-Yan procedure.
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This is a new result obtained by Close, J. Gunion and myself
to be published) which asserts that at high energies the (coherent) inpulse
approximation in field theory yields a constant 'fixed pole" in forward
compten scattering. Its value is independent of photon mass g% snd has
the same relationship to the Born theory as in nuclear physics:

A
(\)‘7‘;%.&. YT (v ) 4

SRR, .,_f_i /j‘_’_\ P nuclews
T\R'(\f'»o“) (Ze}/ma
o, > ez oz b /RN
('\.ﬁ) <“"2>> T(Vs@) | TN e (X)) auclon.
<)’:> T, (U:O,Q} ez N
\’Y\P

P N ] \
The expectation value {,j{}'ﬁ} > is effectively < Ma / the

inverse mass of the parton. The result alsc holds in spin 4 electrodynamics;
here the dominant graph is

s
rodiner than T T T Ty
A

/ ‘
(+ UosSd) | \

. s . ", B , w2t
In each case we obtain a contribution similar te F(q ) with Z Na L

ingtead of Z,.AO\ . It has been found, however (in models) that the

above resuilt for the fixed poles does not receive contributions from
amplitudes with symmetric 1l ap = Mep forward

scattering amplitudes. Thus the integral S £ix) x"! Ax

does not receive contributions from the diffractive comiponent of v \n/l (c,g)

= ¥y (W)



and is expected to converge at x~0 . Thig ig clearly true for the
model N* '"u-channel" exchange contributions to $(x)  which
as discussed sbove, give very rapid falioff at x~0 | [Of course

the Thomson amplitude is finite at all energies; whether or not the
constant limit emerges - underneath the Regge exchange contributions
which give the v % lead ng behaviour in T 1 {, 0) - depends on the

convergence of the resgidual integration 7. The experimental existence
of the fixed pole for the proton and neutron would seem to be an
essential consequence of the local nature of the 2 photon interaction at
high energies.

Other Applications:

An immediate result of the parton-model is the sum rule of Gottfried and
Drell, Levy, and Yan :

J) ' |
~)
%_C:J ‘ v\, (W) = \a} - (J;\: >1‘ }1 gflx %u(x:)
W x T a :
3 > o)

¥For integer charged partons, this is greater or equal to 1 since

!
2: >\0‘ \%“(){}ax
o L

- but this is easily satisfied for present data gince vW, appesrs
to be approximately constant at large ¢o.

It must be admitted here that the field-theoretic formalism does not
naturaily incorporate fractionally-charged partons (quarks), since
the charged particle emerges ( &fter redressing its self-field )
roughly along the direction of “& , without interacting with the other
constituents., The treatment of heavy mass quarks as free constituents
would algo seem to be completelv heuristic,

Nevertheless, allowing for fractional change we ohtain the parton
result of Bjorken and Paschos:

U\N/Z Z SL \w

™~ ‘L:\

-1
Z DN \ %;(x)da: 4
N

[+)

*
However, it has been argued [Polkinghorne, Landshoff and others] that the

diffractive componsnt of the data for ¢y W 9 should be excluded from the sum rule.
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where P, . is the probahility o have N parton constitufents of charge A;
Generally M0 &g co->0© unless as co»«c the Z increases
proportionately, If the proton's momentum is distributed equally among
the charged partons, then on average

1
oL \
g X Ty (i)dx = =
>

Thus id

%vw;_c-\(i:) ' ?'PN )| >\L2

i

ok
k.::.

N

9 TN
= mean square charge /parton = ( %’—- b quart ""Odd)

Experimentslly, the left-hand side is ‘2 .18 for the proton. This is
consistent with a model of quarks and neutrel particles, but is not particularly
deiinitive,

For the case of spin ¥ partons, one finds [Drell and Yan, Bjorken and Paschos]
Fi(w) =eF, (), w 6 —+0.

and for spin— 0 partons
¥ (.AJ): 0 v 6“\' - (.
The data favours the spin % case, but again the resulis are not definitive,

There is, however, a complete range of similar predictions of
the parton model for inel, e-neutron scattering, inel. v - proton scattering,
and e+e~ annihilation. A survey of these tests has been given by
H. Llewellyn Smith in 1870. [Th 1188 ~ CERN ] . In addition, Bjorken
and Paschos have discussed a parton-model application to inelastic compton
scattering

X"r P ¥ +alt ' at larpe p and larget - Q2 and have

obtained scaling cross-sections proportional to inelastic e~p scatiering.

P, Roy and I have shown, however, that from the field theoretic point of view
the impulge approximation is not generally met.for this process, [ Phys. Rev.
18717 . R. Jaffee (to be published) has shown that the process

'\g " ? — ‘):*-b \,\. < all

does have a parton interpretation for large invariant pair masses. .

& e
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Another very important application of the parton model has been
discussed by Dreil and Yan, [ Ann. Phys, (1971 7

0 v
\\ N/“”(\

‘\(V’ ™~ \{,{"

AN
_.._.%2\ .

5
~Z P

The process p + p=p !"++ g +all may be calculated in terms of parton-antiparion
annihilation and thus involves the convolution of longitudinda! momentum
distributions of partons and antipartons in the proton. The Jaffee process discussed
ebove similarly invokes the distribution function of photon. The latter can also

be studied by the process, inelastic electron-photon scattering discussed by

T. Kinoshita,H, Terazawa and myself {see P.R. L., 1971 ], and T. Walsh.

(to be published).

VY
",

Hopefully, all of these processes will lead the way to an understanding
of the fundamental electromagnetic structure of the hadrons.
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