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I.. INTRBDUCTION 

Our main focus in these lectures will be to trace the 
theoretical treatment of electromagnetic interactions - especially the 
Compton amplitude from very low to very high energies. We will 
especially note the similarities between the various techniques in the 
two domains. We &all emphasize physical aspects rather than unduly worry 
about rigour. The emphasis will be on current problems, and where 
further problem and research arms atilI lie. 

We will eepecklly try to under&and the theoretical setting 
for the &udy of the hydrogenic atom. Since we will- not want me/Mp -+ 0 

necessarily, the Bethe -Salpeter equation will be a basic tool. A simjAe physical 
derivation is given,including the ma’ln techniques used for actual calculation@ 
of the energy levele. The Lamb shift physics and derivations will also be 
discussed, 

In the 8;ecoxxl part OF the course we will discuss high energy 
aspects of field theoretic electr%@mics, and go on to consider problems 
concerning the nucleon itself, especially Compton scattering and inelastic 
electron scattering. We will briefly review the work of Cheng and Wu and 
others on eikonal techniques at hi& energy. We’ll then go on to discuss 
the parton approach to electromagnetic interaction, ae developed by 
Feyaman, Bjorken and Paschos, and Drell, Yan, and Levy. 

Some parts of these lectures are baged on those given at 
Brandeis University in 1969 [Gordon and Breach, to be published, 1971 3 . . 
F\arther information on the current status of Quantum Electrodynamics (QED) 
may be found in the review by S. Brod&y and S. D. Drell, AnnRev. Nucl. 
Science, 1971. 

II. THE FREE ELECYI’RQN VERTEX 

One of the concepts which will recur most frequently in this 
course is that of the form factors for the one-photon vertex of the electron 
or muon. 

Later we shall be interested in the case of the bound lepton, 
but for now consider the free lepton P”= P*= w-x+* 
Using parity and current conservation, the general form of the vertex is 
(see e. g. , Bjorken and Drell, 1964). 
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By the definition of the unit of cbargrt, F1 (0) = Is and 

we identi@ F2 (0) = a = (g-2)/2 as the anomalous magnetic moment 

of the leptan, i. e. the part of the moment beyond that given by the Dirac 
0CpbiOTL Note that the total vertex yields the interaction 

for the nonrelativistic electron in an external static magnetic field. 

For the case of the proton, there are excellent measurements 

of FI and F2 for 0.01. (BeV)’ c \q2 \ c 25 (BeV)‘. but as yet no 

fundamental understanding of the results. For the case of the electron, 
QED, in principle, compl0tely predicts the form factors. 

For iq”\ <.c m2 the secoirsd-order correction to the vertex 
from QED is 

which yields the Schwinger (1849) coefficient a = a/Z%. 

We shalll require the F1 (q’) part of pP in our Lamb-shift 

discussions. For now we note the following: 

(1) A charge renormalization in the proper vertex graph 
is required to keep F1 (0) = 1. [ This cancels against the wave fanction 

renormalization (improper vertex) diagrams] . 

(2) Fl (q2) is infrared divergent for q2 # 0, and a photon 

3nass~1 A. is required to keep the result finite. Of course, this dependence 
on h cancels out when one calculates the electron scattering event rate for 
an actual experiment. At order tx one must include in the calculation of the 
rate the cross section for scattering plus the emission of a low-energy 
photon, since for any given experimental energy resolution, photons emitted 
at sufficient low energy will be undetected. Very soft quanta are always 
radiated by the scattered electron. 

. 

The total experimental rate through order a! corresponds to 
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and is finite for h -+ 0. (See Yen&: 1963 ; Yennfe, Frautshi, and 
Sktura, 1961; and Meister and Yennie, 1963). 

The most recent theoretical result for the electron anomalous 
moment is f. Levine and Wright, 1971 - see also Brodsky and DreUJ , 
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XXI. THE HYDBOGEN ATOM 

The low-lying levels of the hydrogen atomic spectrum are shown 
in Fig. 3-1. If one ignores . 

(1) proton recoil, finite size, and magnetic moment 
corrections, and 

(2) the fact that in the real world electrons can absorb and 
radiate light; f, e. , take the limits 

m 
-2 -90, proton size 
M Bohr radius 

=wO,a--9 0 w. 1) 

(but leave Za, th# binding parameter, finite), then the bydrown atom can 
be exactly described in terms of the eigensolutions and eigenvalues of the 
Dirac equation for an electron in a Coulomb potential given 40 years ago by 
Darwin and Gordon, [ Complete discussions and references are given in Bethe 
and Ealpeter (1957) 1 . 

One of the goals of these lectures is to describe the apparatus we 
have from QED which, in principle, exactly describes the physical atom both 
in vacuum and in its interactions with external fields. 
try to postpone taking the m t?! 

In particular, we shall 
M 40 limit for aa long as possible. We do 

P 
this for three reasons: 

(1) Nontrivial proton recoil corrections of order 

(ZU)~ (me/Mp)me log Zat are required to compare with the experimental level 

shifts in hydrogen, ; 
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(2) in positronhm, no such expansion exists, and 
(3) avoiding the infinite mass 1”imit gives a new 

perspective to understanding the atom. 

As we shall see in Lecture 5, such an extended viewpoint is quite essential 
in unders*tanding the spin interactions of the atom in an external electric field. 

III. 1. The Energy Levels of the Atom and an Experiment 

Let us now consider the theoretical description of an experiment 
which measures the total absorption cram section for photon scattering on a 
hydrogen atom at rest. Using the optical theorem, we can calculate this cross 
section from the imaginary part of the forward scattering Compton amplitude, 
The general result of time-dependent perturbation theory for the Compton 
scattering matrix element is (w = 151 ) 

where # 

(RI. 2) 

# In the complete reduction of the S-matrix, correction term6 occur 
for Mfi corresponding to %on-p~le~~ diagrams such as 

and also renormalization graphs for the external lines, etc. Such 
contributions have negligible effect on the experiment of interest here. 
(set0 Low, 1952). 
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+ z - <f (m. 3) 
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corresponding to the diagrams in Fig. 3-2. 

Figure 3-2 

the foMn 
A funtfanae&al postdate of QED 1s that the interaction takes 

where A connects states differing by one photon Lr 

..- 
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The current, j (x, 0) I whose matrix elements will be discussed in detail 

later, can coGe;t the ground state of the hydrogen atom f i 3 to alI 
excited and continuum electron-proton states 1 j 2 pl s stateer containing 
extra electron-positron or proton-antiproton pairs. r For i.Hustration 
we shall use this f~old-fashioned7~ perturbation theory expression for 
Mfi to calculate Compton scattering on a free electron. Restricting 

ourselves to lowest order, the intermediate s.tates which can. contribute 
are shown (crossing the dashed line) in Figure 3-3 

# Further, since there is no energy constraint, the proton could be excited 
-in the intermediate states. A complete dynamical analysis would require 
extra %eaguU~’ terms added to Mfi corresponding to 2-photon interactions 
with virtual pfons and other bdsons, 
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The matrk element in QED for the current between free 
electron states is 

m, 6) 

and we immediately see the general result t&t 3-momentum is conserved 
at each H vertex. em For diagram 3-3(a) we obtain 

is the positive energy projection operator. P 

For the “2” d>Agram 3-3(d) the matrix of the current 
between an electron aad an e- e+e” state for the bottom vertex is 

(III. 9) 

where after integration over g, the positron momentum is E+ = -2-g. The 
vertex at the top vortex must differ in sign because of Fermi statistics: 

# Our notation differs slightly here from Bjorken and Brell (1964). 



-8 - 

Thus we obtain for diagram 3-3(d) 

where the sum over positron spinors @ves a “negative energy*’ 
projection operator: 

. (III.12) 

We now note the following important identity: - 

(III. 13) 

for which we identify 

%= ca-rE= O~+E’~ 9’21 c k -4 p_‘)’ 

The total. of diagrams 3-3(a) and 3-3(d) thus gives 

which agrees with the Feynman ruIes far diagrztm 3-4&k) (see, e. g. 
Bjorken and Drell, 1964). 

FIGURE 3-4 
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Similarly diagraxns 3-3(b) and (c) sum to the crossed Feynman diagram 
3-4@). 

Energy and mome&um art3 conserved at each vertex of the Feynmlun 
diagram. 

The identity (3.13) shows that tie Feymnan propagator 

($f-m-+-ie )-I containa the electron and em e-e+ contributions automaticatly. 
Widetig our view, we see that graphs 3-3(a) and (d) have the same vertices. 
The Feymnan propag.ator automatically contairq alf time orderings of t&e 
interactions along the electron line. 

Further discussion and interpretations may be found in Sec. 6 
of Bjorken and Dlr~ll (1964), S&urai (1967), am-.& of course, the original 
articles of Fq-mnan (1.949, 1950). Many af the origbal papers 0x1 QED are 
reprinted in the vob~e editad by Szkw@er (1958). 

We should also note that 

(III. 16) 

(III. l?) 

corresponding to the AZ/&~ vector p&W&l term in Cm 6chradinger 
mation for nonrelativistic electrons. In addition 3-3(a) and (c) 
vanishforw=w’ --F* O$=p’= 0); the Thomson limit for Cmpton 
scattering on the electron thus arises from the ‘*Z” diagrams. 
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III. 2. Definition of Energy Levels from Nkasurement 

Let UB return to our study of photo&sorption and Compton 
scattering on tlw atcllm. Obvkxxsly Mfi as it stands in (3.3) is singular 

whenEi+w=E. 
5 

FormaSy, t&is eatastropbe is alleviated by the zzdiative 

corrections to the bound electron prq.x+tor (see Lecture 6) and leads to 
a replacement 

This just corresponds ta giving the state 1 j > a decaying state time 
depetience, 

(III. 19) 

For a rigoroils treatment of the quantum theory of damying 
states and the line width see t&e text Quantwn Mecbanica by A. Mess&h 
(North Holland PublisXng Company, Amstar&m, 1962), Vol. PI, Chq.XXI-13. 

FI&,@?CiB@ : Prove this ste&ing from the definition of Mfi from time- 
dependent pwturbation theory. 

where T is the timwnxloring opemstor and 

(III.211 

If the w%&5 ~2 state 1 j 7~ is nanwy ti,cs first term (+&e 
“direct chanu01~~) clearly dcnnimxtes Mfi when 
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Operationally, we may dsfime the energy levels of the atom to be the -- 
energy values of w + E. a s’c& that the photoabsorption cross section peaks, 

The apparent shift in energy due to other, nomesonant, terms in the sum 

(III. 3) is of order o~(Zcr)~m and can be neglected (see Low, 1952). Aside 
from the fact that the mood1 energy is included in Ej (a negligible effect, 

except perhaps for pcmitrmium) the definition (III. 22) matches up well with 
the usual Breit-Wigmx a.calysis of the atomic-beam experiments. 

III, 3. Physical Eierivationx of the Bethe-Wpeter Equaticn 

It is now of izxterest to compare Mfi with the expression for 

thme Compton matrix elme~t P.!.R obtained from the QED Fe-n ~-L&S, as 
glv0n ( ff, &* , in EjQrk&n atrd Dssll $964). The relavad diagraxm &re shown 
in Figure 36 . 



where r representa tke matrix element of thy current between bound and 
frea electron-protm &&es End ‘V a: yP (l/$j yp represents one 

photon exchange. 
Energy ati mommt are conserved at eacZr vgrt$z ho 

(rn. 24) 

to represent the el,,, +-9.vw-protoa diagrams w&m 

ot&r kernels by ~ros&ng a line ouly through fros electron aid proton linea. 
Note@& by ir~Auding just the oue-pboton+xcbange kernel all. of the lTladdarlV 
graphs are generated far electron-proton a@%tt&.ng. 

Exercise: &&jrpret Eq. (IL 25) in position-spZWe 
representation where 

< “1x2 t #I “1’ 3’ * is the two-body Gremats 

function. 

If Fe~man diavs are to yield the reeor!!t ecattering form 
(III. 3) for w f Ei = Pg = Ej, we must have (zsp to a factor) 



(In. 29) 

(In. 32) 
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which is aa efgenva1u.e equation for fifed P2 = P: - Pz a2 , 

m. 33) 

The above dwivation of the Bethe-Salpeter equatEon is 
admittedly nonrigorous, but it does clearly show tb8 co~ction of tie 
BS equation with m=suremsnL Rigorous derivations from field theory 
have been given by CM-Mann and Low (1951), and Schwirger (1951). 
Furth0r discussion of the more formal aspects of the equation and 
references may be found in a book by I4. Luria (1968). Also see 
Mande1sta.m (1955) l 

Exercise: Replace the interaction with the proton 
in Fig. 3-5 by a Coulomb potential. Use the above, method to “derive” 
th8 DiZT&C f3C@dfQEL 

Some of the BS ksrnsls which must be included t5 understand 
the M-atom spectrum to an accuracy comparable with expertment are shown 
in Table 3-1-J The efkcts of tie varfo=zs kesnekj will be discuss& in detail 
in later lectUrea. 

x11:5, Reductian to the Dirac Ecju5mxl 

It is often customary in various application6 - espectilly 
in hadrsu ,physiea - to speoiakze the Betbe-Wpetir equation to ladder 
approx+imatEon i. e. , ol.?~y cm@id@r one h3m31 - mually corsespond.tig to 
one boson exchange, G = G@-p’). Althotrgh the &hxodinger equation da 
obtained frm the onc+phutowexchange ladder approximation BS equation 
for me/Mp -+ 0, it is not generally appreciated that the Dirac equation 
is recovered in this static limit only if crossed gmph kernels are retained. 
To seie this, consider 0-p scattering in fourth order, The relevant Feynman 
graphs are shown in Fig. 3-6. 

# Technically, in the calculation of transverse photon exchange aud order -Q! 
self-energy contributions on9 must retain Coxkmb exchange diagrams to all 

orders in Zcr. 1 Sesl Sec. 6.1. 
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FIGURE 3-6 
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The 6 (w,) expresses aergy coxwervation for ecstterinng in a static field 
and reduces the 4-dhensional Fern integration over d4qI to 9=-dtiew3io~ - 

appropriate to the matrix element from the perturbati on expansion of the Dirac 
eqstion to second wder in the Co&x& field,’ Clearly the cross mph is 
essential to fiis reeuk 

The proof for e-p scatteri ng can be readily extended to olE 
ordera in perturbation t&ory. f The n diagrams which arise for n-photon 
exchange can be combined to give a single proton line factor 

# Our discussion here is similar to a proof @ven by D. R. Yetie 
(Private communication) I 



If we use 

thin for M ---P OD the f&&or ia 

n-i 

whkh provides the (x1-1.) FJ -hctions req&ed to reproduce tie Lippman- 
Ekhwinger series for an electr.ran scattering in a Coulomb potential. 

To aplicitIy derive the Dirac @quatWl withkk the Betbe-Salpeter 
formalism, let us r&urn to the two--body kernel g i.n thy C.M. system for 



where %,“rl/, = vci ill the Coulomb potential for the electron 

TincTudiug 6 C S, O) 1 I Identming 

;K%,“-g = \3)<3\ 
-p. - E; -t ;f- 

for PO 2 Ef’ then gives for PO’ --w El 

(III. 36) 

cm. 37) 

(III. 38) 

(III. 39) 

which is the required equatign. 



Again, crossed diagrams are essential to obtain tie Dirac 
result. As a general note, thha ladder approximation to the Bethe-Salpeter 
equation can be expected to hil when tuapls second order in the potential 
are required. 
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Iv, THE RELATMSTZC ATOM 

In the last lecture we saw how one is inevitably led to the 
Bethe-Salpeter equation in order to describe the two-body system in 
relativistic quantum mechanics. As it stands the Bethe-Salpeter equation 
is quite unwieldy and certainly requires an approximation scheme; i, e. 
an approximate, tractable, two-body equation which will give reasonably 
good results by itself, and a perturbation theory to take into account neglected 
terms and possible external field interactions. The necessary perturbation 
theory can be easily developed from the techniques of the last lecture and is 
briefly discussed below. The required approximate equation has been given 
by Salpeter (1952) and is reviewed in Se&ion IV. 3. An alternate scheme 
based on an effective potential for the one-body equation has been proposed 
by Yennie and Crotch and is discussed in Section VIP. 2. 

IV. 1 Perturbation Theory in the Bethe-Salpeter Formalism 

Perturbation theory for the relativistic atom can be readily 
developed from the expansion of the two-body propagator near an energy 
pole. Suppose we wish the perturbation of the energy El for a bound state 

of fermions a and b due to an extra irreducible kernel 6 G. For 

We write 
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where # 

or in mrcinentum space, 

The normalization condition consisto?nt with this result can be found by 
chsosing a 6 G for which we know a priori what 6 ES must ba. Again 
we consider 

Note that PO is just a parameter in this relation, Let us change its valne 

toPo+6Po, where 6 PO is small: 

f AcWly , the orti~riormalization condition takes the form < II 1 Q 1 m >= & mn, 
where Q is propartid to the total, charge operator. 
See equations (IV. 9) and (IV. 15). 



This is the general nonnalfzation condition of the relativistic wave function. 
Other derivations are given in Lurie (1968) and &nith (1968). In ladder 
ap,proximation, b G/BP* = 0 and 

IV. 2 The electroma~tic Current of the Composite System 

We shall also use the technique of the previous section to 
derive the first-order interaction of the atom with an as.xteraal field. The 
obvious application ia to the weral derivation of the Zeaman efkct for thcl 
atom in a static magnetic field. A careful analysis of radiative and recoil 
corrections to the Zeeman &feet is of more than historical interest. The 
analyses tsf all the fine-strutire and Lamb-shift measurements depend on 
a precise (up to 1 ppm) theoretical extrapolation of experiment results from 
high + 3500 ~W,WS) to zera magnetic field. In view of the serious dis- 
agreement of the Lamb-shift measurements and the theoretical predictioxlls, 
it is especially worthwhile to be critical of the standard treatments of the 
Zsemanr. effect (Lamb, 1952 ; Robiscse, 1968 ; Erodslry and Parsons, 1967) 
which are based on au additive interaction Hamiltonian appropriate to free 
particles (x: = x t = k) 

(IV. Xl) 

+ anomalous momeat contributions. 

It should be noted that this Kamiltotian ir~volvss approxima$ely a many-time 
formalism where each particle has not o&y its CMS x, but also t, by a 
single-time formalism. 

Amin we return to a description of the Compton scattering 
experiment - but this time an external field ,4*& ( g) is present. 



is shown in Figure 4.1. For pbtorr emr&.~s in these regions, 

(XV. 12) 

By matching *tkis up with the Feymnan-diagram dsacription we find 

where the two -body current j irs &culated from the effective kernel 
P 

end irreducible diagram expmsiom are shown irp Figure 4-2. 

Figure 4-2. 
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Diagram 4-2(c) gives the anomalous moment a/% coupling to the 
external field. [ Compare with Eq. (II. 2) for the free-electron vertex. J 
Diagram 4-Z(d) and similar graphs containing additional exchanged photons 
give a binding correction to the anomalous moment interaction. For 
consistency (and gauge invariance)) if one retains a certain set G( i ) 
of kernels in the B&he-Salpeter equation then one must keep only the 
corresponding irreducible diagrams for j 12 corresponding to attaching the 

external photon on all charged lines, The first derivation (from field 
theory) of these results was given by Mandelstam (1955). 

In ladder approximation, only graph 4-2(a) is retained and 

where an inverse fermion propagator must be used to tie the legs of the 
Feynman graphs together properly. It is easy to cheek that this ourrent 
is conserved [ again in the ladder approximation] . Thus by the definition 
of the total charge Q = y 8 5 iO (2) 

<n\Q\V;)= (eat e-b) 

(xv. 15) 

which is consistent with the normalization condition Eq. (XV. 10) for ladder 
approximation, We might also note that one obtains the same results in ladder 
approximationfor a static external potential from the equation (Schwinger, 1951) 

(IV. 16) 

which is valid to all orders in Aed. Otther interaction terms in Aext m.ust 

be explicitly added if G contains kernels beyond one boson exchange. 

Before completmg the analysis of the Zeeman theory it will be 
necessary to study an approximate form of the Bethe-S&peter formalism. 
After this is done we will be able to understand how the conventional Dirac 
results emerge and what are the sizes of the correction terms. 
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Iv. 3. The Salpeter Equation 

Since the Coulomb interaction is the dominant interaction 
in the M--atom it is appropriate to focus our attention on instantaneous 
kernels : 

4c x,- Xb) = -; (l-v. 17) 

In momentum space the interaction has no qO dependence. Introducing 

total and relative momentum variables 

p= %k*pb I ?= ~~~~-~aPb=IY*bPn-~~~~~/(M~~mb) 
CN. 18) 

where 

(Iv. 19) 

(IV. 20) 

for the Coulomb case. 

The Bethe-Sdpeter equation in instantaneous ladder 
approximation can be taken as a simplified first approximation to the 
complete analysis. 

Since the interaction can be instantaneous in only one frame, 
let us restrict ourselves to the c. m. frame 3 = 0, -pa =zb = tS 

Defining free-particle projection operatore 

(Iv. 21) 
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One is then able to integrate over PO 

(The Feynman cor~tour prescription corresponds to negative imaginary parts 
of m a and mb). Note that L& = ++ =O 

Adding these equations together gives the Salpeter equation (1952)( $$ =d,” d,b2) 

G (IV. 24) 

which is an eigenvab equation for PO. The elimimtim of the p r, 

dependence is a consequence of the instantamous kernel. Also we can 
define an auxiliary 3--d~isnensi~~~l wave function 7 (p) such that 



I 

- 27 - 

Then & is completely determined in terms of .7\ : , 

and the cormaliztation condition (XV. TO) becomes 

d3p &F)[Aq+ ,G- n” t\!j’+Q) = I,. 
(IV. 27) 

Thus, if the interaction is icstantaneous the dynamics can be completely 
specified by the x0 = 0 wave Eunction @ @f . In general, however, the 

relative time coordinate xo or po is essential to take into account the 

relative time-orderings of the interactions. 

h peculiarity of the Salpeter equation is the presence of the 

A& 
operators in the potential term. The consequence of this is that in a 

time-ordered perturbation theory deve!o?meret of Eq. (IV, 24), the double “2” 
states (i. e. e+e-, &I) occur, but single “Z*’ intermediate states do not. 
This is an expected result for ladder approximations with an instantaneous 
kernel (see Fig. 4-3). 

The absence af diagrams IV-g(b) and (c) in the LSaipeter perturbation 
theory shows why the GA p c+* I eter equation camot @ve Dirac results for 
Ma-?@ ao. In fact, one obtains in that limit 

(Iv. 28) 

which is the Dirac equation with (e+e-)e- contributions to intermediate 
states eliminated. 

The Salpeter equation (IV. 24) bears a strong resemblance 
to the Breit equation for two particles (Breit, 1929). 

(IV. 29) 
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The Breit equation is considerably easier to handle than the Salpeter 
equation and unlike the latter, reduces to the Dirac equation for 

me %n _a a. 
P 

Despite the lact that the Breit equation is not 

fully relativistic, it is found to be useful to compare results of the 
Salpeter equation calculations term by term with the corresponding 
Breit result - especially in isolating contributions which just correspond 
to reduced mass corrections (Salpeter, 1952). When terms of relative 
order meIMp are considered in a given calculation, the Breit and 

galpeter equations may only yield results accurate to first order in the 
# binding . The Salpeter equation, however, can be made as precise as 

required by the inclusion of crossed graphs through the perturbation theory 
given in Section IV. 1. 

If the additional perturbation is also an instantaneous kernel, 
the energy shift from Eqs. (IV. 5) and (IV. 26) is just 

We will apply this result to the calculation of radiative level shifts in 
section v-r. In the nonrelativistic ljnait with nle/Mp --+ 0, $ I- -7 0, 

dl i-f -+Q, * and the energy shift reduces to the usual expression 

in nonrelativistic perturbation theory. 

# The Breit equation leads to errors of relative order Zmn,/Mp 
in the fine and hyperfme structure formulas. 
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IV. 4. THE ATOMIC ZEEMAN EFFECT # 

We now return to the discussion of the interaction of the 
atom with a static magnetic field. Using Eq.. (IV, 26) for the explicit 
p, dependence of the wave function, one can perform the contour integrals 

over p, and p,’ indicated in Eq. (IV. 131 for < a \ Weti 1 m 3 a The 
position-space result for ladder approximation is 

(IV. 31) 

(IV. 32) 

# This discussion follows Brad&y and Prima& (1969) 
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The formidable terms proportional to the binding potential are necessary 

to compensate for the A! hh, deficiences in the Salpeter wave function 

and insure agreement with the Dirac theory for M -?+ 03. # The 
most important result, however, is that siaple perturbation theory for 
the Breit equation with 

(Iv. 33) 

will yield the same aergy shift as obtained from Eq. (IV. 31) in the 
Salpeter formalism, to first order in the binding. - 

fn fact, since the Breit formalism is exact for M P 
-> 00, 

the energy shift due to an external field Azxt as calculated from the Breit 

equation is correct except for terms of order 

The possible error for the Zeeman effect of the hydrogen atom is thus of 

relative or&r (Z cr)*m /M 
e P’ 

Xn addition, however, there are other 

contributions to the Zeeman effect from neglected kernels for the current 
(see Figure 4-2): 

# But only to first order in g. Higher orders require the 
addition of crossed graph kernels to the Salpeter theory. 
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(i) The self-energy and vacuum polarization kernels 
yield anomalous moment contributions (which can be added on ta the Breit 
interaction) plus errors from binding corrections of relative order 

a(Z aj2. (See Brodsky and Parsons, 196’7; Lieb, 1955). These 
corrections correspond to the change in the Lamb shift itself due to the 
magnetic field. 

(ii) The cross-graph kernels give a contribution of 
relative order (Z ~1)~ (which is included in the Breit equation) plus 

errors of order (Zaj4 me/M . Similar estimates hold for non-Coulomb 
P 

contributions of the photon interaction. 

V. TRE ATOM IN AN EXTERNAL FIELD PC 

In this lecture we will construct a model relativistic wave 
fun&ion for the hydrogen atom which exhibits the full l&component 
spinor structure of the 2-fermion system. For our purposes we will only 
require a wave function which is consistently accurate to lowest order in 
the Coulomb potential. Accordingly we will use the Breit equation to 
treat the electron-proton interaction. 

v. I. AN APPROXIMATE WAVE FUNCTION 

We specialize first to the c. m. system where the Breit 
equation takes the following form: 

Since U is taken as the Coulomb potential ’ it contains 
no Dirac matrices. 

f The material in this lecture is based 0x1 work done with J. R, Primack 
(Brodsky and Primaok , I. 969). I 

f In general, the transverse Breit potential should also be included. We 
also ignore comm~utstors of 0 with w a b’ 
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We write 

w. a 

where ua and ab are 2x2 matrices and functions of p and 0 a b I - * 

%b 
is a one-component function of the relative coordinate and 

x SM1 (S = 1 I 0) is a constant 

sz = 8 b, izb)z and S2+ 

spinor and e&en&ate of total spin 

The Breit equation is satisfied if we take 

and if # 
J-L 

satisfies a *‘Pauli” relativistic two-body equation 

[c&+LL~&,.P-t c;,*y 1 
- ,?k~~-ck~ - -5 ,rnb-?Icb 

~h.p+-ut~~~~~s;~~(V~4) 

Here W is the binding energy, 

and 

W. 6) 

and kinetic energy operators: 
then 

if ka could be commuted with 0 . p, c - 

Note that if spin-orbit and other relativistic terms are dropped, Eq. (V. 4) 
reduces to the two-body Sohrodinger equation in the c. m. frame, 

where m = ma mb/(ma + %’ , It should be noted that due to the 
r 

neglect of the transverse potential, Eq. (V. 4) will be incorrect for 
obtaining reduced-mass corrections to the fine structure. 
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The c.m. solution for tob.J s16n S and projection Sz = M 

take8 the following form in position s,pace ’ ’ 

where 

xb, x =-&%x.ftb%; p” 

-. -_.“._e --. 

x= x4- 
+= _ 1P 

The normalization of fi is compatible with (IV. 27) if 

(v. 9) 

(V.10) 

v. 2 THE WAVE FUNCTION OF THE ATOM IN MOTIQN 

Equation (V. 4) provides an excellent starting point for 
determining the wave function required for the Salpter theory; corrections 
to the wave function can be readily handled in petirbation theory, 

In calculating the matrix element of the interaction with an 
external field, the initial and final states will in general have different 

# The ordering @ma + ka) -1 (o a . pj.,@tier~tood here. 
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total momenta, It will consequ&ly be aeccs&y to know how to 
transform the c. m. wave function to an arbitrary refet:Cnc;a frame 
and then form wave packets corresponding to superpositions of 
states with different total momenta. 

It should be emphasized that we shall always consider the 
bound state of the atom to be in a definite state of total spin S - Sa + -Jb 

as defined In its c.m. As is well known, spin does not commute with 
Lore& boosts to a moving frame; it must always be defined with 
respect to a specific Lore&z frame. 

The transformation of the Bethe-Salpeter wave function 
from the c. m. system to a state of total momentum g is given by 

where 

(V. 11) 

(V. 12) 

Thus to obtain the movmg wave function y E, e_ ( /Jo ,y bj sM 

:corresponding to total spin S, and projection S = M in its c. m. system) 
one evaluates the c. m. functions at K;, ) A”$b” 
and applies the spin transformations Su,.b t A) . 

This can be compared with the transformation for a free electron wave 

(V. 14) 
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The effect of the transformation on the spinor st-ructire of the two-fermion 
wave function is rather unexpected: 

(V. 15) 

The small (lower) component is just m $L*~~/C2ti*\~,) where Pfi 

is the momentum of fermion t% in the moving atom. Kowever, the 

large component has an extra term for P # 0 which, as we shall see, leads 
to corrections to the spin-dependent interaction $th an external electric 
field. In addj.tion, the moving state is an eigenstate of 2 =&-t sb 

From a physical point of view, what appears as a spin triplet (S = 1) 
state of the two spin + fermions in the 6. m. frame appears partially 
as a spin singlet in the moving frame (McGee, 1967). 

We can now construct a wave packet for the atom from a 
super-position of total momentum eigenstates: + 

# We have ignored here the xo dependence of the boosted state. This 

is an approximation: the wave function can only be chosen at equal 
time in one Lorentz frame, which we choose as the c. m. , where the 
potential is also defined as instantaneous. 

: 
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where 

This satisfies the Salpeter normalization conditionEq. (IV. 27) if 

(V. 16b) 

(V. 17) 

We have defined $ = X,L ) s \I “, i 5 t\ in (V, 16); this 

corresponds to a Lore&z contraction of the wave packet. 

v. 3. TKE NONFtELATIVlSTIC RElXJCTHXJ OF TKE EXTERNAL 
FIELD XNTERACTIOM 

Let us again consider the atom in an external, static field 
AW* We have shown in Lecture IV that the Breit Hamiltonian, extended to 
include the anomalous moment interactions, is an excellent approxinn tion 
to the exact Bethe-Salpet.er results. We can now use the explicit spinor 
structure in the relativistic wave function Eq. (V. 16) to reduce the 4~4 
component form of the interaction to a 2ra2 Pauli matrix form. The result 
as obtained by Brodsky and Primack (1969) and also K. @born (1969) is b 

i” Mere e a’ a’ m !a, and +cr -a ) ara the charge, mass, total magnetic moment 

and spin of fermion a and MT = ma =+ mb. lQtet.hatg=& (ga+_ab) isthe . 

total spin in the cm. frame. The wave fun&ion 9 (sa, x+J to be used for 

evaluated matrix elements of KrG in general include the Lorentz contraction 

x’ = Ax, but in usual applications, this is only important for bound states with 
Qr 1. Binding correction factors of order (1 -t W/m) are neglected here as 
well as cross terms in the binding potential U and the external field such as 
a_ .VU xA, 



This may be derived from a large component reduction 
method (accounting for pair states - ‘%” diagrams in second-order 

perturbation theory via A2 terms, etc. ) or by a Foldy -Wouthuysen 
method (taking into account the fact that the F-W transformation does not 

reduce the wave function to ( i ) @ (i ) form). Ke: may now be 

treated in standard perturbation theory using 2 2 Pauli wave tindons 

-1 “. 1 em 
The terms proportional to (BIT ma) Or lMT mb) in KNR 

are corrections to simple FW additivity (which until 195 8 had been assumed 

correct to order m -2 , almost universally in the literature of atomic and 
rPJ@leaS physics. The essential point is that matrix elements af the external 
potential interaction require knowledge of fthe bound-state wave function at 
different total momenta. This brings in the extra terms in the large 
components of the boosted wave function and in turn leads to the a and b 

em 
mixed terms in K Pm’ 

For a u&form electric field, the “spin-orbit” terms 

combine to 
eT 6 
2M7 

--a -t 
2M-T 

(V. 19) 
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. 

The first term may be recognised as being exactly the 
right Thomas term for the atom - takera as a static system with charge e, 

mass UK =MT magnetic moment p = pa + 93% and spin S (as defined 

in the c. m. From general arguments similar to those of Thomas, the 
interaction of such a particle with the external field must have te-rms 
(Brodsky and Prfmack, 2969, Sec. IB), 

(V. 20) 

which agrees with (V. 19). In addition one car derive from general principles 
such as special relativity and current conservation (Low, 1954; G&l-Mann 
and Goldbsrger, 1954; Aharbanel and C&Idborger, 1968) the low -energy 
theorem for forward Compton scattering on any stable larget with spin S, 
charge e, mass Jrl, and magnetic moment p. The general spin result 
of Lapidus and Kuang-Chao (1960) is 

Thus the first two terms in u in the forward amplitude are determined 
~olsly by the static properties. One can expllicftly show (Brodsky and Primack, 
1969) that by including the corrections to FW additivfty in Kg one indeed 

obtains the correct spin-dependent term for forward Com.pton scattering on 
the atam. 

Exercise: Consider a nonrelativistic atom of two spin-zero particles: 

Derive *the forward amplitude Mfi to lowest order in o. 
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ext Instead of using Km and PauS wave fun&ions in bound- 

state calculations of Compton scattering, etc. i.t is often easier to use 
the relativistic operators a-& wave fi-nnctions directly. The need for the 
correction terms to the upper components is then explicft . In such 
calcuXations one is eventually required to seperatc relative and total 
coordinates. This can be accomplished for g by use of such identities 

and then separating r 
1969, &Sac. 6). -a’ (For mrther d&&s, see Brodsky and Primack, 

Thc3 1ow-energ.y theorem, together witk dlsparsion relations 
has Ied to construction of a sum rule analogous to ‘the Thomas, Reiche, 
Kuhn sum rule in atomic physics. Che writes the forward Campton 
amplitude in the genera% form 

{V. 23) 

and assumes f2 fw 2, is an analytic and even function of w with a cut 

along the real axis w > w th9 where by the optical theorem 

Here cA p (cd) is the total photoabsorption cross section of cfrcukr’ly 

polariasd’light on a polarized target. The subscript P(A) refers to the 
configuration where the photon h&city and target spin are parallel (anti- 
parallels). If f2 (w2) --+ 0 on the circle at CD, then by Cauchy’s 

theorem 

(V. 25) 



I 

Applied at ~2 = 0, this yieId& 
and Hearn, 1966; S. B. Gerasimov, 1965; 
HOBCX& and Yamamoto, 1966) 

the DHG sum rule (Drell 
bpidus and Kuang-Chao, 1961; 

Again, the integration over final states can be explicitly computed and 
verified for the atomic Hamiltonfan using the correct wave function and 
interaction (Brodsky and Pr,imack, 1969). 

The DHG sum rule was originally developed from dispersion 
relations in elementary-particle physics, It it3 an excellent example of 
the value of close ties joining the intellectual communities of high ;- and 
low - energy physics, In this example, the high-energy physics has 
supplied atomic physics with an important rsault for the electromagnetfc 
interaction of a bound system with an external field. 

v. 4. APPLICATXClN TO THE ZEEMAN THEORY 

Since the Breit description is adequate for the interaction 
of the hydrogen atom with an external field, we can caIculate the Zeeman 
effect due to a constant magnetic field g from the total Hamiltonian 

where 

and a-4 o is the Hamiltonian of the atom with no external field 

applied. The spectrum of x0 in lowest order is the (n, j) spectrum 

of the reduced-mass Sommerfeld formula, The degen.eracy with respect 
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to P is removed by QED corrections, etc. (see Lecture VXj and the 
degeneracy with respect to total angular momentum f (where E = & + -se + -sp) 

is removed by the hyperfine interaction. # 

The spectrum of HO can be specified by tie state label 
\n,F,jAm 3, F 

The radial dependence of the eigenfunctions is 

deecribed accurately except at very small distances r < m 
-1 

e by the 

Dirac equation with reduced coordinates (Salpeter, 1952; Grotch and Yennie, 
1969). 

If one performs the radial interaction for the hydrogen n = 2 
states, then (Lamb .and Retherford, 1952; Brodaky and Parsons, 1967) 

(V. 30) 

and 

is the Lande’ factor for the proton %. 53 me/M . P 
Here gL = (1 - me/Mpl 

takes into account the nucleon motion about the atomic center of mass, and W 

# Also, if 1 f 0 the tensor part of the hyperfine interaction is not 
diagonal in j where 2 = L, + S . -e 
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is the binding energy of the n = 2 state: 

The binding corrections to AS and AL 
w8ve functions, 

can be obtained fro? the Dirac 
F‘llr+ther corrections to AS of order(Z a! ) me/M 

P 
and higher are discussed by IX. Groteh (to be published) and by R. A. Hegstrom 
(to be published). 

The quadratic Zeeman term e -& e2 AZ /me > is approximately 

0.01 MHz for H = 3.500 G. However all n = 2 levels are affected similarly 
a& the maximum separation of any two levels is 0.001 MHz at this field 
which cm. be ignored, as well as the negligible ga = 2 state mixing it 

induces. One can also show that all An # 0 perturbations can be ignored. 

One an then proceed to evaluate the energy values of the 
total Kamiltonian as a fur&ion of field strength. A matrix representation 
(up to 5 x 5 dimensions for deuterium) of& in the n = 2 space can be obtained, 
and the eigenvalues oan be computed by perturbation theory (Lamb and 
Ratherford, X.952; R. Robiscoe, 1968) or by a simple numerical 
diagonalization via computer @rod&y and Parsons, X967). Taking Into 
account the accuracy of the experimentally determined parameters, and an 
order of magnitude estimate of ne@ected theoretical contributions, the 
expected precision of the Zeeman theory results (see Fig. 5-l) should be better 
than Ippm for the present fine-structu.re measurements. 
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THE LAMB SHIFT 

Professor Kleppner has discussed in his lectures (Kleppner, 
2969) the exzrimental history of the measurements of the 2s l/2 = 25 /2 1 *, 
separation in hydrogen. It would be impossible to overestimate the 
importance of the measurements by Lamb and his co-workers f on the 
development of theoretical physics of the last two decades, It is also 
rather paradoxical that the Lamb shifts in H and D remain the only low- 
energy tests of QED which are seriously in disagreement with experiment; 

the latest measurements seem to reaffirm a W 0. 3 k 0.1 MHz discrepancy 
with theory. Accordingly, the theoretics1 calculations certain deserve a 
thorough review. In this lecture we can only outline the course of the 
calculations and point out the areas not well travelled. The next section 
is devoted to a qualitative discussion of the effects involved in the level- 
shift formulae. The self-energy effect, unavoidable due to coupling of 
the electron with the electromagnetic field, not only contributes to *the 
electron self-energy and anomalous moment but also yields an effective 
c-harge distribution. The lowest order result is summarized in the order 
a! expression (II, 2) for the electron farm factors. Qualitatively , the 
photon emission and absorption causes the position of the charge to oscillate. 
Welton (1948) has given a semi quantitative calculation of the level shift in 
such a picture. f 

It might be noted that our language to describa the effects 
of QED is based on perturbation theory and in turn the 
smallness of Q. The total Hamiltonian consits of 3 parts, 

where % describes the atom, H 

36 

em describes the quantized 

electromagnetic field and int the coupling between them. 

The terms electron and photon refer to eigenstates & o and 

*em. The eventual goal of theory is to understand th% 

eigenstates of JY tot. 
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Ronpihly, the electron charge is spread over a distance l/me 
a fraction a! of the time. 

To see what a finite charge distribution does to the energy 
levels of the atom, we calculate the proton size correction. The change 
in the Coulomb potential 

du,e to the nucleus having a charge distribution 2 1 e \ p (rN) of finite 

extent, contributes an energy shift [r, < < a0 = (mZcy)-l ] 

(VI. 2) 

Yhe shift only affects §-states. For RN = 0.8 x 10 
-13 cm, the contribution 

to the n - 2 Lamb shift is 0,127 MHz. Xt will also be helpful to be familiar 
with the calculation in momenturn space. The presence of the form factor 

l?h(q2) [ the 3-dimensional Fourier transform of plrN) 1 changes the 

electron-proton potential: (q, -+ 0 ) . 
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The second term corresponds to the position-,qace perturbation 

and yields the same energy shift. The use of Dirac instead of Schrodinger 
wave fmctions does not change the result. 

Cn the other hand we can calculate the form factors of 
the free electron. Referring back to Eq. (IL 2)) we have the one-photon 
correction to the vertex: 

w. 4) 

For the bound electron the integration over intermediate photon momenta 
is limited to wavelenghts less tian the Bohr radius: 

Thus we have 

w. 5) 

In fact, taking the constant C z X/7 gives the observed 2s shift w 1050 MHz. 

Obviously the above calculation is only meant to be qualitative. 
The situation will be rectified in the uext sections where we discuss the 
actual calculation using the Erickson-Y’ennie (1965) method. 
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VI. 1. THE LEVEL-SHIFT FORMULA 

As we outlined in Lectures III - W, the energy levels of 
the hydrogen atom can be obtained to arbitrary precision by including 
sufficient irreducible kernels. (See Table 3-1). The order - Q 
electron self-energy contributions, which we restrict ourselves to in this 
lecture, correspond to Fig. VI. 1. 

Figure S-l(a) corresponds to 

4- 

(VI. 6) 

If we proceed to the “e/Mp --+ 0 limit, the proton line 

can be replaced by a Coulomb potential in a Dirac equation description. 
The total energy shift of state n corresponding to all the order -CY electron 
self-energy diagrams in Fig. 6-1 may then be summed to 

where 
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and the state 1 n 2 satisfies tb~: nirac eq~~ation. 

Additional terms in the self-energy of first order in m3/Mp could be 

retained here correspondhg to reduced-mass corrections in the Dirac 
equation and the lowest order hyperfine potential in AP. 

As is so often the ease the Coulomb potential is involved, 
any expansion in powers of the binding potential must be handled with great 
care. In particular the final answer will, not be analytic in Zcr, as already 
in evidence by the logZ<zr dependence of our estimate (VI. 5), Thus let 
us examine some of the features of (VI. 7) without attempting any rash ’ 
approximations, 

In position space the bracket in (VI. 7) takes the form 

The sum over positive and negative (bound and continuous state) projection 
operators can be introduced for the propagator as in Eq, (III. 13). The 
k. contour integration can then be performed to.yieM 
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which is exactly t-ho expression one would write In old-fashioned pertnrbation 
theory for the self-ehargy correction io tiio bound &te shown in Fig. 6-2. 
Note that \ n’ 3 includes 3 f;;rmion states which enter with opposite sign. 
Further details concerning the reduction to (VI. 11) may be found in Yennie 
(1963) and Erickson (1962). 

I 
n /I’ I n 

a 
Frcux~ 6-2 

Note that in general &,En is not real. In fact, 

is exactly the rate for the state 1 n> to decay #rough one photon emission. 
Thus we finally have justification for use of En - irn in the scattering 

matrixelement (III. ‘3). Note that for a given separation of levels p is a 
constant. The change in f for say the 2P 

-% 
state in a level crossing 

expsriment due to sweeping the magnetic he across the line is obviously 
negligible, 

Let us now return to the covariant expression (VI 7) for the 

self -energy level shift. It is easy to show that A En is Invariant under 

gauge t,ransformations for the external potential A’. Thus AEn must be a 

function of FW = b’A* - 8’A”” rather than the potent&I directly. If FPV 
is zero, AEn does not vanish; the energy shift is, however, identified as 

a contribution to the electron mass. Since this common shift cancels in 
measurements of transition energies we will understand A En is at least 
linear in Fpv and must take the form 

+ This is of course the mass renormalization first recognised by 
Bethe (1947). In perturbation theory this contribution, as is well known, 
is logarithmically divergent. 
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(v-x. 13) 

where, because of the transformation properties of BE,, QPV must 

be an antisymmetric tensor. The tensors avai’lable are 

(1) qw =c-r,,,7q\2;. which yields the 

iG?(+*E 
(VI. 14) 

which gives the structure 

(3) i-’ corresponding to 

The 000 represent interspersed scalar functions which can 
involve N , II2 , and M or scalar combinations such as BP ooo ZIP . 

A systematic reduction of AEn to calculable term of the type 

(l), (2), (3) has been given by Erickson and Yennie (1965). c See also 
Y0nAie (1963) : Brodsky and Erickson (1966) 3 , The procedure is gauge- 
iAv&risAt and avoids r’falseT’ expansions where actual logarithmic dependence9 
exist. In brief, the calculation of ,&En for the case of the free electron 
(F ‘It, = 0) is used as a guide for the calculation for the bound electron (Fv v $0). 
The calculations would in fact be identical 
components of II do not commute with each other. Remainder terms which 
are at least linear in 

are thus obtained. 

(VI. 95) 
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The dominant contribution to the level shift is found to be: # 

(VI. 16) 

(VI. 17) 

This result exactly correspands to the expected contributions of the 

q2 CC rnt form factors of the bound electron. Thecr PyF’JV term 

matches with the (r 

aAd the 2 00~ &. &‘]’ 

qv A’ (a) F2 (O} anomalous moment contribution, 

structure is the bound eleotron generalization of 

the Fl(0) q2 je’ (q) contribution of the charge radius. The lag (m2/H) Y tog (!ZAE)‘~ 

dependence shows that the bound electron 7P form factor depends in an 
essential way on the binding. For zero binding, the result is, as expected 
infrared divergent. 

As a first estimate of the contribution (VI. 16) let us take 
= yo V and approximate the Dirac state 1 n > by S chrtiinger wave 

$ We have not included here interspersed “form factors” 

-(l + p2/m2)-’ which occur in AE . 
the matrix element integration for n 

These serve to supp_rless 
1 p \ =m r - m 

e, e * 
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functions, For the log (m2/H) term we insert a complete set of states 
(Bethe 1947) : 

(VI. 18) 

Exercise: Derive this result directly from the nonreMivistfc dipole 
approximation to Eq. (VI. 21). 

The tlet result of the k&vest order contributions ia (Bethe, 
ErOWA, &ehn, 1950) 
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where 

(VI. 20) 

The 3/8 terms here correspond to the upu Flrv terms in 

the second line of (VI. 16). The - l/5 is the lowest order vacuum 
polarization contribution to the energy shift aAd will be discussed balow. 
The value of 1 cn, - $ \ av rr, 16.64 Ry can be obtained very accurately 

by numerical methods: 

For the A = 2 states (Harriman, 1956; Schtirtz and Tiemann, 1959) 

Analytical methods for evaluating the Lamb shift in the nonrelativistic atom 
have also been developed decently (see, e. g. , From&l, 1969), 

The contribution from Eq. (VI. 19) to the 251 /2 - 2P1,2 

separation in H is 1051 MHz, including -27 MHz from the vacuum 
polarization term. Higher order corrections for the Lamb shi.ft will be 
discussed in the next section. 

VI. 2‘ HIGHER ORDER CCRRECTIONS 

Higher order contributions to the 2S 
l/2 

- 2P 
l/2 

separation 

contained in (VI, 7) beyond Eq. (VI. 16) arise from corrections from the 
Dirac equation, corrections from uelgected propagators, and terms which 
are explicitly quadratic or higher in F 

PV ’ 
In fact, only the second term 

inthe F 
W 

series is required to compare with present experimental 

accuracy. Nevertheless, great care must be made in making the field 
strength expansion of the level -shift formula. One must avoid expanding 
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powers of F 
CItJ 

from propqgafsrs w&h, because of binddng corrections, 

cut off infrared divergence. Similarly, one must avoid expanding too 
many powers of the potential such that a smgular structure like the matrix 

3lement of r -4 is reqdfrsd. + The effective contribution of such a matrti 

element is (Z Q) 3rnt rather than the nonrelativistic expectation value 

a4 
0 

= (Zog4m~ . These expansions are false eqanslons in that the residue 

terms will be of the same order of magnitude in ZCX as the terms which 
are kept. In the cal,culation of Erickson and Yennie (1365) such pitfalls are 
avoided by (a) psoceedmg in a gauge-invariant manner up to the point of 
actually evaluating n~erical contributions and (b) a simple ?ule of order” 
which quickly identifies the order of magnitude (powers of ZGY) of a given 
term. Although somewhat involved, their procedures are really quite 
elegant and probably have application in other areas of atomic physics where 
a precise expansion of the Rirac Coulomb propagator is required. 

Using these proce&res, Erickson and Yennde were able to 
systematically verify previous evaluations of the level-shift formula through 

orden cY(zo!)5, a(Zaf logz(Zcu). and a(Zc&og (Zn) and to relkbly 

estimate the contribution of the et(Zczj’ m [bo log @au) 3 contributions. 
The log {Za) factors either arise from the infrared cutoff or from 
expectation values of operators such as r-3 (ll-e-mr), 

7---- The matrix element is not divergent, however; the Entegration 
region 3; < me is always suppressed by form-factor cutoffs. 
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If we write 

, 

then cd.1 and c40 can be read off of (VI. 19) i and I 

37r{1 11 1 log 2 I- 5 
c5 = +-.-- - - Klein, and (1952) 

28 2 192 
) [Karplus, Schwinger 

and Bhranmr, Bethe, and Feynman (1953) 1, 

%2 := * 3/4 [ Fried and Yennie (1960) 1 p 

I 

4 log 2 + 63/40 2sl/2 

c61 = iO3/240 2p1 ‘9 /a rlayzer (1960) 1 . (vL22b) 

t 29 /240 2P s/2 

and 

“60 = - (7 4 r2 + 4 + 410~;~ 2) $. +bn , 

1 bd < 5 (estimated) [Erickson and Yennie (1965) 1 . 

The estimated term in cso contributes less than + 0.04 in the 2s 
l/2 -2P1 /2 

separation. The inequality is meant to be a limit of error. 

For a review of the fourth order contributions to the Lamb 
shift see T. Appliquist and S. J. Brod?ky, Phys. Rev. 3 2293 (1970) and 
Brodsky and Drell, Ann.Rew. &~l. Science (1970). 
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VI. 3. THE VAC WM I’OLARIZATIOPU’ kJONT2:iEUTION 

The m~fization of the Coulomb potential due to virtual 
electron-positron pairs (Fig. 6-3) 

was understood well before the advent of quantum electrodynamics (Serber, 
1935; Uehling, 1935)) and actually provided the first motivation for the 
Lamb-shift measurements. 

The change in the photon propagator due to charged pairs 
is, from Lecture I, 

where II(s) is related to the e’e’ annihilation cross section. The lowest 
order of contribution of virtual e+e- pairs turns out to be (Feynman, 1949) 

cw. 25) 

Accordingly, the electron-proton Caulomb interaction in position space 
becomes 

1 

w 

-~+-+-Z+- z+ &&T~~).e-“r . (Vf. 26) 

4me?- 

At large r Y>rne’ , the correction tern2 exponentially damps leaving 

the long-range Coulomb charge appropriate to particles of charge e and 
zlel- At small r the electron penekates the polarieation cloud and 
the interaction strength increases. 
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Xn pertclrbation theory for the energy shifts in the hydrogen 

atom the q2 integration variable in momentum space is restricted to 
2 

a H (Z ame)2. For %2 4 < me one obtains from (VI. 26) 

(VI. 27) 

tile corresponding energy shift is included in Eq. (‘VI. 19), Higher order 
binding corrections fn (Za) have been given by Wichmann and Krol,ll (1956) 
and are included in (VI. 22). The correction from the fourth-order vacuum 
polarization potential (Baranger, Dyson, and Salpeter 1952) 

(VY. 29) 

is included in Eq. (VI. 23). 

‘VI. 4. FINITE PBOTQN MASS CORRECTIO&% 

We now ream to the relativistic Bethe-%lpeter bound-state 
formalism in order to extract the finite melKp corrections to the Dirac 

levels. In the procedure adopted by Salpeter (X952), one takes as a first 
approximation the instantaneous Coulomb kernel to derive the Salpetsr equation. 
Finite mass corrections to the energy levels are then obtained from 
perturbations due to crossed graphs and the effects of transverse photon 
exChaRg%. As the calculation procee&, it is convenient to compare the results 
against the approximate Breit equation which inchades the Coulomb plus 
instantazneous transverse potentials @Ireit interaction) since the latter already 
contains the Dirac equation and m,‘M reduced mass corrections to the fine 
structure. P 

Crotch and Ycnnis (1969) have recently given an alternate and 
somewhat simpler method for determining finite proton mass correction to 
the Dirac levels. Their paper Is very readable and we shall only sketch their 
results, The central idea is to introduce an effective potential into the Dirac 
equation which, to the desired precision, reproduces in pertirbation theory 



electron-proton scattering as detemiued from the Feyum9.s ::!in~xr, 
prescription. The energy eSgen?~lues WA * Wa eft;ective X&xc equation ..pl-.- 
,&odd then give the euerw ieveh of the H-atom to this same precislan. 

f Since the proton is treated 8s a free particle, it might 
appear that errors would occur for example in matrix elements involving 
the proton lower components which h&are a (2Mp+kp)^1 -Q~, -fi structure 

c kp rv o(Ao,2m~ /m 
P’ 

see Eq. (V. 3) ] . The corrections, however 

occur at the (Zcu) fi (me/Mpj2rne level for the fine structure and at the 

relative order (Zo)2(me/Mp)2 in the hyperfine splitting. In fact, such 

first-order binding corrections me even included in the Grotch-Yennie 
equation if the effective poteutitial is chosen to duplicate e-p scattering 
through two-photon exchange 1. 

As the first approximation to the effective electron equation 
Ycnnie and Grotch take 

The potential includes the effect of the entire Breit Weractiou (Coulomb 
and transverse ins?antaneous) of the electron and nonrelativistfts proton. 
MiracuIously, the equation (up to errors in the energy levels of 

0 [ (za~4@lpmp’2”e ] ) , 
with modified parameters: 

can be trmsformed into onn ordimry Dirac equation 

(VI. 31b) 

The eigxmmlues and eigeusolutions of the effectfve equation are related to 
E. and $ o through 

(VI. 32) 
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2 -I/Z where h = (M,/m,) r 1 - ma2 /mp J l;nd Eo. is given by the usual 

SommerfeXd formula far thy Dirac equation with mf and Q’ : 

(VI. 33) 

The eigenvalue E is then obtained by iteration of (VI. 32). The result 
ie 

This gives the expected reduced mass correction to the 
fine structure plus a nuclear motion correction which does not affect 
the relative separation of the fine-structure levels. This latter term 
does, however, lead to small corrections of relative order 

(Zrzj2(me/M,i (l/4n2) to the determination of the Rydberg. 

F’urther proton corrections, beyoti what is contained in 
the reduced mass corrections to the fine structure and the hyperfine 
potential, occur from 

(a) the proton form factor and anomalous moment corrections 
at the vertices, and 

(b) corrections from multi-photon exchange amplitudes 

We have already evaluated the correction due to the proton 
siee modification of the Coulomb potential in Sec. Vi. 1. The evaluation of 
the corrections from (b) proceeds rather similarly in Salpeter, the 
Crotch-Yennie procedures, and the calculations of Fulton and Martin (1954). 

A correction from two-Coulomb-photon exchange, not already 
contained in the iteration of the effective potenti& (or the Coulomb patential 
in the Breit equation) occurs because of the finite mass of the photon. The 
result (to lowest order in me/M 

P 
, Za) is 
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The two-transverse-exchange nhot~n amplitude yields the iteration of t&e 

transverse potential but also can give spin-in&pendent mEmP(Zo!)5 

cmret~tion~ through the Thomson 4 .^c’ c~nttiution in Compton scattering 
f which , we recall, arises through the p(pp) intermedmte states] . 

The result obtained by the above authors is 

(VI. 36) 

The log Zcr occurs bemuse the electron wove function cuts off a 

logarithmic integral at r N (2 cy nze) -1 . 

The contribution of the single transverse photon exchange 
mplitude to all orders in Coulomb exchange is very much analogous to the 
ellectron self-energy correction. In fact from Fig. VI. 4 we can see that 
the transverse photon contribution is identical to the electron self-energy 
contribution except that the photon starts on the electron and ends on the 
proton or vice versa. 

I i 
I I 

The old-fashioned perturbation theory contribution is quite simikr to 
Eq. (VI. 33) 
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1 1 -k -1, ( E &..$q - Ft.,) ‘1 z - 
E,- E,-+ -k -- k E,- E,- k 

(VI. ,181 

which is almady accotmted for. For the remaindtfr, if we only want 
l?lJMp correctiom we cm take 

A.lao, to lowest order in (2 CY)’ 

(Vi.41) 

At this point we have exactly ZZ(m /‘.I’4 ) times the ~&on- 
relativistic approximation to tba Lamb-shift ex$&s&on (VI. 18). It 
is interesting to see that the subtraction of the Breft pot&&t plays the 
same rote as the mass subtraction in the self-emrgy correction. 
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For larm k 33 CZol?” me, thee is, however, considerable 

d+Sference ir the two calculations. 121 the transverse Eucchan@ contribution 

the retardation factor e ik. fxpp) serve6 to cut off at k2a m d 
what would be a logarftbmic divesgmxe for k 4 CD. T-he resrult is 

in contrast to the log (m/Z \ era - g n 1 av ) con~ribireion for the Lamb shift 
in (VI. IS). 

Ln the calculation of the Lamb shift from Eq. (VI. II), the 
retardation factors are ineffective at hi@ k sime they cam& ! ThEi 
cut off at large, k comes at k m m e from the (mbtracting) contributions 

of the intsrmedinte pair states t En, = En + 2me + u(za)2 1 . 

Of ccmxm, if Eq. (vr. 7) is us& with the Dirac bmmd-state propagator, theee 
contributions are taken care of automatically. 

A recent comparison with experimant le givea in Bsodsky 
andDmll, Am. Rev. Nucl. SCienc43, 1970. 
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An interesting insight into the high energy behaviour of 
field theory has been provided in the last two years by the development 
of the eikonal approximationin quantum electrodynamics. The main 
references in this development are 

H. Cheng and T. T. Wu, Phys. Rev. 186, 1611 (1969) 
H. Abarbanel and C. Itzykson, P.R. L. 23, 53 (1969) 
M. Levy and J. f&her, Phys. Rev. l8G, 1676 (1969) 
H, M. Fried, Phys. Rev. D2 3635 (1976) 
R, Blankenbecler and R. Sugar, Phys. Rev. D2, 3624 (1970) 

(and references therein), 

The main result which has been established is that the 
highenergy forward (or near forward) scattering amplitude can be written 
in an exponential phase form, with the phase given by integration over a 
part or ray of an effective potential. We shall find that the main 
techniques used for establishing this result are very similar to the methods 
used in Chapter HI, for establishing the Dirac equation for Mp + m. 

Also, some readers will recognise that a great deal of the formaliism is 
only a slight guneralisation of the results given by D. Yennie, S. Frautshi. 
and K. Suura, Ann. Phys. (N. Y. ) 13, 379 (1961) which demonstrate 
factorization of infrared photon behaviour in QRD. 

It wil8. be helpful to first review the eikonal approxitiatfon 
in non-relativistic potential scattering. The scattering amplitude is 

where co, = me ‘k.3 is the free solution and c t-:, * k, 

is the outgoing wave solution of 

Write 
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AMmu& i is an Cperator, &t1~~3se that the pOb3nt.iaf. CaUB8Y the 

8ffWtiVB 6iU8 of c: &I > to deviate little frm k, , Then we take 

(+) w 
The solution for Q with the behaviour qK - y)ts at 

is sJ9nply 

where 

Thus $ acquires an eikoti phase q (b, z) obtaainad by integration Of f&B 

potential along the beam direction at impact parameter b,. 
The scattering amplitude is 

Thus for th8 case of q --+ 0 mz = Nz’) we ham 
e 
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* 
where x is the total oikonal phase: 

XJ’b-) = *p, d) z - v-41 .- 
k 

RB~ativlStiC expansions and perturbation theory corrections to the eik0na.l 
m&hod have been discussed by many authors; see especially Blankqnbecler 
and SU@X and Levy and Skzher. 

The remarkable f&t is that in quantum t3lectrod~ic8, 
b&tit8 ckm38s of a Feymnan graph for high enerm 8l8ctron-e~8ctron 
scattering can be summed up t0 a v8Ky similar 8I.k~ form. The most 
important f32~11nplB includes the Summation Of th8 ColItributfon Of the 
entire Finite series of ladder and crossed graph photon exchange diagrams 
(excluding radiative corrections), U the following we will use the 
notation and techniques of Cheng and Wu. 

Consider a Feymnan diagram for electron-electron scattering 
involving n-photon exchange. 

4=r:(11 = a1 

A preferable, more acX?urat8 farm is (see Levy and Sucher) 
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where 
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Ws shall be interested in the limit of high energy 
near forward mattering : rZ -+ m, r3 --ip 

It is easy to vsrify that the convection curreont& 
leading hi& eaergy bebavkmr, i. e. we can take 

CQ, rl fixed. 

each vertex gives the 

with overall helicity cat3rmtion, For example, for n = 2 

.Alqlying the m.me apImxim~tion to F2 yields 

This is akay simplificstian of QXJ3, the leading belmviour in S is obtained 
trivially in early order from the simplest approxia tion to the vertex. 
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For tie top n-l de ncminators. Hote that the crucial eikirsnal apprcximat.%on 

&&(<(Z$.bt has alreadv been made here. 
It assmts that the integrations Over the qf do not itl.vclve 2 s of magnitude 

W. We shall be able to verify this a posterior1 in QED. 

We new r23calX from Chapter III, the identity needed to prave 
th5 Dirac results: 

4% (P) = -L=- *@l j! 

P c 1 Ltw J ‘SC 
Zgiii g(Mj)] 

It doesz% hurt to s~etriss CY~JCX the indices Ixl 3 : :since at this pczint 
everythirrg is symmetricj . 
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L 
t%! 

THUS the Uj and Vj i. 8. 
1 

$ and 9’ 3, are effectively zero we have (n-l) 

S-&&M: 
Collecting all the factors, 

To see that this is just the usual eikoml result, write 

where K. is the Bessel fun&ion and V = se , -kr r’LI * r 
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S a5.Q 
-gqz \= 

which looks extraordinarily like the nm-re!ativi&ic remAt, Cheng and Wu 
note that the imaginary part af the amplitude has the furm 

.-. 

! which yields a separate eikonal. phase for each scattering particle. The fact0r 

r”12 (trivial here for the electrm) generallises to other problems - especially 

for the case of an incjdent photon (in which case scattering occurs from the vacuum 
pdarfsatian lcmp) where y-e scattering can be mmmed to a simiLsr eikanal form, but 
with a much more capbated 

lI:L& w, ‘;“I 1 
Cheug and Wu have alsol given complete results foor De%&ck scattering and 
photon-photon scattering ct hi& energies. E, Y&o has discussed inclueion 
of order cv radiative eorrectims on the electron-be. Basically, the 
exchangetd potential is modified in the expected way by the electron form factors. 
For a heavy nucleus, one uses 8impky , 
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Cheng and Wu have gone on to discuss tke summation of a 
more complicated set of graphs in e-e scattering - tke ‘Vower” series. 

The set of mphs 

This violates unitarity. IIowever with further assumptions on the integration 
convergence, all closed permutations can be included, and a furtker degree 
of exponentiation is obtained, consistent with unitarity. The Cheng-Wu 
results are consistent with tke usual models proposed for diffraction 
scattering : a logar%mically inareasing cross section and a shrinking 
diffraction pesk (corresponding to scattering from a disc whose interior 
becomes more &sorptive BB tbe energy tncre&sos) due to the increasing 
&adow 0f the inelastic ekx&xm-pafr clraxmek, It is not clear how directly 
WPlicale to kadron Physics tkis is since non-vector exchange theories do not always 
have the property tkat the lairge momenta flow essentially through the outside legs, 
For applications in scalar meson tkeory , see B . ‘Hasslacker , et al, P. R. L. 
(1970) and 5. d. Chang and T. XVI. Fan, Phya. Rev. Letters 25, 1586, (1970), and 
for pseudo-meson theory fin which d.ouhle meson exchange generates the eikonal 
potential), see C. E, Carlsonand T. I;. Neff - SLAG PUB - 867 (1971). 
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Nevertheless it seems very Weresting that diffractive scattering 
eventually plays a role even in QED. Tke fact t&ii: higher order 
graphs in QED yield constant cross se&ens (six&e Im M N s -ZS 

%ot - con&) and thus can swarq the lower Bern procssses 

(wkick typically have o +.+ 1/ s ) is drannatically illustrated by recent 
work (see e. g. S. Brudsky, I-I. Terazawa, T. KWshita, P.R. L. IWO) 
in c0lliding beam phjrsics, where one sees tka$ at high energies, two ppt0n 
processes can domate over the tisual annihilation cross sections in e e’ 
~ollisi~rte at high energies. 

A rather ambitious attempt to actually calculate bound 
state spectra using &anal results has been made by E. Brezin, 
C. Itzfison and J. Zinn-Justin, Phys. Rev. u (1938) (See also M. Levy 
and J. &cher, Pkys. Rev. E, 1656 (S.969) 1. - They observe that in 
principle, the knowledge of the scattering a.m$lifxde for forward electron- 
paisitron scattering for all s will, by analytic continuation, yield tke 
positi0n of the bound state poles. In fact for the case of a zero mass 
pkoton (X --> 0) the eikoa.al approximation seems n0t to be an approxi- 
mation at all. For example in tke case of non-relativistic scattering on 
a Yukawa potential, the forward scattering amplitude has the form 

If we change variables to 
e..b 2 

ft, 
i 1 xs i 

:hen we simply get 
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However f0r X --s 0, we can pree~uxxxihllr c?rap the 4’ terms relative 

to 2ql d T1?e eikcFlat result Is &en appropriate and we get 

0 P=: 

tkis is convergent exoept for b ,.L 0 where 

I+JI @) ha simple poles at fyp &*) 

For the case ‘of a relatfvistfc Klein-Gordon particle, 

. . 

If one drops && v * terms this is a Sckr&&ger equation of the form 

The same &anal trick then yields 
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where 8% z n’+ &+ ! ,p “i$o 

for each degenerate angx&r momentum state B . The t#Ps @4h” 

term could be included ~,n tke radial ecgu,atiortzr & if we’d 
formally change B (&-I) to Q&I) - C&j a = & fz+ b) 

Skis effectively ctinges 1 -+ c and 

This replacement gives the correct Klein-mrdon spectrurz. 
In fact, Eteykson has skown i&at a similar trick also works 
rigorously for &he Qfrac spectrum taking j in&Bad af I in the above. 

Finally, one is tempted to look at the poles in tks e&anal 
amplitude for forward electron-positron scattering, For the case of 
two spin zero particles of masses ml and m2 and charges e a13d -533, 

tke corresponding limit for forward scattering is (in cm) 

witk poles at energies given by 

(skis in lCact gives Ihe result En = m 
1 

Since sea@lla were not islcluded in the scattering &mpMude, it would 
seem likely that a@n we should use the n --‘=* n - 6 j trick 
to include the spin-dependent terms, and hence obtain the relatM&lc B&mer 
f0rmula of Brezin, et al : 
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a result mitod for the Epin $ case as well. 

It is then qee i ntcasting ta compre the renult wi+& the 
known Bethe-S&peter ret3uhs for poeitronium, etc. (of course nelecting 
radiative corrections on the lept011 lines and vacuum polarfsation}, 
In fact the fa results are correct tthrough order (Z a)* for two @rn + 
particles, but the formula clearly misses the kmm order 

-~ 

terms from the Bethe-Salpter equation (e. g. energy retardation corrections 
to the one-traverse photon intmaction). The esseutr;inl point is that by its 
nature the eikonal approximation only retains the longest range l/r part of 
the photon exchange effects, and misses the det&A short range corrections 
implicit in the covariant treatment. 

The recent restits of A. Nandy sti R. Sawyer (to be pbli&edj 
cast further doubt owl whether the eikonal approach will serve usefully a8 the 
starting point to the bound state problem). They find that the actual Bethe- 
Salpeter calculation. of the bound &z&e spectra for two spin zero particles 
(including seagull. contributions) even in order (Z Q! )” m /mz 
Thus it is clear that the heuristic derivation of Brezin et’al 

if J? # 0. ? 
(which ~TI 

fact ignores short-range force@ is iuadequate. Bovrever, it may in fact 
turn out that the eikonal approx-in&ion is in fact a convetient initial 
approximation to incorporate the longest range Coulomb parts of the binding 
interaction. A systematic effective potential method which correctly handles 
the short-range terms haa recently been. given by I. Todorov [ Phys, Rev. II, 
1971 -J. 
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VIII. INELASTIC ELECTRON SCATTERING IN FIELD THEORY 

Brief Introduction and kinematic survey : 

In the last part of this course we shall disouss one of the 
moat promising and exciting areas of hadro-uic physics -- deep inelastic 
electran proton scatlm5.ng. The recent data from the high energy elertron 
accelerators at SLAC and DESY seem to be indicating s new unexpected 
composite structure of the proton and neutron. The new tool of study, 
large space-like photon mass and large inelasticity, combined with the 
local structure of the electromagnetic current, provides a shaq probe 
of hadroa structure at short distance. 

We shall first briefly recall the eqerimental situation 
for elastic electron--nucleon scattering. To lowest order in Q, the 
scattering matrix element is pr:aportional to 

The cross section is the RosenbEtzth formula 

where ‘r 

Experimentally, _. 
‘Sr, : ! r, L( I i-; z. ^d --- - _ I_- j 

and 
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Thug for Q2 beyond +everal GeV’ 

a rather severe fall-off. This is also charaoteristic for the 
ink3lastic production of specific nucleon resonance states 14” With 

(u is the lab energy loss) ; the cross sections are again found 
to fall off rapidly in momentum transfer, The regions of interest are 

More generally we consider the inelastic processes 

which involves the square of the lepton current 
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However ia the de33 ink3fastic rsfgion 



where F1 and F2 are finite (dimensionless) functions of the vatiable 
wa = - 2MV i? 

At this poi#& we should note t&t WI and W2 must obey ‘kinematic 

restrictions in order to avoid kinematic poles in Wp at q2 + 0. 

Clearly we reqtire 

where wa and w2 are kinematic-singularity fme form factors. 

let is also comenient to define effective total, - ‘*y” - p cro88 
sectioned for virtua3 photon absorption. Replacing the leptm amplitude 
by 

and using (by convention) a flux factor corresponding to real jphoton 3 
ghms positive WOBB -sections (Hand) 

l%te that. Q L N q2 as q2 - 0, mci WIIy, 4 5 is poeitiva. Alao, a.8 

it sIxmId (r T @, 0) is the real total photoabsorption CTO~S section. 
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I, ExgerimmWb s Q L/o T is fund to ble ml in the deep 

inelastic re@on pi = qii T d18). A typical scxBng result for the deep 

i.xuaastie form fwtor w2 is lidmrn in ffgwe 8-2. 

@I Analogy in Nuclear Physics : 

It will be quite usaful to r@3?U th9 physics of iwlastic &x!tron- 
nuclear scattering. The nuckar matrfx element for scattering on tbs ground 
stats nucleus indicated a8 \p ) to an exaited &f&o In) is 

Since Q q2/2M ia mall, Q” g -2 g and the p’ = 0 current ia dominant. 

Disa,llowing pair production processes and proton &xWxwe, the current 
can be t&en as the gum of local proton currants : 

1 .--I. _ I,?. ; 

and one f6ds 

If we do not detect the final stats, and the limits of the q+ctxwx En - Ep 

are included in the ranm of y , we use closure to get 



Tllus the are8 und0r the inelastic scattering c!lwv0 - includfng; c.?mtinm 
states of the nucleus at q 2 fixed is just Z-times the poigt nucXeon 
cross section. 

The spectrum also shows a quasi-elastic peak at 

f I 
‘3 2i --zL..e.. 

2.M 

spread, however, by the Fermi-motion of the nucleons. 

Of comse, the nucleons appear point-1% here since we 
are working in the range of a2 and energy v where we need not 

consider form fact~rs~ nor mesas+pr&3udtio~. Imorfng this we may say 
that for &ficiently large energies and momentum transfers, binding 
forces and correlations may be ignored, and the scattering is derived from 
the sum of scattering on kdividual target Cpoint-like) nucleus. 
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The main question for praton physics is whether thesre is a 
comparable incoherent iPnpu.lse ~prmxdmatiamx region I 
whioh may yield a sign of scattering on possible constituent of 
the nucleon it&elf. The new experimental results do 8eem to be 
consistent with a picture of the ComposMe nutieon, with CompWti 
which display little reign of etructure or form factors in the larger 
range of Q2 and v which has been studied. However there is no 
clear sign of a quasi4astfc peak and the integral 

which might be expected to tell of thhe number of charged constituents 
(times the average charge quared) is apparently very large or even 
diverge& A8 a fix& pofnt illustrating the impulee approximation, 
and the incoherence limit, consider elastic Wnqtan scatterkg on the 
ID.X%3US. At &reshoId, the ampHtude is 

At high energies (v*B. E . , but well below meson production thresholda) 

This is tbs (coherent) impulse approximation: the photon scattering takes 
place in a time interval v -1 much shorter than the time 
effects T - (B. E, )-l. Additionally, for lar& angles 

the amplitudes all add incoherently, 

(incoherent) 



- a3 - 

of C(ICUCB(J, at still larger g2 and v , form factor and meson 
:.’ production modiMcations of tie CJompton amplitauie ne& to be taken 

into account. (see especis.lly work on shadowing oorrections to high 
energy PA interactions due to vector meson production, 8. g. 
D. R. Yen&e and K. 6loUfried- S. Brodsky and 3. pwnpldn 
Phys, Rev. 1968) 

lx, THE PARTON MODEL IM FIELD THEORY * 

Iu this chapter we will discuss the application of field 
theory to ine1asti.c ele&r~-nucleon scattering, Most of the results 
in this context have bm obW.ned by S. Drell, D. Levy and T. BL Yan 
in a remarkable series of papers, (See Phys. Rev. l&J 2159 (X969), 
I& 1035 (1970), I, 1617 (a970), I, 2402 (19?0), and Am. Phys. NY.) 
1971). Many of the results had also been obtained pnnicusly on 
intuitive gmmds by R. P. Feyatnm (mspubli~hed, and Phys. Rsv. Letters 
& 1415 (‘6969) and by J. BjOrksuand E. P~chos,Pkrys. Rev. 185 197zi (1969). 
An extremely helpful 3s&roduction has been given by 8. Drell in his lectures 
at the “l$tore Maj&ianaI%te~tional Summer So?~ool’~ Erice, July 1969 a-.-._, 
andti.C-PUB-689. 

?%e &sic goal in the field thbory approach is to try to 
UnderBtand 

(1) whether there is an BQ approximation fn renormalisablts 
field theory whiob can be de&cod from perturbation theory, 
(2) wh&her irmpul@,;, apprc&mations could possbky display the 
point +ike s*+e of) the bare currents‘ in the tbaory I 
(3) whether other prcxWtions, especially the analytic CO~~~~~ 1 
to q2 3 0 for &B- annihilation can be made. 

The approach used hare is based on work w%h 3. ?IWiionand 
I?. Close at SAC. Emm also indebted to D. R. YeWe 
for helpful suggestions. 



+ 
“_ ,. .- - 
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in terms of the ba+state (const%uentsr) of the physical proton s@ta. 
This ie of course the rule for ~c4QcPilation of matrix 6kments in 
time-ordered “old fashkxw& pccturbation theory.. The states ]c> , 
and \M&> represent the free particle expansion of th6 etata f P > , 
and cm be further olass ed in terms of parti& mmzber, 

7 
(‘I% sum prime 

iJ&diicates exclusion of the F, > stat%!). !z$s the usual (XV)* normalisation 
constant;;:-which nMnt&ks the normalisation of the state IP 3, The 
mdrix elment of @beWeen the bare states is gBvga by the usual 
Born point--like results. Because the intenn&ats states are on-shell 
and of definite particle number, the 0FF7?j&1 tie I SD& convenient 
form for investigatin$*s qusstion of impuXss approximation, etc. 

An intuitive guess for &he di&ty of impulse approximation 
is that at high energies thy forward Qmpton amplitude on the nucleon 
reduces to OFPTh&i&gI?.a&s of the type (a) and @) _ 

but th& OFI?‘i’h d&qrazns’ lilfe (ti)- involtiag at kwwt oz~ b4wWg i.ntsrwtion 
occurring between tbk times of interaction. of H&J bvPo ph@@s :will be small in 
the hi& energy , f Type (a) ales includy boson current seagull 
contributions to eal part of the Compton amplitude. 3 SinctJ the form 
factors Wl and W, or gS T fv o q2) are obtaafned from, t&e part of the _. ) j 1 Y foxward amplftude, an 
kpproximatics;n for deep &laatic eleotron-praton soatt&ng would 
Furthermore if the photon mass 1 cl2 1 is mP% 

emerg% 
there till be negligible 

probability for impulse diagrams liire (b) to contributa *uleaa Hk has 
matrix elements whfch give the wave functions ! of t.e coIlstuu~rmts 
unreasonably large relrtiive momenta, 
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Or- Thie would then be the desired impulse approximation 
with incoherence, yielding inelastic cross-sectioxu3 from the sum of 
individual pointlike sattering oPe the t@arton~T bare charged 
gonstituenta. 

‘: : , / 

’ 1‘ 
There la, however, a te@mical difficuIly in carrying out 

the above I;r,tSuristic programme. 1 ln klativbtic f&Id 
themy has pair-creating matrfx elemeuts. Thus we must cant end with 
additionaI ‘k-graph s+” 1&e 

which have less intuitive appeal. Howe~r, as emphaaiacid by 8. Weirrberg 
[ P.R. 150, 1313 (1966) J an incredible simpliti.$$ OCXXW~ if we’use: Ql$P&.:, 
in a reference frame with arbitrarily large (TnfiniW) total momentum. In 
this case only a relative few of all the possible time orderings which 
contribute to the covarfrmnt result survive, and in fact, each time-ordered 
perturbation theory contribution to the amplitude has a G&ant form. 
In particular, for spin 0 lines, z-graph contributions can be dismissed 
altogether ? In the spin + theory some z-graph Gontributions surtive, but 
give a, s~pl&mitlng real form[ ,as in diagram (d) which is important 

’ for,forward oompton sczktteri ng . It should be emphaskd that the tJ0 ntum 
frame method is just a refereme frame deli ti@: &xd has noth.ing to do with the 
scale of the covariant Mnematic varfables in the ‘process. 

of the elastic form factor of a spin zero particle: 
As the simplest non-trivial example, consider the caIculati0n.s 
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i 
‘i 

i 
? 

T’ha time4xdered grap?~ corresponding to (c) are 

[ wlzere we st%lll satisfy ie = m2, p. Q. = rn$, fsr Ip2 
COU~SB !&a@' = Q2 for elastic sbtteringl . 

--+ a3 $ Of 
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In Drell and Yan’s work, the renormalised nu&on Born term is assumed 
to disappear in the final physics3 result by the choice 22 = 0. This is the 
usual statement in field theory for a composite nudeon. With this choice 
F(q2) falls rapidly in Q2 in each order in perturbation theory* , and is 
normdised to I at Q 2 = 0. In the following we shall keep the ZSorn term 
contribution, since it doesn’t complicate the results. 

We should emphasise here that the results in terms of f(x) 
discussed here are general and not specific to the spin 0 theory. 

Let us turn next to the calculatio~of the virtual forward 
compton amplitude TP, ( T2, V ) to order q in perturbation theory. 

Again, we use spin zero electrodynamics to simplify the calculations, aa 
well as the infinite momenl;lJm device. The surtieg e -lm - time- 
ordered diagrams are 

+ 

In contrast, the entire series including the Born term 
exponentiates to a decreasing form factor in soft-photon - 
exponentfated QED, 
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Using the decomposition of the covariant and C& I. tensor 

we see that To5 -@ 1 

2 
P2 ‘I’2 and Tii -+ T1 

where i is chosen orthogonal to the 4 direction. 

Diagrams B2, B3, (a), (c) and (d) contribute to T2: - 
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The definitions of A, A’ , D = D(k2), D = D(ic 2, have been 
@ven before, N -rrp 

We can check that this agrees with the usual Fqnman 
result and has the correct threshold rasults, etc. In particular, 

iimllt 
2 c T2 (q2, y) =~;m~-$“* We will return to the T1 

q *of- 4 ki m 
amplitude below. 

Let us now consider the qucial limiting region of large 

ls2t and large v t Fortunately the k 12and x MegAs here are 
sufficiently convergent such that the l&it is straightforward. For 

wl$ere,* d. ,Z 2 ‘r 
2mv/Q . W& used here , 

.. . . . 



- 96 - 

This result is clearly much more general than 2nd order perturbation 
theory, the crucial step being whether the g2 and x integrals are 
sufficiently convergent to allow the limiting form of the A’ propagat or 
Generally we need to replace the imaginary part of the interrnedkte 
propagator in 

by the S -fn. contribution f12xV i Sk %&w,i) 
We ignore in the same spirit vertex corrections : 

+2 which have a form factor fall off in q. 

Further Drell and Yan (See paper 11) have shown in fourth order 
perturbation theary that the renormalization factor from 

-5. # 

hadronic correctians to the top “‘parton” lbe cancel when all time 
orderings are considered and the Q2, 2mv large limit is taken. 
The resulting scaling form for W Wz = Fz (-1 
is thus the realization of the Bjorken limit based on impulse approximation 
in field theory. 

In the case of psuedo-scalar y5 spin + theory or yr vector 
electrodynamics *, the limit A’+ 2& _ ql” 

is not justified since the num Ftor kctors make the resulting residual 
integration divergent at high i In Drell and Yan’s work an ad hoc 
transverse-momentum cufoff characteristic of hadronic vertices is used 
to ensure the limit. Generally a super-renormalizable theory is required to 
ensure the existence of the scaling limit. Note, however. that the 
contribution 

* ‘II%% calculations are slightly complicated by the 2 -graph contributions. 
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to the proton vertex automatically is convergent because of the 
form factors at the n-p-N* vertex, which,in fact,yfeld 
(probably exponential) covariant cutoffs at large IS’ or small x , 
A complete ar&.ysis of the structure function Q [x) in terms of 
forward on-shell partoa-proton scattering (fromu-channel exchange 
contributions) will be presented by F. Close, J. Gumion and myself (to 
be published). 

We can also note here the remarkable counection between the 
structure function and the elastic form factor noted by Drell and Yan. Recall 
that to order g2 [We drop the pole term 1 

more generally the graph 
shown gives an integrand of 
the forI% 

I 

The asymptotic form of F(q2) for large Q2 is clearly controlled 
by the behavi0u.r of the integrand near X’M 1. In this rty$on we 
can take the integrand in x to be of the form 

changing variables to y = (1-x) 13 shows 



and 

This is the Drell-Yan result; the data seems to be consistent with 
P = 3, but there are still ambiguities. 

A caution involved in this comparison is that 

Fpf) = 2 hx~,(%2) 
(XSI 

is linear in the charge ha whereas VW 2 is quadratic. In fact, 
if the parton cated in the figure below 

P 

is symmetric for parton and anti-parton (as in the case of the 
pomeran - or zero quantum exchange contributions) then such 
contributions contribute to v W 2 but cancel for F(q2), Clearly 
the Drell-Yan relationship refers to the non-diffractive, etc. 
component of v W2 (w)* 

Next, let us return to the T1 amplitude. Again to second 
order in the spin 0 electrodynamics calculationX we fJnd contributions 
to Tii from figures g-81, (b), (c), and obtain ( i -I 5 ) 



for q2 =Q% 0, thelast term is 
-I 

il 
-e 
\<L (b-x) 

I -“- 
&J- ‘Ts2 3 - )r ~~->c)2rnV 

-3 
d2 

* 
and for v 2% 0 it becomes (by integration by prts on A ) 

z& (t-x) = (\-%)/y-y 

- which is the Thamson limit in field theory. On the other hand 

* 
Notice that a sharp cutoff in the %f 

32 
integration at k ~1 would 

introduce a surface term and violate the Thomson limit. Generally, 
we can adopt covariant regularization procedures which will effect 
the covergence required in f&e Drell-Y&n procedure. 



01 a 
The expectation value +Ckzzp ) is effectively the 

inverse mass Of the par’cun. The result also haids in spin $ electrodymxrnics; 
hers the domirlant graph is 
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and is expected to comerg~ at X.uQ , This is clearly true frm the 
model N* %-~hamel~~ exchange contributions to :‘s’ ( X, 1 which 
as discussed above, give VWry rapid falloff at ‘X ,\i 0 . [Of CXTWSt3 
the Thmsm amplitude is finite at ali energies; whether or not the 
oomstmt limit emerges - underneath the Regge exchange eoutribut3ons 
which give the v & leading behaviour in TI cd9 0) - depends on the 

convergence of the residual integration 1. The experimental existence 
of the fixed pole for the proton and neutron would seem to be an 
essential consequence of the local nature of the 2 photon interaction at 
hi& ener@es. 

Other Applications : I- 

An immediate result of the parton-model is the sum. rule of Gottfried and 
Drell, Levy, and Yan : 

For integer charged parkm3, this is g-mater or equal to % since 

- but this is easily satisfied fcm present da? since U~Z appears 
to be approximate1.y constant at large ti . 

Xt must be admitted here tlmt the field-theoretic formalism does not 
naturaXXy incorporate fractiomIly-charged partons (quarks), since 
the charged particle emerges ( &ter redressing its self-field ) 
roughly along the direction of h , tithout interacting with the ether 
contitituents, The treatient of hea~-~g mass quarks as free constitmmts 
w&d also seem to be completeZv heuristic, 

Nevertheless, &hwiRg far: fractional chmge,we obtain the par&n 
result of B&&en and Paschos: 

However, it has been argued. ~olkin$mrne, Landshoff and others] that the 
diffractive component of the data for v “IV2 should be excluded from the sum rule. 
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where P is tke probab3Sty to kave N partou eonstitutsnts oP charge A; 
Ge;lerally%&+O as *S-*@J mlass as e2+* the Z increases 
proportionately. If the proton’s momentum is dis$ibuted equally among 
the charged partohs then on average 

I 

5 SN f&)d)t = 
0 

Thus 

Experimentally, the La&-hard side is r -16 for the proton. This is 
consistent with a model of quarks and neutral particles, but is not particularly 
definitive. 

Par the case of spin 8 partons, one finds [Drell and Yan, Bjorken and Paschosj 

and for spin - 0 partons 
F, (L+ 0 ii. G-y-- 0. 

The data favours tke spin & case, but a@n the results are not definitive. 

There is, however, a complete range of similar predictions of 
tke part-m mcxkl for iaal, e-neutron scatterbxg, tiel. v - proton scattering, 
and e+e+ annihilaticm A survey of tkese tests has been given by 
H. Llewellyn Smith ia. 1970. f Th 1188 - CERl9 1 . Pn addition, Bjorken 
and Pasckos have discussed a parton-model applicatieon to inelastic compton 
scattering 

$f p + $*a(& at la.rge v Rand ?.arge t --. Q2 and have 

obtained scaling cross-sectiom proportional to inelastic e-p scatterin.g. 
P. Roy and I have shown, however, that from ,the field theoretic point of view 
the impulse approximation is not generally met.for this process, [ Phys. Rev. 
1971-j l R. Jaffee (to be published) has shown tkat the process 

does have a partan interpretation for large invariant pair masses. 
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Another very hportant application of the pa&on mc&el has been 
discussed by Dreil and Yan, f- Am. Phys, (Ian) -/ 

Hopefully, all of these processes will lead the way to an understaxxdirag 
of the h.&axmn~l electromagnetic structure of the kadrons. 
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