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Abstract. Land use/cover (LUC) classification plays an important role in remote sensing and
land change science. Because of the complexity of ground covers, LUC classification is still
regarded as a difficult task. This study proposed a fusion algorithm, which uses support vector
machines (SVM) and fuzzy k-means (FKM) clustering algorithms. The main scheme was di-
vided into two steps. First, a clustering map was obtained from the original remote sensing image
using FKM; simultaneously, a normalized difference vegetation index layer was extracted from
the original image. Then, the classification map was generated by using an SVM classifier. Three
different classification algorithms were compared, tested, and verified—parametric (maximum
likelihood), nonparametric (SVM), and hybrid (unsupervised-supervised, fusion of SVM and
FKM) classifiers, respectively. The proposed algorithm obtained the highest overall accuracy
in our experiments. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083636]
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1 Introduction

Land use/cover (LUC) classification is a key research field in remote sensing, and plays an
important role in climate change, biodiversity conservation, and people’s livelihoods.
Accurate LUC maps derived from remotely sensed data have become the basis for analyzing
many socio-ecological issues.1 LUC classification is nothing more than a convenient abstraction
and may be improved by considering the other lines of evidence, such as surfaces that reflect the
range of variability within and between the categories of a classification scheme.2

One basic issue to enhance the LUC classification is to choose an optimal classifier. A series
of conventional classification methods have been well developed and long used for remote sens-
ing applications, which are parallelepiped, minimum distance, and maximum likelihood (ML)
models.3–5 Many other advanced classification techniques have also been introduced in the field
of remote sensing classification, including artificial neural networks, machine-learning, decision
trees, genetic algorithms, and support vector machines (SVM).6–10

Machine learning algorithms are widely used classification algorithms during the past dec-
ades and some assessments of their relative performance compared to other classifiers have been
conducted in the Amazon region.11,12 SVMs (Refs. 13 and 14) have demonstrated their classi-
fication accuracies in several remote sensing applications.15 Specifically, SVMs have been
shown to reach high accuracies in LUC mapping and outperform other algorithms.16–21 The
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success of such approaches is related to the intrinsic properties of the SVM classifier, which can
handle ill-posed problems, and to the curse of dimensionality,22 which provides robust sparse
solutions and delineates nonlinear decision boundaries between the classes.

The SVM classifier has a significant advantage for LUC classification. It seeks to separate
LUC classes by finding a plane in the multidimensional feature space that maximizes their sep-
aration, rather than by characterizing such classes with statistics. SVM classifiers do not need
large training sets but just the training samples.23 Foody and Mathur24 suggested using small
training sets composed of purposely selected mixed pixels containing the support vectors,
since this approach does not compromise classification accuracies and may save considerable
time.

Another fundamental issue to enhance the LUC classification is the adequate selection of input
variables, which may have the same impact as the selection of the classifiers as proposed by some
authors. Watanachaturaporn et al.25 have used the multisource classification with SVM. Different
textural measures are a potential source of ancillary data and their benefits for LUC classification
have been highlighted in studies using different techniques and classifiers.26,27 Remote sensing
images are large data, and clustering is the most important one in modern data mining technology,
which is used in processing large data sets.28 Fuzzy classification is a well-established technique
to classify multivariate units emerging in various vegetation, soil, and forestry studies.29,30 Fuzzy
k-means (FKM) clustering algorithms have been used to overcome the problem of class overlap,
but their usefulness may be reduced when data sets are large.29

In order to use both advantages of SVM and FKM clustering, we proposed a combination
method to deal with LUC classifications in remote sensing images. The SVM classifier was used
to generate a spectral-based classification map, whereas FKM clustering algorithm was adopted
to provide an ensemble of segmentation map. The fusion of SVM and FKM algorithm aims at
mitigating classes sort problems by completing the feature vector, and discovering the optimal
nonlinear classification boundaries with SVM.

The remainder of the paper is organized as follows: Section 2 introduces the classification
algorithms and classification architectures to the reader. Section 3 presents the data sets as well as
the experimental setup. Section 4 presents the results. Section 5 discusses the outcomes.
Section 6 draws the conclusions of the paper.

2 LUC Classification Algorithms

To compare different classifiers, we used a parametric classifier (ML), nonparametric classifiers
(SVM), and a hybrid classifier (unsupervised-supervised, fusion of SVM and FKM). We do not
explain here how the ML and SVM algorithms work since detailed descriptions have already
appeared in remote sensing and pattern recognition textbooks.31

2.1 SVM for LUC Classification

After defining the data sets of remote sensing images which are used for classifying LUC, a
robust classifier should be selected for the supervised classification step. SVM is chosen attrib-
uting to their intrinsic robustness to high-dimensional data sets and to ill-posed problems.

The original SVM algorithm proposed by Vapnik in 1963 is a linear classifier. The basic idea
of the SVM is to map multidimensional data into a higher-dimensional space, in which there is a
hyperplane that can be used to linearly separate the original data, thereby maximizing the margin
between different classes.14 Boser et al.32 suggested a way to create nonlinear classifiers by
applying the kernel trick to maximum-margin hyperplane. The classifier aims at building a linear
separation rule between examples induced by a mapping function φð·Þ in a higher-dimensional
space on training samples. A linear separation in that space corresponds to a nonlinear separation
in the original input space. An example is illustrated in Fig. 1.

The core of such algorithm is given by the kernel trick: since mapped samples in the SVM
formulation appear only in the form of dot products, these operations can be replaced by valid
kernel functions kð·; ·Þ returning directly to the inner product value in that space [dual formu-
lation, Eq. (1)]. The solution is given by the hyperplane with maximal margin width, which
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guarantees the best generalization ability on previously unseen data. In the dual optimized for-
mulation, one has to optimize32

max
α

XN
i¼1

αi −
1

2

XN
i¼1

XN
j¼1

αiαjωiωjκðxi; xjÞ; s:t: 0 ≤ αi ≤ C and
XN
i¼1

αiωi ¼ 0; (1)

where C is a user-defined parameter controlling the trade-off between complexity and training
error of the model, αi are the coefficients determining the solution of the optimization and ωi ∈
fþ1;−1g (binary case) are the class labels associated to samples xi.

When the solution to Eq. (2) is found, the label of an unknown sample x 0 is given by the sign
of the decision function, i.e., its position with respect to the separating hyperplane

ω 0 ¼ sign

�XN
i¼1

αiωiκðxi; x 0Þ þ b

�
: (2)

Experiments are performed using a Gaussian radial basis function (RBF) kernel:
κðxi; xjÞ ¼ expð−kxi − xjk2∕2σ2Þ, where σ is the user-defined bandwidth of the Gaussian func-
tion. The Gaussian RBF is usually used in many environmental applications to its interpretabil-
ity.33 To solve multiclass problems, the one-against-all scheme is adopted.13

2.2 FKM Clustering for LUC Segmentation

To preliminarily classify LUC, a fuzzy segmentation is applied. The motivation for this choice is
manifold. First, no fixed objects can be identified, as the concept of ground covers is inherently
vague. Therefore, no clear, quantitative profiles exist. Second, some units between the bounda-
ries are overlapped.

In an FKM clustering, a record is retained by the degree to which any object belongs to all
candidate classes. Specifically, for all objects being classified a real number in the range [0, 1]
known as a membership value [denoted as μðXcÞ] is recorded for all c classes being considered,
where a value of μðXcÞ ¼ 0 indicates that there is no degree to which the object belongs to the
class or set, Xc, and μðXcÞ ¼ 1 indicates that it completely belongs to the set or class, Xc, or
could be considered as prototypical of the set. Values between μðXcÞ ¼ 0 and μðXcÞ ¼ 1 indicate
the relative strength of the degree to which the object has properties that are typical of the set Xc.
Therefore, the outcome of FKM clustering is a record for every object being analyzed of the
degree to which that object belongs to every single class being considered.

FKM clustering algorithm is applied on the pixel values of all bands of remote sensing image.
Depending upon the degree of fuzziness specified by the fuzziness parameter φ and the number
of classes k, this procedure yields a set of units, identified by the class with the highest member-
ship value. In this study, considering N data, φ, and k will be done on the basis of the maximum
partition coefficient F [Eq. (3)] and the entropy parameter H [Eq. (4)]

Fig. 1 Kernel machine.
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F ¼ F 0 − 1∕k
1 − 1∕k

; s:t: F 0 ¼ 1

N

XN
i¼1

Xk
c¼1

ðmicÞ2 ; (3)

H ¼ H 0 − 1þ F
log K − 1þ F

; s:t: H 0 ¼ −
1

N

XN
i¼1

Xk
c¼1

mic logðmicÞ (4)

mic is the membership value of pixel i to class c, c ¼ 1; : : : ; k.29,34 Both F 0 andH 0 depend on the
number of classes k. In fuzzy classification, the optimal number of classes k and a fuzziness
parameter φ were done by repeating the classification for a range of numbers of classes and
parameters. In our two series of remote sensing images, we tried k from 2 to 15, and got
the highest accuracy when k ¼ 4 (Fig. 2). The fuzziness parameter φ was set to 2.0 according
to various authors’ experience.29

2.3 Normalized Difference Vegetation Index

Besides the selection of image classifiers, the use of ancillary data is recognized as crucial for the
performance of image classification. Ancillary data have been used successfully to improve
image classification, especially by including topographic measures (elevation and slope), nor-
malized difference vegetation index (NDVI), or texture measures in the classification process
additionally to the spectral information for separating features with similar spectral proper-
ties.25,35–42 NDVI has become a standard remote sensing product for ecological applications,43

which has been widely applied for discriminating and interpreting mapped vegetation units.44,45

NDVI was calculated from

NDVI ¼ NIR − R
NIRþ R

; (5)

where NIR is the near-infrared band and R is the red band.

2.4 Fusion of SVM and FKM Classification Architectures

In order to take advantage of the above described SVM and FKM algorithms, a proper method
should be defined. The classification architectures are presented: (i) FKM clustering and
(ii) SVM classification. The main scheme is shown in Fig. 3. FKM clustering algorithm is
used to classify the original Systeme Probatoire d’Observation dela Tarre (SPOT) 6 image

Fig. 2 Selecting the optimal number of classes for sample 2.
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and produces clustering map. Simultaneously, NDVI layer is extracted from the original image.
Both the clustering map and NDVI layer are added to the original image. Then, the SVM clas-
sifier is utilized to classify. Finally, an LUC classification map is obtained.

3 Material and Experiment Setup

3.1 Study Area

Qujing is a prefecture-level city in eastern Yunnan province of southwest China, which is similar
to many central and eastern parts of the province. It is a part of the Yunnan-Guizhou Plateau. It is
an important industrial city and is Yunnan’s second largest city by population, after Kunming. Its
population is 5,855,055 according to the 2010 census, of which 659,925 reside in the residential
area. Tempered by the low latitude and moderate elevation, Qujing has a mild subtropical
highland climate, with short, mild, dry winters, and warm, rainy summers.

3.2 Data and Preprocessing

A SPOT 6 image of the study zone was acquired on February 1, 2013. There were fewer clouds
on the image. SPOT 6 satellite was launched on September 9, 2012. It has four multispectral
bands: blue (450 to 525 nm), green (530 to 590 nm), red (625 to 695 nm), and near-infrared (760
to 890 nm). It also has a panchromatic (450 to 745 nm) band. Images of the panchromatic band
can reach 1.5-m resolution and images of multispectral bands obtain 6-m resolution. After pan-
sharpening using Bayesian data fusion, images of multispectral bands achieved a spatial reso-
lution of 1.5 m.

To reduce the computation of complexity and improve the classification accuracy, after topo-
graphic correction by digital elevation model, two sample images were clipped. The size of
sample 1 images was 1982 × 1630 pixels [Fig. 4(a)], and the size of sample 2 was
2113 × 2151 pixels [Fig. 5(a)]. By visual inspection, a total of six LUC classes of interested
regions had been highlighted by photointerpretation in both images. Finally, 460,024 pixels
had been carefully labeled in sample 1 images [Fig. 4(b)] and 460,024 pixels had been labeled
in sample 2 images [Fig. 5(b)]. The type of LUC was industrial, water, forest, rock, arable, and
residential classes.

It can be easily found from the labeled images that in most cases data consists of small poly-
gons [Figs. 4(b) and 5(b)]. Much care was taken to scatter training areas across each image to
ensure that they were representative of the entire image, and to retrieve as many training samples
for each LUC classes (Table 1) as needed to satisfy the previously suggested criteria for

Fig. 3 The main scheme.
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Fig. 4 Multispectral high resolution SPOT 6 image acquired over Qujing city, Yunnan province,
China (sample 1). (a) RGB composition of image. (b) Ground survey of the six classes of interest
identified: “industrial” (red), “water” (green), “forest” (yellow), “rock” (cyan), “arable” (magenta), and
“residential” (blue). (c) ML LUC classification maps. (d) SVM LUC classification maps. (e) Fusion
of SVM and FKM LUC classification maps.

Fig. 5 Multispectral high resolution SPOT 6 image acquired over Qujing city, Yunnan province,
China (sample 2). (a) RGB composition of image. (b) Ground survey of the six classes of interest
identified: “industrial” (red), “water” (green), “forest” (yellow), “rock” (cyan), “arable” (magenta), and
“residential” (blue). (c) ML LUC classification maps. (d) SVM LUC classification maps. (e) Fusion
of SVM and FKM LUC classification maps.
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establishing an appropriate minimum sample size.31 The Jeffries–Matusita transformed diver-
gence index was used to assess the separability of samples data. We confirmed that
separability was rather high for industrial, water, and forest, but much lower for the rock
class. These pixels were all used for supervise classifiers training and validation.

3.3 Experimental Setup

To compare various kinds of algorithms, the ML, SVM, fusion of FKM, and SVM classifier were
used. All algorithms were implemented using ENVI+IDL 4.8 in Windows 7. In this paper, com-
bining of SVM and FKM algorithm was mainly divided into two steps. First, the NDVI layer was
calculated from the red and near-infrared bands of SPOT 6 image using Eq. (5); an FKM clus-
tering algorithm was used to produce segmentation map from all four bands of the image. After
that, the segmentation map and NDVI layer were stacked to the original SPOT 6 image. Second,
the SVM classifier was finally set up to calculate and produce the LUC classification map. After
producing the LUC classification map, a 3 × 3 pixel majority filter was applied to all classifi-
cations to eliminate the salt and pepper noise in order to improve the accuracy. Reference data
retrieval for accuracy assessment was based on a stratified random sample selection, with sample
units taken at a minimum distance of 2 km to avoid the potential effects of spatial autocorre-
lation. The data were ground-truthed by expert-knowledge from the images themselves. For
overall and each class’s obtained accuracy assessment, a confusion matrix (also known as
error matrix) was generated, which is the most standard method for remote sensing classification
accuracy assessment.46

4 Results

The classification maps produced by ML, SVM, fusion of FKM, and SVM classifiers are pre-
sented in Figs. 4 and 5. In Fig. 4, all classification approaches identified forest class as the LUC
class occupying more than half of the total area of the zone, followed by arable class. All meth-
ods identified water class as the LUC class with the smallest area. On the contrary, the water class
accounted for the largest proportion in Fig. 5.

Confusion matrices of each classification algorithm were produced to analyze classes’ sep-
aration performance. In the sample 1 image, each classifier with overall accuracy (OA) assessed
at 95.4156%, 96.5497%, and 97.7760% of ML, SVM, and fusion of SVM and FKM, respec-
tively (Table 2). The OA of ML, SVM, and fusion of SVM and FKM classifiers was 92.5530%,
96.8847%, and 97.7552% (Table 3). From both the tables, the ML classification approach cre-
ated the lowest producer’s and user’s accuracies for the individual classes.

The sample 1 confusion matrix of fusion of FKM and SVM classification algorithm is shown
in Table 4. Although the fusion of SVM and FKM classification attained highly accurate overall
results, it was markedly less effective in recognizing rock and residential. About 0.43% of indus-
trial was mistaken as residential while 1.98% of residential was wrong labeled as industrial class.

The sample 2 confusion matrix of fusion of FKM and SVM classification algorithm is also
shown in Table 5. The classifier was less effective in recognizing residential to industrial or rock.

Table 1 Size of LUC samples (#pixels) collected from each classification.

LUC class Sample 1 pixels Sample 2 pixels

Industrial 25,154 10,713

Water 5220 176,408

Forest 321,097 86,352

Rock 39,905 10,061

Arable 49,054 62,786

Residential 19,594 47,304
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About 13.31% of industrial was mistaken as residential and 14.40% of rock was wrong labeled
as residential class.

5 Discussions

ML classification map held the most details, while SVM classification map got the least par-
ticulars. It is due to SVM algorithm eventually translating into a convex optimization problem,
which can guarantee the global optimal. However, ML classifier is focused on resolving the local
problem and ensuring the local optimal.

Tables 2 and 3 demonstrate the SVM classifier is more effective than ML classifier in LUC
classification. It is also coincided with that SVM classifier is better than ML classifier in LUC
classification which was referred from many references.47,48 Fusion of FKM and SVM classifier
got the highest OA among three classifiers. The highest overall classification accuracy generated
by fusion of FKM and SVM in this study suggests that our approach is useful in conducting land
LUC classification.

The result was seriously influenced by the training samples because there were some shad-
ows existing in residential and industrial training samples. The proposed method was less effec-
tive in the separation of rock and arable classes. It may be due to the date of the SPOT 6 image.

Table 2 Sample 1 LUC classification accuracy (%) of three classifiers.

ML SVM SVM and FKM

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Industrial 97.40 97.48 98.04 98.92 97.94 99.62

Water 98.35 95.53 98.56 95.54 99.18 100.00

Forest 97.23 99.64 97.57 99.77 98.72 99.79

Rock 87.94 76.99 89.19 83.41 92.46 86.49

Arable 94.25 95.39 96.05 95.39 97.76 95.70

Residential 88.54 82.85 93.56 77.63 92.65 92.11

Overall
accuracy

95.4156 96.5497 97.7760

Table 3 Sample 2 LUC classification accuracy (%) of three classifiers.

ML SVM SVM and FKM

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Industrial 73.14 96.09 85.63 84.02 86.04 96.58

Water 100.00 99.88 99.65 100.00 100.00 100.00

Forest 97.79 95.02 97.17 97.80 98.35 97.79

Rock 78.84 30.18 96.48 65.53 83.91 83.05

Arable 94.41 97.14 97.02 97.65 97.40 97.36

Residential 60.07 86.95 88.54 95.47 94.38 93.29

Overall
accuracy

92.5530 96.8847 97.7552
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The image was captured in winter. Few crops were growing on the farm in that season, so the
huge area of bare soil on the farm land led to difficulty in distinguishing arable class and rock
class. Because some trees or grasses grow in rock areas; and similarly, some forest areas without
vegetation and bare rock turned out, the size of ground objects relative to the spatial resolution of
a sensor is directly related to image variance.49 Some errors were made between forest and rock
classes. About 1.16% of rock class pixels was mistaken as forest class. About 2.06% forest and
4.86% rock were wrongly classified as residential class (Table 4), only 0.24% of forest wrongly
taken as rock and 0.94% of rock mistaken as forest, which may also be caused by the residential
training sample. The reasons for the big mistake distinguishing residential, industrial, and rock
are as follows. First, the residential houses were smaller than the other LUC classes on the SPOT
6 image, and the residential class sample contained some trees, grasses, and naked ground.
Second, there were similar buildings between the residential and industrial zones.

It can also be found that factories were built on hills and residential houses were placed near
to pool from classification map, which resulted from local land use policy. Local administrators
regulated to build industrial parks on the barren slopes, construct town on mountains, and
develop agriculture around dams. The essence of land utilization was that the urban industrial

Table 4 Confusion matrixes representing best overall of classification using fusion of SVM and
FKM in sample 1.

Class

Ground truth (%)

Industrial Water Forest Rock Arable Residential Total

Unclassified
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Industrial 97.94 0.19 0.00 0.00 0.00 0.43 5.38

Water 0.00 99.18 0.00 0.00 0.00 0.00 1.13

Forest 0.06 0.00 98.72 0.61 0.00 2.06 69.05

Rock 0.00 0.00 1.16 92.46 2.24 4.86 9.27

Arable 0.02 0.00 0.01 5.29 97.76 0.00 10.89

Residential 1.98 0.63 0.12 1.64 0.00 92.65 4.28

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 5 Confusion matrixes representing best overall of classification using fusion of SVM and
FKM in sample 2.

Class

Ground truth (%)

Water Industrial Residential Forest Rock Arable Total

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Water 100.00 0.00 0.00 0.00 0.00 0.00 44.82

Industrial 0.00 86.04 0.63 0.00 0.28 0.00 2.42

Residential 0.06 13.31 94.38 0.13 14.40 0.36 12.16

Forest 0.00 0.35 0.86 98.35 0.94 2.20 22.06

Rock 0.00 0.29 3.07 0.24 83.91 0.05 2.58

Arable 0.00 0.00 1.06 1.28 0.47 97.40 15.96

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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went to the top of mountains while bottoms were exploited as farmland. This policy had brought
great significance to urbanization of Yunnan province. More than 20 million hectares of moun-
tain land were sorted out for industrial or urban use till 2012.50

6 Conclusion

This paper has proposed a fusion of SVM and FKM classification methods. The method can
improve efficiency when dealing with remote sensing images. In this paper, the usefulness of the
NDVI layer and FKM segmentation map has been demonstrated to be able to improve SVM
classification in SPOT 6 images. Experiments on the SPOT 6 image classification problem
showed good results, and encourage future and deep research in the field of LUC classification.
To our knowledge, this is first time SVM and FKM algorithms have been combined to classify
LUC. Foremost work is to focus on higher resolution images and combine more information.

Our findings are promising because accurate mapping of LUC is highly challenging over
heterogeneous areas, particularly in subtropical regions, and yet this task is important to con-
servation initiatives, climate change mitigation strategies, and the design of management plans
and rural development policies. Our classification approach presents the advantage of being easy
to implement, as both the calculation of NDVI and the presence of SVM classifier are readily
available in remote sensing software and cost-effective, as SVM classifiers may use smaller
training data sets without compromising classification accuracy. Importantly, the highly accurate
results obtained by this approach suggest its great potential for LUC mapping in subtropical
areas. We will assess in other areas in the near future.
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