Overview
- Provides a comprehensive review of the rapidly expanding field of fire safety and process safety
- Includes in-depth discussions on gas leakage and jet fire
- Covers a vast array of special topics and applications illustrating the wide use of risk assessment
Part of the book series: Springer Series in Reliability Engineering (RELIABILITY)
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
This book presents a theoretical framework for the quantitative calculation of casualties and damage from jet fires caused by high-pressure gas leaks in pressure vessels or pipelines. The framework incorporates gas leakage models, combustion dynamics models, thermal radiation models, and thermal damage criteria. It conducts sensitivity and uncertainty analyses for the input parameters of the theoretical framework. The robustness of the theoretical framework is verified through field tests. Ultimately, the theoretical framework is used to quantitatively analyze the accidents involving jet fires due to the rupture of natural gas transmission pipelines.
The sub-models within the theoretical framework are developed using the fundamental principles of thermodynamics, combustion, fluid dynamics, and heat transfer, and have been validated by small-scale laboratory tests. However, the theoretical framework receives the validation of field tests and real-world case studies. The theoretical deductions in this book offer significant guidance for scaling up from the laboratory experiments to field applications. The book is intended for anyone interested in understanding the risks associated with gas leaks and jet fires. The methodology enables the calculation of hazards for specific processes in isolation or their integration to assess overall consequences.
Keywords
- gas leakage
- jet fire
- flame length
- lift-off height
- thermal radiation
- natural gas
- hydrogen
- lithium-ion batteries
- risk assessment
- uncertainty analysis
- case analysis
- pressure vessel
- pressure pipe
- domino effect
- petroleum industry
- petrochemical industry
- chemical industry
- vortex flow
- solid particle
- impinging jet flow
Table of contents (7 chapters)
Authors and Affiliations
About the author
Dr. Kuibin Zhou graduated from State Key Laboratory of Fire Safety Science at the University of Science and Technology of China in June 2013. Since then, he has been a permanent staff member at the Nanjing Tech University. He served as a visiting professor at Worcester Polytechnic Institute from August 2019 to September 2020 and has been a full professor at Nanjing Tech University since August 2020. His two papers, published as the first author in the journal of Fire Technology, received the Tibor Z. Harmathy Award from Springer Nature in 2016 and 2017.
Bibliographic Information
Book Title: Jet Fire Due to Gas Leakage
Book Subtitle: Dynamical Theory and Risk Assessment
Authors: Kuibin Zhou
Series Title: Springer Series in Reliability Engineering
DOI: https://doi.org/10.1007/978-981-97-5329-1
Publisher: Springer Singapore
eBook Packages: Engineering, Engineering (R0)
Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Hardcover ISBN: 978-981-97-5328-4Published: 23 August 2024
Softcover ISBN: 978-981-97-5331-4Due: 06 September 2025
eBook ISBN: 978-981-97-5329-1Published: 22 August 2024
Series ISSN: 1614-7839
Series E-ISSN: 2196-999X
Edition Number: 1
Number of Pages: IX, 129
Number of Illustrations: 9 b/w illustrations, 78 illustrations in colour
Topics: Fire Science, Hazard Control, Building Safety, Fossil Fuels (incl. Carbon Capture), Geoengineering, Foundations, Hydraulics, Safety in Chemistry, Dangerous Goods