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Hardware-Assisted Fault Inject Platforms

Transient hardware faults are becoming more frequent on sea level
Shrinking hardware structure sizes
More transistors and more embedded systems

Safety-critical software must be rated for the resilience
Fault injection of one golden run can provide realistic measure
Fault space is Huge! (cycles × locations)
Simulation of faulty behavior is slow (especially for circuits)

Hardware-Assisted Fault Inject Campaigns
Campaign server sends injection commands to FPGA Boards
FPGA simulate netlist + fault-injection logic
FPGAs can prune the fault list for benign faults at run time

⇒ Prune Fault List depending on the Dynamic State
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Approach
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Fault Masking Capabilities of Logic Gates

Fault model: Single-event upsets in flip flops
One flip–flop output becomes untrusted
Other flip–flops remain trusted

Conservative fault propagation in netlist
One untrusted input leads to untrusted gate outputs

If fault reaches outputs → fault might lead to error
No wire values → we must distrust the fault cone

Fault-cone–border wires can stop the fault
Gates can mask the fault, if some inputs are trusted
Constraint on border-wires indicates benign fault

FaultMasking Term (MATE)
Logic expression of internal netlist wires
MATEd = 1, iff faultd is known to be benign
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¬f ∧ h ⇒ fault(d) is benign
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Finding and Employing Fault MATEs
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For every input wire: Fault must be masked on any path input → output

Every gate has a set of masking terms that stop propagation here
Combine one masking term from every path into a candidate MATE
Collect MATE-candidate sets overall input wires
Use VCD trace of the circuit to find and rate effective MATEs

Integrate TOP-N MATEs into FPGA fault-injection platform
MATEs are connected to the netlist-internal wires
If MATE triggers, the corresponding fault(s) can be remove from the fault list
MATE prune the fault list depending on the dynamic state in every cycle
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Results
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Experimental Setup

Test Benchmarks
ASIC synthesis using Synopsys Design Compiler 2017.09-SP1
15nm FinFET-based Open Cell Library
Sythesized netlist for 2 processor designs: AVR, MSP430 (neo430)

Search for heuristically for candidate MATEs
Use sets of flip-flop outputs as start points
Two sets: All flip-flops (FF) and flip-flops outside of register file (FF w/o RF)
One MATE can prune several detect several benign flip-flops

Select and rate MATEs with wire trace of running program
Fibonacci and convolution
Select MATEs that triggered most (Top-N)
Calculate fault-list reduction
Cross validation between selection and rating in the paper
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Fault List Reduction

AVR: 8-bit RISC microcontroller, implementing a two-stage pipeline design
383 flip–flops, without register-file: 135 FFs
Average Fault-Cone Size: 656 gates
164 seconds for MATE exploration

neo430: 16-bit multi-cycle MSP430-compatible microcontroller
743 flip–flops, without register-file 519 FFs
Average Fault-Cone Size: 287 gates
126 seconds for MATE exploration

Results for 8,500 cycles of a convolution:

AVR

FF FF w/o RF

#Eff. MATEs 390 247
Avg. #inputs 5.8± 1.8 4.9± 1.2
Masked Faults 7.90% 16.48%

Top 10 2.58% 7.05%
Top 50 5.90% 15.86%
Top 100 7.79% 16.43%
Top 200 7.89% 16.48%

neo430

FF FF w/o RF

441 437
3.4± 1.9 3.4± 1.9
14.32% 20.45%

4.97% 7.11%
13.11% 18.77%
14.01% 20.02%
14.32% 20.44%
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Conclusion

Hardware-assistance increases feasibility of fault injection

Fault-masking terms detect surely benign faults

Easy to integrate with FPGA-based injection platform

Reducion of fault list by 8-14 percent (up to 16-20 percent w/o RF)
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Backup: Analysis Time

AVR MSP430

FF FF w/o RF. FF FF w/o RF

Faulty Wires 383 135 743 519
Avg. Cone [#gates] 656 840 287 151
Med. Cone [#gates] 547 581 236 27

Run Time [s] 164 34 126 90
#Unmaskable 81 57 96 70
#MATE candid. 3 · 107 7 · 106 4 · 107 2 · 107
#MATE 24,536 3,226 19,180 17,649
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