
Semi-Extended Tasks:
Efficient Stack Sharing Among Blocking Threads

Christian Dietrich
Leibniz Universität Hannover, Germany
dietrich@sra.uni-hannover.de

Daniel Lohmann
Leibniz Universität Hannover, Germany
lohmann@sra.uni-hannover.de

Abstract—Memory is an expensive and, therefore, limited
resource in deeply embedded real-time systems. Thread stacks
substantially contribute to the RAM requirements. To reduce the
system’s worst-case stack consumption (WCSC), it is state of the
art to exploit thread-level preemption constraints to let multiple
threads share the same stack.

However, deriving a tight, yet correct bound for the shared
stack is a difficult undertaking and stack sharing is currently
restricted to run-to-completion threads, which are preemptable,
but cannot block (i.e., passively wait for an event) at run time.

With semi-extended tasks (SETs), we propose a solution for
efficient stack sharing among blocking and non-blocking threads
on the system level.

For this, we refine the stack-sharing granularity from the
thread to function level. We provide an efficient intra-thread
stack-switch mechanism and an ILP-based WCSC analysis
that considers fine-grained preemption constraints and possible
function-level switching points from the private to the shared
stack. A genetic algorithm then selects switching points that lead
to the reduction of the overall WCSC. Compared to systems that
run only non-blocking threads on the shared stack, semi-extended
tasks decrease the WCSC in our benchmarks on average by 7
percent and up to 52 percent for some systems.

Index Terms—Real-time operating systems, Static analysis,
Worst-Case Stack Consumption

I. INTRODUCTION

Memory is a scarce resource in embedded control systems.
The RAM footprint is a significant factor for per-unit costs in
products of mass production, such as sensor network nodes
[8], IoT devices, or automotive control units [4] running a
real-time operating system (RTOS). Especially for MCU-based
systems, even a small increase in the RAM footprint can have
significant effects on the per-unit costs: if the device’s memory
overflows, the designer often has to purchase the next larger
MCU with a doubled amount of RAM.

As a consequence, operating systems for these domains try to
avoid (or at least discourage) the employment of fully-fledged
threads, because each thread instance requires the provisioning
of a private stack in RAM, dimensioned for its worst-case
call depth (plus potential interrupts). Operating systems for
small sensor nodes, such as Contiki [8] or TinyOS [19] have
long favored a thread-less event-driven programming model
without preemption (restrictions that partly were relaxed later
by optional thread packages [9, 16]), but the issue of (too)
high stack costs by threads was also observed and mitigated
in big systems like Mach 3 [7].

A. Preemptable vs. Blocking Threads

In real-time systems, giving up preemptability at all is usually
not an option. Here, the common technique to reduce the
overall worst-case stack consumption (WCSC) is to co-locate
different threads onto a single shared stack [1, 31, 33]. In the
OSEK/AUTOSAR standard [23], for example, such threads
are called basic tasks (BTs).

On the shared stack, which we call the basic-task stack
(BTS), function-call frames from different threads are compactly
stacked over each other. Given there are preemption constraints,
so that some of these co-located threads cannot be active at the
same time, the size of the BTS can be dimensioned smaller
than the sum of the WCSCs of each individual thread. For
example, if two threads running on the BTS share an implicit
resource (thus, cannot preempt each other), then only frames
from one of the two threads could be active at the same time.

However, albeit preemptable by higher-priority threads, BTs
are not fully-fledged threads: They are not allowed to block
(e.g., wait passively for an event). Instead, they always have
to execute in a run-to-completion manner. This restriction
prohibits a collision on the stack when a lower-priority thread
gets scheduled and, thus, uses stack space beneath a blocking
higher-priority thread that eventually wakes up and needs more
stack space. Hence, not all threads can be executed on the BTS.
If they need to block, they have to be executed on their own,
private stack. OSEK/AUTOSAR [23], for instance, provides an
optional abstraction for real threads, which are called extended
tasks (ETs).

To sum up: basic tasks (BTs) are preemptable, but must not
block at run time. The RTOS can exploit preemption constraints
to dispatch them more memory-efficient on a single shared
stack, the basic-task stack (BTS). In contrast, extended tasks
(ETs) may block at run time, but have to be dispatched on
costly private stacks.

B. Deriving A Tight Worst-Case Stack Consumption (WCSC)

In the automotive industry, the distinction between non-
blocking and blocking threads on the RTOS level is considered
as a major success factor of OSEK OS: The BT concept
has made it possible to use an RTOS even with very memory-
constrained control units. The downside is increased complexity
for the developers, who have to understand and define which
threads belong to which class and ultimately have to specify
the size of the shared BTS. Deriving a tight WCSC for the

1



BTS is not trivial: All preemption constraints have to be
considered in the calculation, which do not only stem from
the task configuration but also the implementation itself (e.g.,
due to mutual exclusion by locks). Furthermore, ETs – even if
restricted to only those threads that need to block – still waste
stack space in most cases: In principle, the private stack is only
required for the blocking, whereas leaf functions may well be
executed on the shared stack. Experienced developers manually
split such threads into an ET and a dependent BT, which,
however, is again not trivial: It further increases complexity
and only decreases the overall WCSC, if the right split points
are chosen.

C. About This Paper

We lift the manual and coarse-grained distinction between
non-blocking and blocking threads by introducing the notion
of semi-extended tasks (SETs). Conceptually, a SET starts as
an ET on its own private stack (where it can call functions and
issue blocking system calls) but switches to the BTS whenever
this is possible and beneficial. We derive these switching points
on the function level and achieve a tight WCSC by the first
flow-sensitive and RTOS-aware preemption analysis on the task
and function level. In our extensive evaluation, SETs reduce
the WCSC (compared to systems that support only BTs and
ET) by up to fifty percent. In particular, we claim the following
original contributions:

1) The SET concept, enabled by an efficient intra-thread
stack switching mechanism that transfers individual func-
tions and their children onto the shared stack (Section III).

2) An integer linear programming (ILP)-based, worst-case
stack-consumption analysis that considers fine-grained
preemption information and supports semi-extended tasks
(Section IV).

3) The extraction of fine-grained task–to-task and function–
to-task preemption relations from the flow-sensitive
global control-flow graph (Section V).

4) A heuristic to find optimal switch points at which threads
transfer their execution to a shared stack, even if they
wait at some other point (Section VI).

5) An extensive evaluation of the achievable stack savings
using generated non-trivial task sets with dependencies,
synchronization, IRQs, and sharing (Section VII).

In the remaining parts of the paper, we start with our
system model in Section II before we describe the above main
contributions in individual sections. We discuss the results in
Section VIII, give an overview of the related work in Section IX,
and finally conclude our article in Section X.

II. SYSTEM MODEL

We consider event-triggered real-time systems with fixed-
priority, mixed-preemptive scheduling of a fixed set of tasks.
We support single-core or partitioned multi-core real-time
systems. Tasks, which are already mapped onto threads,
are the objective of scheduling and their functionality is
available in terms of their control-flow graph (e.g., source
code). For the rest of the paper, we use the terms “task”

and “threads” interchangeably, as we mean the technical and
already materialized entities that are scheduled and dispatched
by an RTOS implementation. For each thread, the scheduling
priority, the preemption threshold [30], and the entry function is
known. Furthermore, we know the whole call graph, beginning
at these entry functions, and have an upper bound for the
stack consumption of each individual function (stackusage(f)).
Threads use system calls to interact with the RTOS and system-
call sites are known in their source-code location and their
arguments. Threads use system calls to activate each other,
enter a waiting state, wake up another thread from the waiting
state, access shared resources via the stack resource policy
(SRP) [1], block interrupts, and terminate themselves. At
every moment, at most one task instance (job) is actively
running and if that instance terminates, no residual data is
left on the stack. We assume that interrupts can also activate
threads, but are handled on a separate stack. A prominent
RTOS standard that is compatible with our system model is
OSEK/AUTOSAR OS [23].

III. SEMI-EXTENDED TASKS (SETS)

In the following, we introduce the concept of semi-extended
tasks (SETs), which are a generalization of the distinction
between non-blocking BTs and blocking ETs. Basically, a SET
can enter the blocking state, but its jobs can also execute
(partially) on the BTS.

A. SETs and Switch Functions

Conceptually, a SET is an ET with its own private stack on
which it can call functions and issue blocking system calls.
However, for the execution of some (sub-)function (and its
children), the thread can switch to the BTS if no blocking
system call is issued (directly or indirectly via its children)
inside the function. We call functions that switch to the BTS
switch functions. If the thread’s entry function is a switch
function, we can omit the private stack completely and the
SET becomes a BT. If there is no switch function in the call
graph of the thread, the SET runs only on its private stack and
becomes an ET.

Figure 1 shows a situation where the usage of SETs
outperforms the normal BT/ET concept, which places only
whole threads on the BTS. Without SETs, both threads execute
on their own private stack and have a combined WCSC of 120
bytes (see Figure 1d). Even when using a BTS, only T1 can
become a BT since T2 issues a blocking system call, leaving
the stack size at 120 bytes. However, the leaf functions f1(),
f2(), and S() cannot wait and, therefore, can be executed
on the shared BTS (see Figure 1e). Given a flow-sensitive
preemption analysis (see Section V), we know that only one
of these three functions can be active at any point in time and,
therefore, the maximal stack consumption on the BTS becomes
50 bytes. With the now smaller private stacks for T1 and T2
(10 bytes each) the overall WCSC of this system is reduced
to 70 bytes.

2



// T1.autostart = true
// T2.prio > T1.prio
Task(T1, e1) { // 10 bytes

f1(); // 20 bytes
activate(T2);
S(); // 50 bytes
wakeup(T2);

}
Task(T2, e2) { // 10 bytes

f2(); // 20 bytes
wait();
S(); // 50 bytes

}

(a) Example System

e1

f1 S

e2

..zzZ

f2

T1 T2

(b) Call Graph

T1 T2

e1:1

f1

e1:2

S

e1:3
exit

e2:1

f2

e2:2

S

activate

wa
it

wakeup

ex
it

(c) GCFG

S
e1

f1

S

T1

60

e2
S

f2

T2

60

(d) Stack Usage w/o SET

Sf1

f2

S

BTS

50

e1
T1

10

e2
T2

10

(e) Stack Usage w/ SET

Fig. 1: Example System with two tasks (T1, T2) and their corresponding entry functions (e1(), e2()) that interact via the RTOS and call
leave functions (f1(), f2(), S()). The call graph indicates the caller-callee relationship, as well as the functions respective stack usage (1
box=10 bytes). The global control-flow graph (GCFG) results from a flow-sensitive RTOS–application interaction analysis (see [6]) and
indicates all possible system-wide control flows including preemptions. The entry functions are split into several nodes (e.g., e2:1, e2:2). The
worst-case stack usage is depicted for a system without support for SETs (120 bytes) and for one system with SET support (70 bytes) where
the functions f1(), f2(), and S() switch to the shared BTS. When functions are drawn vertically above each other, they cannot be active
at the same time (e.g., f1,f2,S on the BTS in (e)).

B. Implementation of Switch Functions

In the following, we explain how we modify single functions
to switch with minimal effort to the shared stack, as well as
the required compiler and RTOS modifications. In order to
understand the stack-switching mechanism, we shortly have to
explain a few terms that are related to call frames as they are
handled by compiler-generated code. Without loss of generality,
we use IA-32 as an example, since calling conventions on other
architectures share similar concepts.

During thread execution, each function call has a call frame
on the stack, which contains the passed parameters, local
variables, and return address. This call frame is addressed
by two pointers that live, for the currently active frame, in
registers: The stack pointer esp points to the end of the frame;
child functions use it as starting point for their own frame.
The (frame) base pointer ebp points to the return address and
argument block and is used to access the arguments. Hence,
local variables and callee-saved values can be accessed by the
compiler relative to either the stack pointer or the base pointer.1

In order to implement switch functions, we subtly constrain
the access patterns employed by the compiler (in our case
LLVM), so that local variables are only accessed via the
stack pointer, while arguments and caller-saved values are
only accessed via the base pointer. By separating these access
paths, we can split the call frame between arguments and
local variables and place it at two different memory locations
(i.e., the private stack and the BTS). To perform the actual
switch, we furthermore add a single instruction to the function
prologue to set the stack pointer to the top of the BTS. The
current value for the top of the BTS is stored in the variable
TOS_BTS, which is maintained by the RTOS.

1A third register, esi, is used if the function employs alloca() or C99
variable-sized arrays.

Figure 2 shows the disassembly of a switch function for
IA-32: The standard function prologue saves the base pointer
of the caller as a callee-saved register (line 3) and sets up its
own base pointer (line 4). We introduce a single additional
instruction that loads the value of TOS_BTS into the stack
pointer and, thereby, switches to the BTS (line 5 and bold
edge in Figure 2b). Afterwards, the frame for this function
is split between private (arguments) and shared stack (local
variables). However, all functions that are called from switch
functions directly execute on the shared stack without any
further modification (e.g., bar()). When the function returns,
the standard function epilogue implicitly also switches back to
the private stack by restoring the original stack pointer (line 15)
from the base pointer. It then restores, as usual, the callee-saved
frame pointer (line 16), and returns to the caller (line 17).

Hence, with only one additional instruction (line 5) and
minimal changes to the compiler’s code generation, we can
provide for very efficient switch functions that do not need to
activate the operating system. However, as a switch function
unconditionally jumps to the shared stack, we have to ensure
in our analysis (Section VI) that no child function of a switch
function is a switch function itself. Otherwise, line 5 would set
the frame pointer back to the value of the first stack switch.

Besides the switch functions, we also have to modify the
RTOS to provide the TOS_BTS variable. When the RTOS is
left and an application thread is resumed, this variable must
always point to the end of the used BTS area. Whenever a
thread is preempted on the BTS it is increased; whenever
a thread terminates on the BTS it is decreased. With these
modifications, we support a mixed-usage of the BTS where
BTs and SETs coexist and stacked on top of each other. Note
that for the stack switch in user mode, TOS_BTS only needs
to be read. It is only modified inside the kernel, so the kernels
protection integrity can be kept. We further discuss the topic
of memory protection with our model in Section VIII.

3



1 <f1>:
2 ;; Function - Prologue
3 push ebp ; Save old framepointer
4 mov ebp, esp ; Load new framepointer
5 mov esp, [TOS_BTS] ; Switch to shared stack
6 sub esp, 16 ; Allocate local variables
7
8 ;; Function Body
9 ;; - Access local variables via esp

10 ;; - Access parameters via ebp
11 ;; - Access local variable-sized arrays (alloca)
12 ;; via a third stack pointer esi, if needed
13
14 ;; Function Epilogue
15 mov esp, ebp ; Restore old stackpointer
16 pop ebp ; Restore old framepointer
17 ret

(a) IA-32 Disassembly of f1()

e1()

foo()

local 1

local 2

local 3

local 4

bar()

esp

T
O
S
_
B
T
S

e2()

arg 2

arg 1

return address
old ebp

ebp
-0[ebp]

-4[ebp]

-8[ebp]

-12[ebp]

-0[esp]

-4[esp]

-8[esp]

-12[esp]

mov esp,[TOS_BTS]

f
1
(
a
,
b
)

f
1
(
a
,
b
)

Basic Task
e1() → foo()

Semi-Extended Task
e2() → f1() → bar()

CPU Register

Shared Stack Private Stack

(b) Stack Diagram

Fig. 2: Implementation of switch functions. f1() switches from the private stack to the shared stack, by loading TOS_BTS
into esp. The stack diagram shows a situation where the SET preempted the basic task and switched with f1() to the BTS.

IV. STACK CONSUMPTION ON A SHARED STACK

In order to dimension the shared stack, we have to assess the
total worst-case stack consumption (WCSC) for all threads and
their functions running on the BTS (BT+SET). This assessment
has to be done in a single combined step since we can only
tighten the static BTS size if we can show that two function-
call frames cannot be simultaneously active at any point in
time. Therefore, this assessment has to consider the call graph
and information about (forbidden and impossible) preemptions.

Several works [15, 3, 5, 29, 28] proposed methods to give a
safe upper bound for the WCSC of several threads executing
on the same stack. However, as we want to support recursive
call-graph structures and the usage of fine-grained constraints
on possible preemptions, we present a new WCSC analysis
that utilizes an ILP solver. In contrast to the ILP construction
presented by Wang et al. [29], we use the implicit path-
enumeration technique (IPET).

Similar to the usage of IPET for the worst-case execution
time analysis [20, 24], we calculate the WCSC by finding
the number of thread activations and function activations that
occur during the costliest call chain and the costliest preemption
chain.

We formulate a maximization problem and start out by
introducing one binary variable Ti for every possible thread on
the BTS. If a thread is active in the costliest preemption chain,
its frequency Ti is 1. Hereby, we can already formulate mutual-
exclusive constraints. For example, if the threads {Tl, . . . , Tm}
share an implicit SRP resource, only one thread can be active
in the WCSC case. Hence, we only one thread frequency can
be 1:

m∑
i=l

Ti = 1

To find the costliest call chain, we formulate a subproblem
that captures the reachable call graph for each thread. First,

we select all functions in the entry set FE that are starting
points for this thread’s BTS consumption. For basic tasks,
this includes only the entry function; for semi-extended tasks,
this includes all switch functions. From this initial set, we
recursively include all called functions into the set of reachable
functions F and record all leaf functions in FL.

Scoped and prefixed with Ti, we introduce integer-valued
ILP variables: for every function f (Ti[f ]), for every call
edge between fk and fl (Ti[fk, fl]), and one artificial edge
variable for every entry function f (Ti[E, f ]). Due to the
scoping, several function variables can exist for one function f
in different context (T1[f ] vs. T2[f ]). These variables capture
the activation frequencies for the WCSC case and we use them
to formulate a maximum-flow subproblem for each thread. If
a thread is part of costliest preemption chain, one of its entry
functions is called:

Ti =
∑
f∈FE

Ti[E, f ]

We constraint the function frequencies with the sum of their
incoming call edges. For entry functions, these are the artificial
entry edges and the normal call edges; for the other functions,
only its callers are relevant:

∀f ∈ FE : Ti[f ] =
∑

fs∈caller(f)

Ti[fs, f ] + Ti[E, f ]

∀f ∈ F \ FE : Ti[f ] =
∑

fs∈caller(f)

Ti[fs, f ]

As the call chain is one path through the call graph, every
single function activation can lead to at most one function call.
Hence, the sum of outgoing call edges is less or equal to the
function frequency of the caller:

4



∀f ∈ F \ FL :
∑

fd∈callee(f)

Ti[f, fd] ≤ Ti[f ]

Furthermore, we add recursion limits, which are supplied
by the developer, to the ILP like loop bounds are added in
WCET problems. At last, we add an optimization objective that
connects the function frequencies to the stack consumption:

max

∑
Ti

∑
f∈FTi

Ti[f ] · stackusage(f)


With this ILP formulation, we can add more fine-grained

constraints about impossible preemptions. For example, we can
forbid that a thread Tp can preempt a thread Ti if the latter
currently executes the function f (see Figure 1c, T2 cannot
preempt T1 in f1()). With the big-M-method [13], where M
is sufficiently large, and an intermediate binary variable x, we
formulate the constraint: If function f is active in the context
of Ti, x must be 1. In that case (1− x) is zero and Tp must
become zero.

x ∈ [0, 1] Ti[f ] ≤ x ·M Tp ≤ (1− x)

In order to determine the WCSC for the whole system, we
solve the ILP, calculate the WCSC for all private stacks, and
sum up private and shared stack usage. However, for the private
stacks, we filter all functions from the call graph that surely
run only on the BTS, as they can no longer extend the costliest
call chain. Summarized, we calculate the WCSC for a system
with a set of basic tasks and a set of switch functions while
taking fine-grained preemption knowledge into account.

V. FLOW-SENSITIVE PREEMPTION ANALYSIS

For a tighter WCSC analysis (Section IV), which will
reveal the benefit of the SET approach, we have to formulate
constraints about impossible preemptions and mutual-exclusive
paths in the system. For this kind of WCSC analysis, it
is state-of-the-art to use knowledge about priorities, non-
preemptability, and preemption thresholds [30, 11, 29, 31].
In contrast, our analysis works on the granularity of function
frames; hence, we can incorporate (and benefit from) more
fine-grained knowledge.

In previous work [6], we successfully analyzed the inter-
action between the application and the RTOS for OSEK-
like systems in a flow-sensitive manner. This analysis brings
together application structure, RTOS configuration, and RTOS
semantics in order to calculate a global control-flow graph
(GCFG) for the whole system. The GCFG captures all possible
control-flow transfers between code blocks within a thread’s
execution and all possible context switches between threads.
The captured transitions also include all context switches that
are triggered within asynchronous interrupts. For the work at
hand, we use the polynomial fixpoint algorithm described in
Dietrich, Hoffmann, and Lohmann [6] to calculate the GCFG.
For detailed information about the analysis, we refer you to
that article.

In order to illustrate the results of the interaction analysis,
Figure 1c shows the GCFG for our example system (Figure 1a).
In this (simplified) graph, the entry functions e1() and e2()
are split into parts (at system-call boundaries) to make the
analysis flow sensitive. The functions f1(), f2(), and S()
are shown as one unit of execution. As T1 automatically starts
at boot time and starts with the execution of e1:1. In this block,
we either execute f1() or get preempted by T2, because
we synchronously activated this higher priority thread. The
execution flow continues to alternate between T1 and T2 until
both threads terminate. As the GCFG includes all preemptions,
we know for sure, that T2 can preempt T1 in general. However,
as there is no direct edge between f1() (or S()) and any
block from the T2 context, we know that T2 cannot preempt
T1 in f1().

More formally, the GCFG is a graph with 3-tuples (T, f, i)
as nodes and edges, which are optionally labeled with a
system call, between them. Every node represents a code block
executed and is identified by the currently running thread
T , the currently executing function f , and which function
part fi is currently active. If there is an edge between two
nodes, the respective code blocks can be executed directly after
each other, induced either by intra-thread control flow or by a
context switch. In order to determine if a preemption (directly
or indirectly) between the threads Ti and Tj is forbidden, we
check, with depth-first search, that there is no path matching
the pattern:

(Ti, ∗, ∗) ∗−→ (Tx, ∗, ∗)→ (Tj , ∗, ∗) Tx 6= Ti

If no path matches this pattern, we forbid the task-to-
task preemption in our ILP (Section IV). Similar, we forbid
a function-to-task preemption if a thread Ti can never be
preempted in function f such that Tj is reachable:

(Ti, f, ∗) ∗−→ (Tx, ∗, ∗)→ (Tj , ∗, ∗) Tx 6= Ti

As the GCFG also covers the semantics of SRP resources,
non-preemptability, and interrupt blockades, we automatically
consider these mechanisms in our WCSC analysis. For example,
if a function is only executed with a higher dynamic priority
(i.e., due to an SRP resource), we automatically include the
respective preemption constraint.

To the best of our knowledge, our derivation of preemption
constraints is the first flow-sensitive, RTOS-aware preemption
analysis that considers system-call order, application-logic
(e.g., conditionals), and RTOS semantics.

VI. SELECTION OF STACK-SWITCH FUNCTIONS

As already explained in Section III, the proposed stack-
switch mechanism brings the function unconditionally onto
the BTS. While this makes the stack switching very efficient,
an execution flow that is already on the BTS must not switch
stacks again. Therefore, it is essential that no child of a switch
function switches itself. However, the optimal selection of
switch functions under this constraint is not trivial: For example,

5



Dimension Description Range

#threads RTOS Threads [20, 50]
#IRQs External, asynchronous thread activations [1, 10]
#waiting Number/Ratio of blocking threads [0, 15]
#functions Number of functions in the call graph [100, 1000]
#resources SRP resource groups with > 2 threads [1, 10]

TABLE I: Dimensions of the Synthetic Benchmarks

in Figure 1b it is not optimal to greedily select the top-most
functions that could act as switch functions (e1(), f2()).
The T2 stack would still use 60 bytes (e2() +S()) and the
BTS 60 bytes (e1() +S()).

It would be desirable to formulate the WCSC-ILP and the
switch-function selection in a single ILP. However, as the IPET
formulates a maximization problem and the switch-function
selection is a minimization problem over the same variables, the
combination is a bilevel optimization problem, which cannot be
formulated easily as ILP. Instead, we use a genetic algorithm
as a heuristic to determine the set of switch functions for a
given system.

We start out by defining the genome of our problem as a
bit string with one bit for every function that is able to switch
to the BTS (i.e., does not wait). If the bit is 1, the function
becomes a switch-function. By this representation, we also can
decide whether it is more beneficial to mark a whole thread
as a basic task: When a thread’s entry function is a switch
function, we make the thread to a basic task and remove the
entry function from the switch-function set. As fitness function
for a switch-function set, we formulate and evaluate the ILP
(Section III) and calculate the WCSC for the whole system.

As heuristic parameters, we used a population size of 20
individuals. In every generation, we breed 6 new individuals:
With 5 percent probability, we select only one parent and mutate
a single bit; with 95 percent probability, we select two parents
and generate the child by the crossover operation. As this can
result in invalid genomes (i.e., child and parent function switch),
we repeat the breeding until 6 valid individuals are found. After
evaluating the fitness function, we select the 20 individuals
with the lowest stack consumption for the next generation. To
avoid calculating the WCSC twice, we use a cache to store
genome–WCSC pairs. We stop the genetic algorithm, when
progress is done in 1000 generations or 60 seconds.

VII. EVALUATION

In order to assess the improvements in stack-space savings
induced by the usage of SETs, we generate synthetic bench-
marks with varying characteristics. We compare the benefits
of having basic-task support and semi-extended–task support
against a system that supports only private stacks.

A. Benchmark Generation

Each of our synthetically generated systems is character-
ized by five different parameters (Table I): #threads, #IRQS,
#waiting, #functions, #resources. We use a pseudo-number
generator with varying seeds to get different, but reproducible

results. We start out by generating a directed, acyclic thread-
dependency graph with #threads nodes. #waiting of these nodes
get more than one predecessor node and will not only be
activated by a predecessor but also wait for other predecessors
to wake them up at some point in their execution. Note that a
system will always have exactly #threads threads. #IRQs of the
nodes are additionally activated by an external interrupt. We
shuffle the threads priorities such that every thread has its own
priority and mark ten percent of the threads as non-preemptible.
Furthermore, we form #resources SRP resource groups with
at least two threads.

For the call graph, we first form randomly an n-rooted forest
with #threads roots and #function nodes. In order to form
a more complex call-graph, we add 20 cross-tree call edges
which also results in the sharing of functions between threads.
For every function, we uniformly choose a stack consumption
between 90 and 120 bytes. For every thread, we distribute
its system calls for thread activations, wait-for and wakeup
operations, IRQ-blockade sections (0.1· #threads), and SRP-
protected critical sections into the first four functions beginning
at the entry function.

The restriction on the placement of system calls stems from
the current implementation of the GCFG, which system-call–
invoking shared functions. Nevertheless, to ensure a minimal
call-graph complexity, we choose the worst function/thread
ratio (200/50) as the number of system-call–invoking functions.

After generation, we dump the system configuration as an
OSEK configuration file and materialize the call graph into
an OSEK-compatible C source-code file. These two files are
the input to our OSEK system generator that implements the
proposed analysis method.

B. Evaluation Scenario

In order to quantify the impact of different system parameters
on the SET savings, we choose the configuration (#threads=20,
#IRQS=1, #waiting=10, #functions=200, #resources=1) as our
base parameter class. From this parameter class, we explore
each of the five dimensions independently (see Table I). For
example, Figure 4a explores the influence of #IRQs and shows
the results for the parameter range (20,1,10,200,1) up to
(20,10,10,200,1). For every parameter class, we generated 300
synthetic systems. In total, we analyzed 14 700 systems.

For every generated system, we examine three variants: As
baseline variant, we use an RTOS configuration that only
supports ETs on private stacks. The BTS-system variant
greedily marks all non-blocking threads as basic tasks and
co-locates them on the shared stack. The SET-system variant
optimizes the decision whether a thread should become a basic
task or where switch functions should be used according to
the method described in Section VI. In all three variants, the
stack consumption is calculated according to Section IV using
the same fine-grained preemption constraints (Section V).

C. Evaluation Method

We integrated our analysis and optimization approach into
the dOSEK RTOS generator [14], which is written in Python.

6



1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

R
u
n
T
im

e
(i
n
s)

(a) IRQs

20 25 30 35 40 45 50
0

50

100

150

(b) Threads

1 2 3 4 5 6 7 8 9 10
0

100

200
Genetic Algorithm

GCFG Calculation

genetic
timeout

(c) Functions (·100)

Fig. 3: Run-time for preemption analysis (GCFG calculation) and for finding a good assignment of stack switching functions
(Genetic Algorithm). Every data point is the average of 300 synthetic systems.

dOSEK reads in the system configuration and the application
logic and performs the system-state flow analysis [6] to
calculate the GCFG. In order to get the actual stack usage,
we use the LLVM code-generation backend [18] for Intel IA-
32 to extract the size of the stack frame for every function.
Furthermore, we use Gurobi 8.0 in the default configuration as
our ILP solver. The whole evaluation is run on an Intel i5-6400
quad-core system with 32 GiB of main memory. However, main
memory was at no point a limiting factor and the optimization
was CPU bound.

In order to implement SETs, we introduced the TOS_BTS
variable in dOSEK and adapted the LLVM backend to support
switch functions. For the LLVM modification, we had to change
35 lines of code in the IA-32 code-generation backend.

D. Results

1) Run Time and Scalability: First, we take a look at the
run time of the system analysis and the optimization step,
especially since it repeatedly calls an ILP solver to evaluate
the fitness of individual system configurations. For all of our
synthetic systems, the genetic algorithm ran, on average, for
81 seconds and invoked the ILP solver 2672 times. However,
as we set the timeout for the genetic algorithm to 60 seconds
of no improvement, we see that most of the time is spent for
further exploration of the solution space after the final result
is already found.

In Figure 3, we show the results for three most interesting
dimensions for the run-time and scalability consideration.
The results for the other dimensions can be found in the
extension Figure 6. We separated the time for the GCFG
calculation, which is required to extract fine-grained preemption
information, from the run time of the genetic algorithm.
Furthermore, the 60 seconds timeout is indicated by a red
horizontal line. We can observe, that the GCFG analysis
takes more time, when we increase the number of IRQs
(Figure 3a), as the GCFG contains more inter-thread edges
and becomes denser. Furthermore, we see that the run time
of the genetic algorithm slightly drops, as fewer preemption
constraints are included into the ILP as more preemptions,

induced by interrupts, are possible. When we increase the
number of threads (Figure 3b), we also see an increased time
spent for the GCFG analysis but no significant change in the
run time of the genetic algorithm.

The most impacting system parameter is the number of
functions (Figure 3c). As it is directly reflected in the number
of ILP variables, we see a significant run-time increase in the
ILP solving. The time used for a single ILP invocation increases
from 0.01 seconds for 100 functions to 1.02 seconds for 1000
functions, with a doubling of the run time for every 145
additional functions. This prolonged ILP-solve time resulted in
a less intense exploration of the result space and the number
of ILP invocations dropped (2695 → 584).

2) Stack-Space Saving: As the optimization step is done
offline, before the run time, the most important quantity to
evaluate the benefits of SETs is the stack-space saving factor.
We take the ET-only system as the baseline and give factors
relative to this baseline (lower is better). For every parameter
class, we use the geometric mean for calculating averages.
For SET systems, the average stack consumption over all
benchmarks goes down to 0.78, while BTS systems achieve
only a factor of 0.83.

In Figure 4, we show the results for three dimensions, while
the other, less interesting, dimensions are shown in Figure 6. As
a general trend, we see that more IRQs (Figure 4a) impairs stack
saving, as more IRQ-induced preemptions between threads
are possible. However, the distance between both lines keeps
relatively stable.

When we increase the number of threads (Figure 4b), both
variants take advantage of this and drop under a factor of 0.8.
However, the gap between both methods keeps converging
with a rising number of threads. We can explain this trends
when we look at the number of basic tasks and the number
of switch functions for each benchmark for the SET systems.
We see that the importance of switch functions decreases with
a rising number of threads (Figure 5b). This stems from the
fact that the complexity of the thread’s call graph decreases,
as we keep the number of functions constant. Thereby, it is

7



1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1
S
ta
c
k
U
sa
g
e
F
a
c
to
r

BTS system

SET system

(a) IRQs
20 25 30 35 40 45 50

0.75

0.8

0.85

0.9

0.95

1
BTS system

SET system

(b) Threads

0 5 10 15

0.4

0.6

0.8

1
BTS system

SET system

11 12 13 14 15

0.85

0.9

0.95

1

∆ = 0.07

(c) Waiting Threads

Fig. 4: Whole-system stack-space saving factor. The baseline (factor=1) is a system that supports only private stacks. We
compare a system that supports only whole threads to be executed on the shared stack to a SET enabled system. Every data
point is the geometric mean of 300 synthetic systems. Lower is better.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

(a) Functions (·100)

20 25 30 35 40 45 50
0

10

20

30

40

(b) Threads

0 5 10 15
0

5

10

15

20

#basic tasks

#switch functions

(c) Waiting Threads

Fig. 5: Number of basic tasks and switch functions for SET systems. Every data point is the average of 300 synthetic systems.

more often beneficial to mark a whole thread as a basic task.

The most interesting trend can be found when we increase
the ratio of waiting threads (Figure 4c). When no thread waits,
both methods equally mark all threads as basic tasks and we
get a factor of 0.29. This situation is well known from the
literature about stack sharing on the thread granularity. However,
when we start to mark threads as waiting, these threads are no
longer able to utilize the shared stack and benefits melt down
quickly. Although SETs cannot stop this decline completely,
the benefits remain larger with a growing gap between both
methods (∆max = 0.07). Again, we understand this trend,
when we look at the number of basic tasks and switch functions
for the SET system in Figure 5c. Although the number of basic
tasks drops with more waiting threads, the drop is partially
absorbed by an increasing number of switch functions.

Furthermore, we see in Figure 5b that the addition of
functions makes it necessary to mark more functions as switch
functions to achieve an equal stack-space factor. This stems
from the fact that the reachable call graph of each thread is
potentially wider as it includes more functions on average.
Overall systems, we marked on average 11 threads as basic

tasks and 6 functions as switch functions. For the BTS systems,
13 threads were marked as basic tasks.

To give a better impression of the potential of the SET
approach, we also looked at individual results of single systems.
Our best benefit over a BTS system was for an element of the
class (20,1,10,600,1): The SET system achieved a factor of
0.45, while BTS system only achieved a factor of 0.95. In 80
percent of all synthetic systems, the SET system had a lower
stack consumption than the BTS system.

VIII. DISCUSSION

a) Threats to validity and generalizability: One threat to
validity of our results is that we used our own WCSC measure-
ment to evaluate the SET mechanism. This was necessary, as
no other WCSC method supports intra-thread stack switching.
However, as already discussed in Section VII-D2, the parameter
class without blocking threads in Figure 4c resembles the
standard evaluation scenario for basic tasks. We found that
for this class the results are in the same range (~ 30 %) as
the numbers reported by others [11]. Furthermore, we have
conducted a conservative evaluation of the advantages of the
SET concept: We not only used the same WCSC analysis for

8



all evaluations, but also the same set of preemption constraints
for BTS and SET systems. The fine-grained function-level
preemption constraints yields tighter bounds for the BTS
than the regular WCSC method that only consider task-level
preemption constraints. Hence, our approach will probably also
be advantageous for BTS systems that do not support SETs.
This, however, is a topic for further research.

The generalizability of our findings might be limited due
to the construction of the synthetic benchmark systems. It is
for sure that some thread-dependency graphs and call graphs
benefit more from the SET concept than others. We tried to
minimize this potential threat by restricting the form of these
graphs as little as possible. Furthermore, our evaluation along
five different dimensions gives us confidence that the observed
trends are stable over a wide range of system parameters.

b) Compiler limitations: The presented approach to
implement switch functions depends on compiler and RTOS
modifications, which may be problematic for the broader
applicability in industry, especially if closed-source compilers
are used. However, as we already hinted in the introduction,
switch functions can also be implemented with one additional
BT, per SET. Instead of calling the switch function directly,
the thread stores the function pointer and the arguments in a
global memory area and activates its corresponding artificial BT,
which executes the actual function call. This method requires
more interaction with the RTOS and higher overheads, but one
could still benefit from the optimized switch-function set and
the WCSC analysis.

Another, more invasive, but faster, approach to implement
switch functions is to reconstruct our modifications with inline
assembler and binary post-processing: For example for GCC
8.2, we can insert the stack-switch instruction at the function
entry with inline assembler. Additionally, we clobber the
stack pointer2 to force the usage of base and stack pointer.
Furthermore, we have to post process the binary to reorder the
instruction to the correct position within the function prologue.
We can achieve the TOS_BTS bookkeeping without RTOS
modifications if user-definable hooks are provided for thread
preemption and resumption. For example, OSEK provides, with
PreTaskHook and PostTaskHook, such extension points.

Our compiler modifications also have an impact on potential
optimizations, as we need the compiler to use a frame/base
pointer and a stack pointer. This disables certain optimiza-
tions, such as -fomit-frame-pointer, which avoids
the usage of a frame pointer whenever possible to reduce
the register pressure. However, in practice, the effects of
-fomit-frame-pointer are negligible in general; in our
case it furthermore affects only switch functions – the compiler
is still allowed to omit the frame pointer in all other functions.
As the number of switch functions is small (6 functions are
average), the impact will be very low.

c) Callee vs. caller-site stack switch: One decision for
the implementation of SETs is whether the stack switch is
done at the call-site or within the called function. We decided

2asm volatile("mov TOS_BTS, %%esp;" ::: "%esp");|}

to modify the switch function itself since it requires fewer
code modifications and can be done efficiently with only
one additional instruction. On the other hand, call-site stack
switching would give us even finer control over the location of
the call frame and the same function could invoked either on the
BTS or on a private stack, which might lead to an even lower
stack consumption. However, the invocation of a parameterized
function on another stack requires larger compiler modifications
and the simultaneous handling of two stack pointers when
pushing arguments from the private stack onto the BTS. For
calling conventions that use registers for parameter passing
this might be simpler. This is a topic for further research.

d) Library functions in the call graph: As a switch
function transfers not only its own stack frame, but also the
frames of its children, SETs allow stack sharing between leaf
functions and leaf subgraphs. Therefore, the potential benefit
is directly related to the size distribution of stack frames. With
increasing distance from the thread entry, it is more likely that
we can transfer a function onto the BTS. For actual systems,
these functions are also more likely to require a larger amount
of stack, as the application logic is often located close to the
entry function and most of the stack consumption originates
from the activation of library functions deep down in the call
graph. As such library functions are often shared by several
threads, their transfer to the BTS shrinks the WCSC of several
private stacks.

e) Memory protection: An important issue with any kind
of stack sharing is memory protection, which in embedded
control systems is typically provided by means of a memory
protection unit (MPU). In distinction to an memory manage-
ment unit (MMU), which implements protection by page-wise
address translation, an MPU controls the access to ranges
of the physical memory. For the execution of a basic task,
an RTOS with memory protection configures the MPU to
grant access only to the unused part of the shared stack to
ensure integrity of the preempted basic task’s state. For a SET,
the RTOS must do the same, but additionally grant access
via the MPU to the SET’s private stack, which contains the
actual parameters and, potentially, other variables that were
passed by reference. Hence, SET support demands an additional
MPU range. Furthermore, the RTOS must ensure read-only
access to the TOS_BTS variable. However, in this domain,
kernels typically already provide read-access to a part or even
the complete kernel state for efficiency reasons. A typical
platform that is well suited for SETs would be the Infineon
TriCore [27], which is widely used in safety-critical automotive
systems. Its MPU provides four ranges for data memory; the
CPU core additionally offers global address registers, which
can be marked as read-only for the application, to efficiently
store the TOS_BTS variable. To sum up: SET support works
well together with memory protection and just requires one
additional MPU range.

f) Worst-Case Execution Time (WCET) Impact: Since we
do not modify the callgraph(s) and the control-flow graphs
of individual functions, the program structure stays intact, as
well as all preemption relations between threads. Therefore,

9



regular WCET analyses can be with small modifications on
the machine-code level: (1) One additional non-branching,
memory-read instruction (mov esp, [TOS_BTS]) is added
for every switch function. (2) For the cache analysis, it has to
be considered that the switch function and its children work
on a stack from a different memory region. However, every
thread-execution path, also the longest path that constitutes the
WCET, includes at most one stack-switch operation. Therefore,
we only have to account for a single stack discontinuity. The
impact of SET can be roughly estimated: (1) 1 instruction, 1
cache miss for TOS_BTS, and 1 cache eviction. (2) 1 cache
miss and 1 cache eviction for the first stack access after the
discontinuity.

IX. RELATED WORK

The discrepancy between the pessimistic allocation of static
private stacks and the actual combined dynamic stack usage
was addressed from different directions:

a) Dynamic allocation of function-call frames: The first
direction is to allocate stack space not statically for each
thread, but allocate the required memory on demand. For
MESA [17], call frames were allocated from a specialized
heap, linked to their dynamic predecessors and freed on return.
This allowed the compact storage of activation frames since
frames from different threads are mixed on the heap. Yi et al.
[32] fruitfully applied per-function dynamic frame allocation
to wireless sensor networks as their nodes suffer from strict
memory constraints. As a per-call scheme for frame allocation
imposes a high run-time overhead, Grunwald and Neves [12]
analyze the function-call graph to insert allocations of stack
segments only at neuralgic program points where the current
stack segment has potential to overflow. Similarly, Behren
et al. [2] segmented the call graph into regions that have an
upper limit on stack consumption. Checkpoints are inserted
into the region-entering function to ensure that the current
stack segment can hold all frames up to the next checkpoint.
In comparison to [12, 2], MTSS [22] starts each thread on a
statically-allocated stack and react to imminent stack overflows.
Run-time checks in each function detect overflows and page-
sized stack segments are allocated from the system allocator
to utilize all available system memory. Mauroner and Baunach
[21] brings the reactive MTSS scheme to the hardware level,
and use a specialized OS-aware MMU to transparently grow
and shrink the available stack space. In contrast to software-
based stack segmentation schemes, the MMU exhibits a linear
logical stack space to the threads. Compared to our approach
that switches unconditionally at the switch functions to the pre-
allocated shared stack, the dynamic frame-allocation schemes
pay continuously for run-time checks and for maintaining the
allocator. Furthermore, these schemes work in a best-effort
manner and give no upper limit on the stack consumption.

b) Preemption-threshold scheduling (PTS): The real-time
community proposed to modify the scheduling parameters such
that the system remains schedulable, but the usage of a shared
stack becomes beneficial. Wang and Saksena [30] proposed
preemption-threshold scheduling: Each task is assigned a

preemption priority that it uses to preempt other tasks and
a preemption threshold that it uses to prevent preemption
by other tasks. Thereby, all tasks with the same preemption
threshold cannot be active at the same time and, therefore, can
share their space on the shared stack. Ghattas and Dean [11]
showed that preemption-threshold scheduling (PTS) effectively
decreases stack consumption and worst-case response time
and increases the schedulability. For partitioned and global
fixed priority scheduling, Wang et al. [29] and Wang, Gu, and
Zeng [28] use ILP to find optimal priority and preemption-
threshold assignments that are still schedulable but minimize
the stack consumption. Compared to our approach, the PTS
approaches change priorities and thresholds to optimize the
stack consumption and, thereby, change the real-time schedule.
Since we take the priority assignment for granted and optimize
stack consumption at the system level, our approach can be
combined with PTS. Furthermore, our switch functions exploit
potential savings on the call-graph level, while PTS works on
the granularity of whole tasks. Also, none of these methods
handles the execution of blocking threads on the shared stack.

c) Stack resource policy (SRP): Coming from a different
direction, Baker [1] proposed the SRP as an extension to the
priority-ceiling protocol (PCP) [26]. When systems use the
SRP to access shared resources, tasks raise their dynamic
priority immediately to the ceiling protocol of the requested
resource, preventing all other tasks that potentially request the
resource from being scheduled. Thereby, resource acquisitions
cannot block, deadlocks are prohibited, and the resource-
requesting tasks can run on a shared stack. Gai, Lipari, and Di
Natale [10] showed that preemption thresholds are a special
case of the SRP where tasks take an implicit resource, which is
shared by all tasks of the same preemption-threshold level. Yao
and Buttazzo [31] first considered the task’s fine structure, in
terms of AUTOSAR runnables. They start with tasks that have
already a priority and execute a fixed sequence of runnable
linearly. Their algorithm assigns an intra-task preemption
threshold to each runnable, which is enforced by pseudo SRP
request enclosing the runnable code. Zeng, Di Natale, and Zhu
[33] extended this model and also modified the runnable-to-task
mapping to minimize the stack consumption. Again, the knob
to save stack space is the real-time configuration and, thereby,
the schedule is changed. Again, no method considered blocking
and when a thread’s fine-structure was used, the model was
much simpler than the full call graph considered by us.

d) Tighter Worst-Case Stack Consumption Bounds:
Hänninen et al. [15] proposed a WCSC analysis for shared-
stack systems with time-triggered and event-triggered tasks.
They utilized the detailed timing information about offsets to
reduce the over approximation of used stack space. Later [3],
they extended their approach to systems with offsets and
precedences. Our approach to determining the WCSC does not
rely on this detailed timing information but on flow-sensitive
analysis of the GCFG. For interrupt-driven programs without
RTOS, Brylow [5] used model checking and Regehr, Reid, and
Webb [25] abstract interpretation to determine an upper stack
bound.

10



X. CONCLUSION

Stack sharing among several threads is an effective way
to reduce the overall memory consumption of an embedded
real-time system. With semi-extended tasks, we bridge the gap
between non-blocking threads, which can be executed on a
shared stack, and threads that passively wait within their control
flow for an event to happen. We described an efficient way for
a thread to switch from its private stack to the shared stack
without activating the operating system. Our IPET-based worst-
case stack consumption analysis supports systems with a mix
of basic, semi-extended, and extended tasks. Furthermore, our
analysis supports the incorporation of fine-grained preemption
constraints, which we extract from the global control-flow
graph of the system. By using a genetic algorithm, we applied
the semi-extended task approach selectively and achieved
significant stack saving over a wide range of system parameters.
We improved the state-of-the-art, for 80 percent of our synthetic
benchmark systems and could further reduce the stack size on
average by 7 percent.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their feed-
back. Furthermore, we thank Stefan Bader and Roman Sommer
for the fruitful discussions about the initial implementation.
This work has been supported by the German Research

Foundation (DFG) under the grants no. LO 1719/4-1 and
SFB/TR 89 (“Invasic”), Project C1.

The source code, changes to LLVM and dOSEK, the raw
results, and a virtual-machine image with the experimental
setup are available at:
https://www.sra.uni-hannover.de/Research/AHA/SET/.

LIST OF ACRONYMS

BT basic task
BTS basic-task stack
ET extended task
CFG control-flow graph
ILP integer linear programming
IPET implicit path-enumeration technique
GCFG global control-flow graph
MMU memory management unit
MPU memory protection unit
PCP priority-ceiling protocol
PTS preemption-threshold scheduling
RTOS real-time operating system
SET semi-extended task
SRP stack resource policy
WCSC worst-case stack consumption

0 5 10 15
0

20

40

60

80

Waiting Threads

R
u
n
T
im

e
(i
n
s)

Genetic Algorithm

GCFG Calculation

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

(d) Functions (·100)

S
ta
c
k
U
sa
g
e
F
a
c
to
r

BTS

SET

1 2 3 4 5 6 7 8 9 10
0

5

10

15

IRQs

#basic tasks

#switch functions

2 4 6 8 10
0

20

40

60

80

SRP Resources

R
u
n
T
im

e
(i
n
s)

Genetic Algorithm

GCFG Calculation

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

(e) SRP Resources

S
ta
c
k
U
sa
g
e
F
a
c
to
r

BTS

SET

1 2 3 4 5 6 7 8 9 10
0

5

10

15

SRP Resources

#basic tasks

#switch functions

Fig. 6: Extension table for Figure 3, Figure 4, and Figure 5.

11

https://www.sra.uni-hannover.de/Research/AHA/SET/


REFERENCES

[1] Theodore P. Baker. “Stack-based Scheduling for Realtime Processes”.
In: Real-Time Systems Journal 3.1 (Apr. 1991), pp. 67–99. ISSN: 0922-
6443. DOI: 10.1007/BF00365393.

[2] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and
Eric Brewer. “Capriccio: Scalable Threads for Internet Services”. In:
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. SOSP ’03. Bolton Landing, NY, USA: ACM, 2003, pp. 268–
281. ISBN: 1-58113-757-5. DOI: 10.1145/945445.945471.

[3] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Nolin.
“Bounding Shared-Stack Usage in Systems with Offsets and Prece-
dences”. In: 2008 Euromicro Conference on Real-Time Systems. 2008,
pp. 276–285. DOI: 10.1109/ECRTS.2008.29.

[4] Manfred Broy. “Challenges in Automotive Software Engineering”.
In: Proceedings of the 28th International Conference on Software
Engineering (ICSE ’06) (Shanghai, China). New York, NY, USA: ACM
Press, 2006, pp. 33–42. ISBN: 1-59593-375-1. DOI: 10.1145/1134285.
1134292.

[5] Dennis Brylow. “Static Checking of Interrupt Driven Software”. PhD
thesis. Purdue University, Aug. 2003. URL: http://www.mscs.mu.edu/
∼brylow/papers/Brylow-Dissertation2003.pdf.

[6] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. “Global
Optimization of Fixed-Priority Real-Time Systems by RTOS-Aware
Control-Flow Analysis”. In: ACM Transactions on Embedded Comput-
ing Systems 16.2 (2017), 35:1–35:25. DOI: 10.1145/2950053.

[7] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W.
Dean. “Using Continuations to Implement Thread Management and
Communication in Operating Systems”. In: Proceedings of the 13th
ACM Symposium on Operating Systems Principles (SOSP ’91) (Pacific
Grove, CA, USA). New York, NY, USA: ACM Press, Sept. 1991,
pp. 122–136. ISBN: 0-89791-447-3. DOI: 10.1145/121132.121155.

[8] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. “Contiki — a
Lightweight and Flexible Operating System for Tiny Networked
Sensors”. In: Proceedings of the First IEEE Workshop on Embedded
Networked Sensors (Emnets-I). Tampa, FL, USA, Nov. 2004.

[9] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali.
“Protothreads: Simplifying Event-Driven Programming of Memory-
Constrained Embedded Systems”. In: Proceedings of the 4th Interna-
tional Conference on Embedded Networked Sensor Systems. Boulder,
Colorado, USA, Nov. 2006. URL: http : / / dunkels . com / adam /
dunkels06protothreads.pdf.

[10] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. “Minimizing Memory
Utilization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-Chip”. In: Proceedings of the 22Nd IEEE Real-Time
Systems Symposium. RTSS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 73–. ISBN: 0-7695-1420-0.

[11] Rony Ghattas and Alexander G Dean. “Preemption threshold scheduling:
Stack optimality, enhancements and analysis”. In: Real Time and
Embedded Technology and Applications Symposium, 2007. RTAS’07.
13th IEEE. IEEE. 2007, pp. 147–157.

[12] Dirk Grunwald and Richard Neves. “Whole-Program Optimization
for Time and Space Efficient Threads”. In: Proceedings of the 7th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII) (Cambridge, MA,
USA). New York, NY, USA: ACM Press, 1996, pp. 50–59. ISBN:
0-89791-767-7. DOI: 10.1145/237090.237149.

[13] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. Seventh. New York, NY, USA: McGraw-Hill, 2001.

[14] Martin Hoffmann, Florian Lukas, Christian Dietrich, and Daniel
Lohmann. “dOSEK: The Design and Implementation of a Dependability-
Oriented Static Embedded Kernel”. In: Proceedings of the 21st IEEE
International Symposium on Real-Time and Embedded Technology
and Applications (RTAS ’15). Washington, DC, USA: IEEE Computer
Society Press, 2015, pp. 259 –270. DOI: 10.1109/RTAS.2015.7108449.

[15] K. Hänninen, J. Maki-Turja, M. Bohlin, J. Carlson, and M. Nolin.
“Determining Maximum Stack Usage in Preemptive Shared Stack
Systems”. In: 2006 27th IEEE International Real-Time Systems
Symposium (RTSS’06). 2006, pp. 445–453. DOI: 10.1109/RTSS.2006.18.

[16] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Răzvan Musăloiu-
E, Philip Levis, Andreas Terzis, and Ramesh Govindan. “TOSThreads:
Thread-safe and Non-invasive Preemption in TinyOS”. In: Proceedings
of the 7th ACM Conference on Embedded Networked Sensor Systems

(SenSys ’09). Berkeley, California: ACM, 2009, pp. 127–140. ISBN:
978-1-60558-519-2. DOI: 10.1145/1644038.1644052.

[17] Butler W. Lampson. “Fast Procedure Calls”. In: Proceedings of the First
International Symposium on Architectural Support for Programming
Languages and Operating Systems. ASPLOS I. Palo Alto, California,
USA: ACM, 1982, pp. 66–76. ISBN: 0-89791-066-4. DOI: 10.1145/
800050.801827.

[18] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation”. In: Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04) (Palo Alto, CA, USA). Washington, DC, USA: IEEE
Computer Society Press, Mar. 2004.

[19] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
and David Culler. “TinyOS: An Operating System for Wireless Sensor
Networks”. In: Ambient Intelligence. Heidelberg, Germany: Springer-
Verlag, 2005.

[20] Yau-Tsun Steven Li and Sharad Malik. “Performance analysis of em-
bedded software using implicit path enumeration”. In: ACM SIGPLAN
Notices. Vol. 30. ACM. 1995, pp. 88–98.

[21] F. Mauroner and M. Baunach. “StackMMU: Dynamic stack sharing
for embedded systems”. In: 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). 2017, pp. 1–9.
DOI: 10.1109/ETFA.2017.8247614.

[22] Bhuvan Middha, Matthew Simpson, and Rajeev Barua. “MTSS:
Multitask Stack Sharing for Embedded Systems”. In: ACM Trans.
Embed. Comput. Syst. 7.4 (Aug. 2008), 46:1–46:37. ISSN: 1539-9087.
DOI: 10.1145/1376804.1376814.

[23] OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf, visited 2014-09-29.
OSEK/VDX Group, Feb. 2005.

[24] Peter Puschner and Anton Schedl. “Computing Maximum Task Exe-
cution Times: A Graph-Based Approach”. In: Real-Time Systems 13
(1997), pp. 67–91.

[25] John Regehr, Alastair Reid, and Kirk Webb. “Eliminating Stack Over-
flow by Abstract Interpretation”. In: ACM Transactions on Embedded
Computing Systems 4.4 (2005), pp. 751–778. ISSN: 1539-9087. DOI:
10.1145/1113830.1113833.

[26] L. Sha, R. Rajkumar, and J. P. Lehoczky. “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization”. In: IEEE Transactions
on Computers 39.9 (Sept. 1990), pp. 1175–1185. ISSN: 0018-9340.
DOI: 10.1109/12.57058.

[27] TriCore 1 User’s Manual (V1.3.8), Volume 1: Core Architecture.
Infineon Technologies AG. 81726 Munich, Germany, Jan. 2008.

[28] Chao Wang, Zonghua Gu, and Haibo Zeng. “Global Fixed Priority
Scheduling with Preemption Threshold: Schedulability Analysis and
Stack Size Minimization”. In: IEEE Transactions on Parallel and
Distributed Systems 27.11 (Nov. 2016), pp. 3242–3255. ISSN: 1045-
9219. DOI: 10.1109/TPDS.2016.2528978.

[29] Chao Wang, Chuansheng Dong, Haibo Zeng, and Zonghua Gu.
“Minimizing Stack Memory for Hard Real-Time Applications on
Multicore Platforms with Partitioned Fixed-Priority or EDF Scheduling”.
In: ACM Transactions on Design Automation of Electronic Systems 21.3
(May 2016), 46:1–46:25. ISSN: 1084-4309. DOI: 10.1145/2846096.

[30] Yun Wang and Manas Saksena. “Scheduling Fixed-Priority Tasks with
Preemption Threshold”. In: Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications. RTCSA
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 328–.
ISBN: 0-7695-0306-3.

[31] Gang Yao and Giorgio Buttazzo. “Reducing Stack with Intra-task
Threshold Priorities in Real-time Systems”. In: Proceedings of the
Tenth ACM International Conference on Embedded Software. EMSOFT
’10. Scottsdale, Arizona, USA: ACM, 2010, pp. 109–118. ISBN: 978-1-
60558-904-6. DOI: 10.1145/1879021.1879036.

[32] Sangho Yi, Seungwoo Lee, Yookun Cho, and Jiman Hong. “OTL:
On-Demand Thread Stack Allocation Scheme for Real-Time Sensor
Operating Systems”. In: Computational Science – (ICCS’07). Ed. by
Yong Shi, Geert Dick van Albada, Jack Dongarra, and Peter M. A. Sloot.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 905–912.
ISBN: 978-3-540-72590-9.

[33] Haibo Zeng, Marco Di Natale, and Qi Zhu. “Minimizing Stack and
Communication Memory Usage in Real-Time Embedded Applications”.
In: ACM Trans. Embed. Comput. Syst. 13.5s (July 2014), 149:1–149:25.
ISSN: 1539-9087. DOI: 10.1145/2632160.

12

https://doi.org/10.1007/BF00365393
https://doi.org/10.1145/945445.945471
https://doi.org/10.1109/ECRTS.2008.29
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.1145/1134285.1134292
http://www.mscs.mu.edu/~brylow/papers/Brylow-Dissertation2003.pdf
http://www.mscs.mu.edu/~brylow/papers/Brylow-Dissertation2003.pdf
https://doi.org/10.1145/2950053
https://doi.org/10.1145/121132.121155
http://dunkels.com/adam/dunkels06protothreads.pdf
http://dunkels.com/adam/dunkels06protothreads.pdf
https://doi.org/10.1145/237090.237149
https://doi.org/10.1109/RTAS.2015.7108449
https://doi.org/10.1109/RTSS.2006.18
https://doi.org/10.1145/1644038.1644052
https://doi.org/10.1145/800050.801827
https://doi.org/10.1145/800050.801827
https://doi.org/10.1109/ETFA.2017.8247614
https://doi.org/10.1145/1376804.1376814
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
https://doi.org/10.1145/1113830.1113833
https://doi.org/10.1109/12.57058
https://doi.org/10.1109/TPDS.2016.2528978
https://doi.org/10.1145/2846096
https://doi.org/10.1145/1879021.1879036
https://doi.org/10.1145/2632160

	Introduction
	Preemptable vs. Blocking Threads
	Deriving A Tight Worst-Case Stack Consumption (WCSC)
	About This Paper

	System Model
	Semi-Extended Tasks (SETs)
	SETs and Switch Functions
	Implementation of Switch Functions

	Stack Consumption on a Shared Stack
	Flow-Sensitive Preemption Analysis
	Selection of Stack-Switch Functions
	Evaluation
	Benchmark Generation
	Evaluation Scenario
	Evaluation Method
	Results
	Run Time and Scalability
	Stack-Space Saving


	Discussion
	Related Work
	Conclusion

