



# Semi-Extended Tasks: Efficient Stack Sharing Among Blocking Threads

Christian Dietrich, Daniel Lohmann

Leibniz Universität Hannover

December 14, 2018



















# 98% of sold processors



# 98% of sold processors



# 98% of sold processors

LUH SET 2—



# 98% of sold processors

-0.01 € ⇒ +110 000 €

Quantized RAM Purchase: Microchip ATXMega C3 Series:

| Part         | Flash  | RAM   | Price    |
|--------------|--------|-------|----------|
| ATXMEGA64C3  | 64 kB  | 4 kB  | 4.05 EUR |
| ATXMEGA128C3 | 128 kB | 8 kB  | 4.11 EUR |
| ATXMEGA256C3 | 256 kB | 16 kB | 5.06 EUR |
| ATXMEGA384C3 | 384 kB | 32 kB | 6.12 EUR |







#### Living in Private: Normal Threads





- Normal threads live on their private stack
  - Function calls push a new stack frame onto the private stack
  - Kernel switches arbitrarily between threads and stacks



#### Living in Private: Normal Threads





- Normal threads live on their private stack
  - Function calls push a new stack frame onto the private stack
  - Kernel switches arbitrarily between threads and stacks
- Real-time schedules are much more restricted
  - Not all preemptions/resumptions are possible at any point
  - Stack reusable if two threads are never simultaneously ready



#### Living in a Commune: Basic Tasks



#### Shared Stack



- OSEK/AUTOSAR has the concept of basic tasks
  - ...live, tightly packed, on the same stack
  - ... must have run-to-completion semantic and cannot wait
  - ⇒ Only the top-most basic task can be running (by construction)



#### Living in a Commune: Basic Tasks







- OSEK/AUTOSAR has the concept of basic tasks
  - ...live, tightly packed, on the same stack
  - ... must have run-to-completion semantic and cannot wait
  - ⇒ Only the top-most basic task can be running (by construction)
- Worst-case stack consumption depends on real-time parameters
  - Preemption thresholds, non-preemptability, priority-ceiling protocol



#### **Problem Field**



#### **Extended Tasks**



- + Fully flexible (can wait)
- High static stack consumption

#### **Basic Tasks**



- Cannot wait passively
- + Stack-sharing potential





#### **Extended Tasks**



- + Fully flexible (can wait)
- High static stack consumption

#### **Basic Tasks**



- Cannot wait passively
- + Stack-sharing potential

Semi-Extended Tasks live on two stacks



# Approach

- Semi-Extended Task Mechanism
- Worst-Case Stack Consumption
- Optimize Stack Consumption with SETs



# Approach

- Semi-Extended Task Mechanism
- Worst-Case Stack Consumption
- Optimize Stack Consumption with SETs



## Semi-Extended Tasks (SET)





- SETs switch autonomously to the shared stack
  - Transition between stacks happens at stack-switch functions
  - SETs start as Extended Tasks and can become Basic Tasks
  - Special compiler-generated function prologue



## Technical Detail: Function Prologue







LUH

#### Technical Detail: Function Prologue







# Approach

- Semi-Extended Task Mechanism
- Worst-Case Stack Consumption
- Optimize Stack Consumption with SETs





- WCSC analysis must consider different constraints
  - Intra-Thread Callgraphs





- WCSC analysis must consider different constraints
  - Intra-Thread Callgraphs
  - Recursion





- WCSC analysis must consider different constraints
  - Intra-Thread Callgraphs
  - Recursion
  - Preemption Constraints





- WCSC analysis must consider different constraints
  - Intra-Thread Callgraphs

Global Control Flow

- Recursion
- Preemption Constraints





- WCSC analysis must consider different constraints
  - Intra-Thread Callgraphs

Global Control Flow

Recursion

SET Stack Switches

Preemption Constraints



- Current WCSC analyses for shared stack are coarse-grained
  - Analyse each task in isolation
  - Combine stack consumption according to preemption rules



- Current WCSC analyses for shared stack are coarse-grained
  - Analyse each task in isolation
  - Combine stack consumption according to preemption rules
- We suggest a combined approach with IPET/ILP solver
  - Model WCSC analysis as a maximum-flow problem
  - Search for costliest {preemption chain, function stacking}
  - Allows for fine-grained preemption constraints:

forbid(T1 
$$\longrightarrow$$
 T2) forbid(T1[S]  $\longrightarrow$  T2)



- Current WCSC analyses for shared stack are coarse-grained
  - Analyse each task in isolation
  - Combine stack consumption according to preemption rules
- We suggest a combined approach with IPET/ILP solver
  - Model WCSC analysis as a maximum-flow problem
  - Search for costliest {preemption chain, function stacking}
  - Allows for fine-grained preemption constraints:

$$forbid(T1 \longrightarrow T2)$$
  $forbid(T1[S] \longrightarrow T2)$ 

- Fine-Grained Preemption Constraints
  - Extract constraints from global control-flow graph
  - Flow-sensitive static analysis of application and RTOS
  - Presented in previous work: LCTES'15, TECS'17



# Approach

- Semi-Extended Task Mechanism
- Worst-Case Stack Consumption
- Optimize Stack Consumption with SETs





- Select stack-switch function to minimize the WCSC.
  - Parents of blocking system calls are forbidden
  - Children of stack-switch functions are forbidden







- Select stack-switch function to minimize the WCSC.
  - Parents of blocking system calls are forbidden
  - Children of stack-switch functions are forbidden







- Select stack-switch function to minimize the WCSC.
  - Parents of blocking system calls are forbidden
  - Children of stack-switch functions are forbidden
  - Possibilities: extended, basic, or semi-extended tasks







- Select stack-switch function to minimize the WCSC.
  - Parents of blocking system calls are forbidden
  - Children of stack-switch functions are forbidden
  - Possibilities: extended, basic, or semi-extended tasks



## Minimizing the WCSC: Two-level Optimization





- Select stack-switch function to minimize the WCSC.
  - Parents of blocking system calls are forbidden
  - Children of stack-switch functions are forbidden
  - Possibilities: extended, basic, or semi-extended tasks



# Minimizing the WCSC: Two-level Optimization

⇒ Genetic Algorithm with WCSC as Fitness Function



# Results

- Generated Benchmark Scenarios
- Stack-space Savings



#### Generated Benchmark Scenarios



- Evaluation with ≥ 14000 generated systems
  - Based on a base configuration, scale in 5 dimensions
  - Compare ET-only, BT-only, and BT+SET systems

| Dimension         | Base | Range      |
|-------------------|------|------------|
| #Threads          | 20   | 20 – 50    |
| #blocking Threads | 1    | 0 - 15     |
| #IRQs             | 1    | 1 – 20     |
| #Functionen       | 200  | 100 - 1000 |
| #Critical Regions | 1    | 1 – 10     |

- Integration into Whole-System Generator
  - dOSEK: Python framework for system analysis and kernel generation
  - LLVM: Extract sizes of stack frames and stack-switch prologue
  - Gurobi: state-of-the-art ILP solver







































































# Conclusion





- Semi-Extended Tasks
  - SETs switch to shared stack if possible
  - Switching is efficient and does not involve the RTOS
  - Smaller penalty for passive waiting

- Fine-grained worst-case stack consumption analysis
  - Real-time properties (priorities, preemption thresholds)
  - Flow-sensitive preemption constraints
  - Supports semi-extended tasks

- Stack-space saving compared to pure BTS systems
  - 7 percent on average, up to 52 percent
  - 80 percent of all systems used less stack space



## Genetic Algorithm as a Higher-Level Optimization

wait()

- Genetic algorithm to find a good configuration
  - Encode configuration as bit-vector
  - Bitmasks verify configuration
  - Configurations can be breed, mixed, and mutated

| g() | x() | I() | T#2 | j() | k() | q() |
|-----|-----|-----|-----|-----|-----|-----|
| 1   | 0   | 0   | 0   | 0   | 1   | 0   |

- Genetic Algorithm with Initial Population
  - 1. Generate new bit-vectors by mutation and cross-over
  - 2. Calculate fitness (WCSC) with IPET/ILP solver
  - 3. Select top 20 switch-configurations
  - 4. Goto 1, until satisfied (60 seconds of no progress)

LUH SET – 1-

#### Run-Time of Optimization



