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Abstract—For billions of deployed browsers, JavaScript pro-
vides the platform-independent lingua franca that enabled the
triumphal march of web-based applications. Originally intended
for simple UI-event processing, JavaScript comes with an event-
driven programming model, where event-callback functions are
executed in strict sequential order. However, with applications
getting more complex and tasks becoming more computation
intensive, its first-come–first-served and run-to-completion se-
mantic is hitting a limit, when reactions to user inputs are delayed
beyond the human perception threshold. With the rise of the
Internet of Things, this leads to friction-filled user experiences
in everyday situations.

With RT.js, we selectively introduce pseudo-preemption points
into JavaScript functions and sequence the execution of event
callbacks with well-known real-time scheduling policies, like EDF.
Thereby, we provide a soft real-time abstraction that mitigates
the described shortcomings of the JavaScript execution model
without modifying the actual engine; making RT.js compatible
with billions of devices. Applied to generated real-time task sets,
we can almost eliminate the 30-percent deadline-miss ratios of
baseline JavaScript at moderate costs. In a browser-based macro
benchmark, we could diminish the influence of computation-
intensive background tasks on the page-rendering performance.

Index Terms—Browser, JavaScript, Real-Time System, Pre-
emption

I. INTRODUCTION

JavaScript has evolved into the lingua franca of the internet
for the development of cloud-supported, web-based applica-
tions. Popular examples include Office 365 or Skype, but there
is also a myriad of stand-alone Electron apps that essentially
ship their own browser to render and execute the application
in a portable fashion on any modern operating system. This
success continues into the Internet of Things (IoT) domain,
where, according to a recent survey [1], JavaScript has now
become the third-most employed language environment (after
Java and C). It is typically employed in areas of “smart
devices” that need to combine classic control tasks with a
nifty user interface and cloud-based services, such as in the
robotics and home automation domains.

The benefits of JavaScript for this domain are manifold,
including platform independence, programmer compatibility,
and a huge amount of reusable open-source libraries and
frameworks, achieved by library versions of the browser
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ecosystem. The simple event-driven run-to-completion execu-
tion model is easy to grasp and integrate. All this reduces
development costs and time to market.

However, originally intended for simple client-side UI-
event processing, the JavaScript execution model hits its limits
when applications get more complex and include computation-
intensive tasks as well as tasks with (soft) real-time require-
ments. Due to the run-to-completion model, a task that does
not finish “quick enough” does not only cause a sluggish user
interface, but also reduces the responsiveness of control tasks
of the smart device.

A. About this Paper

We propose RT.js, a framework that mitigates these issues
by introducing preemption and priority-based scheduling into
JavaScript. Combined with a real-time scheduling policy (such
as EDF), the application can prioritize tasks based on deadlines
and achieve (soft) real-time behavior. Our evaluation results
show that for real-time workloads we thereby can reduce the
deadline-miss ratio by an order of magnitude at a modest
median run-time overhead of less than five percent.

We openly confess that the basic idea – to introduce
preemptive scheduling in a previously only run-to-completion
framework – is not new outside the JavaScript world. The
transition from originally purely-event-driven-for-simplicity to
multithreaded-for-reality on the longer term appears to be a
recurring pattern in the rise of IoT and sensor net frameworks.
Examples include Contiki [2], TinyOS [3] and, more recently,
Arduino [4]. The main point of our approach is, however, its
immediate and easy applicability to a large set of JavaScript
applications by full backward compatibility. In particular, RT.js
does not require any modifications to the employed JavaScript
engine nor existing library code – it runs out of the box
in every modern browser as well as the popular standalone
Node.js engine. The key concept to achieve this goal is not
to aim for full preemptability of the JavaScript engine, but
instead exploit built-in JavaScript facilities to automatically
transform JavaScript application and library code to become
pseudo preemptable.

B. RT.js in a Nutshell

In a nutshell, RT.js introduces preemptable real-time
scheduling into existing JavaScript code as follows:
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Fig. 1: JavaScript and RT.js Execution Models. Instead of registering and executing jobs directly, we submit the jobs, which
were made generators, to RT.js for preemptive (yield) and prioritized execution; the JavaScript engine remains unchanged.

• Ahead of time, longer JavaScript calculations and func-
tions are automatically sliced into subtasks by inserting
yield-statements.

• Tasks are transformed into JavaScript generator functions
– functions that can yield their execution job mid execu-
tion to be resumed later.

• The generator functions always yield to the RT.js sched-
uler, which selects the next (sub)task according to its
priority or deadline and resumes this job.

Note that all parties yield the processor voluntarily, so tech-
nically the result is not fully-preemptive scheduling, but
more pseudo-preemptive scheduling on the basis of interrupt-
less cooperative scheduling. As the relinquishing yield-
statements are forced into the code in a preprocessing step
with reasonable frequency, cooperation becomes mandatory
and no task can monopolize the CPU. The major benefit of
this pseudo-preemptive scheduling is that it avoids interrupt
synchronization issues and can be implemented within the
existing JavaScript frameworks and engines – at a modest
overhead of less than five percent. In particular, we claim the
following contributions:

• We identify and quantify the problem of unprioritized
and non-preemptable job processing that is inherent to
the JavaScript execution model and grasp it in real-time
terminology.

• With RT.js, we propose a method and implementation
to introduce preemptability via AST transformations and
allow for the prioritized execution of JavaScript callbacks
with fixed-priority and EDF scheduling.

• We evaluate our prototypical implementation with micro
benchmarks and a realistic macro benchmark, give guide-
lines for the fine-tuning of the scheduling policy, and
demonstrate dramatically improved deadline-miss ratios
and frame rates.

The rest of the paper is organized as follows. In Section II,

we describe the JavaScript execution model and its conceptual
problems. In Section III, we propose the RT.js approach and
evaluate its impact in Section IV. In Section V, we discuss
our results and give an overview about the related work in
Section VI, before we close in Section VII.

II. JAVASCRIPT EXECUTION MODEL

JavaScript was designed as a language for reacting to UI
events, like keyboard presses, mouse clicks, or short-lived
(periodic) timers, which result in changes to the Document
Object Model (DOM) of the displayed webpage. These initial
requirements heavily influenced the design of the language
and resulted in its event-driven programming model, which
lives off many short-running callback functions. Triggered by
external or internal events, the JavaScript execution engine (see
Figure 1a) executes callback jobs in a first-come–first-served
(FCFS) manner in strict sequential order.

The lifetime of a JavaScript program starts when the
browser finished the download of a code file and hands over
control for the first time to the JavaScript engine. Executed
in a fresh runtime instance, the program defines functions,
issues I/O requests (e.g., additional HTTP requests), registers
UI event handlers, and requests time-based function activa-
tions (e.g., setTimeout()). The runtime records the user-
supplied callback functions, which will be invoked later on,
for the registered events. When the program reaches the end
of the file, control is handed back to the browser and only the
global variables and the event–callback tables remain as the
JavaScript-runtime state.

When an event occurs (e.g., a timer expires or key is
pressed), the engine searches for a registered event handler,
creates a job from the given callback function, and appends
it to the job queue. For example, in Figure 1a, job #2 is the
newest job and it was created as result of a periodic 50 ms
timer. When the browser deems it appropriate, it hands over
control to the JavaScript engine, which starts emptying the job



queue by executing the oldest job first. The engine executes
jobs in FCFS order in a run-to-completion fashion. These jobs
perform calculations, define more functions, request other net-
work resources, or register new event handlers. Furthermore,
a job can directly re-insert another job into the queue with
setImmediate().

The execution of a job starts with the invocation of the
callback function with an initial execution context, which holds
its arguments (e.g., network response). On every function call,
a new execution context is allocated and holds the function’s
arguments, the local variables, and a link to its calling context;
we can think of execution contexts as heap-allocated stack
frames. In Figure 1a, bar(3) is currently running in the
context of job #1 and was invoked by foo(23).

Unlike normal stack-allocated function-call frames, these
execution contexts, which are independent from concrete jobs,
allow for the usage of generators. This language feature
resembles the continuation concept [5] from Lisp; it makes it
possible to define functions that can return multiple times with-
out losing their local state. On invocation, a generator function
returns, instead of a result, an execution context, which can
be stored in a variable (x in Figure 1a). We can continue this
execution context (x.next()) and the generator’s function
body will proceed until it hits the next yield keyword. There,
the engine records the next continuation point and hands back
control to the caller of next(). With each yield, a return
value and an indication of the generator’s completion state
gets passed to the caller.

Furthermore, JavaScript supports generator chaining with
the yield* keyword. Thereby, a generator delegates control
to a sub-generator for as long as that generator produces values
and the parent generator only continues after the sub-generator
has finished. Generator chaining is transparent for the caller of
next() and the return-value sequence of the sub-generator
is sliced into the parent’s return sequence.

The JavaScript engine and its event-driven programming
model were built from the ground up to be used asyn-
chronously. This is necessary since the browser executes the
JavaScript engine and the page rendering alternating in the
same thread; a started job must complete before the renderer
can regain control. Thereby, no synchronization is necessary
between the renderer and JavaScript-induced DOM manipula-
tions, or between two JavaScript jobs. However, if a job runs
for too long, it stalls the whole rendering pipeline, and the
responsiveness of the browser tab, or even the whole browser
suffers. Therefore, we identify the first problem of JavaScript
in the context of larger web applications:

Problem 1. Long-running computations result in a reduced
and jittering page-rendering frequency.

Confronted with this problem, developers came up with
an ad-hoc idea, which became a common practice [6]: The
developer manually splits up the computation into multiple
functions and chain their execution with setImmediate().
Since this practice harms the code readability and fosters the
prevalent “callback-hell” [7] problem, ECMAScript 6 (ES6),

which is the standard defining JavaScript, standardized not
only generators but also asynchronous functions. Annotated
with async, an asynchronous function does not directly return
a value but only a promise object. At some later point, another
async function can resolve the promise with await and
extract the actual result. Technically, the invocation of an
unresolved promise preempts the current execution context
and enqueues a job that will calculate the promise result;
afterwards, the preempted context is enqueued again with the
promised result.

However, one problem remains, and gets even more relevant
with async/await: in which order are jobs executed? While
we described the JavaScript engine as having only one queue,
real-world JavaScript implementations have multiple queues
that are serviced by the event loop strictly in order [8]. This
means that even if we directly reinsert a job into the queue
with setImmediate(), the JavaScript engine will execute
all pending timer callbacks and all pending I/O callbacks first,
before our code gets executed. Furthermore, these queues are
emptied in a FCFS fashion and the engine is agnostic to the
importance of a given job. For example, it will execute the
parsing of a large network response, without any mercy, until
completion, even if our user eagerly waits for the response to
her mouse click. Therefore, we identify the second problem
of the JavaScript execution model:

Problem 2. An application has no control over the execution
order of jobs and cannot schedule them according to their
relative importance.

Taking a step back, we can interpret the browser ecosystem
as a soft real-time environment: The periodic signal to render
the page every, which triggers every 16.6 ms, and the human
perception thresholds (< 100ms feels instant) [9] introduce
natural timing bounds for the response time. Therefore, we can
grasp the JavaScript execution model in real-time terminology:
The execution is already based on jobs that are scheduled
non-preemptively in a (multi-level) FCFS order. Furthermore,
we can see internal and external events as interrupt requests,
where the event-handler tables are similar to interrupt-vector
tables (see Figure 1a) and the registered callbacks are the
interrupt-service routines. Each job runs with masked inter-
rupts (no event detection) on a single processor (executor)
until completion.

III. THE RT.JS APPROACH

With these problems in mind, we will apply two common
techniques to JavaScript that are used by the systems commu-
nity every day: preemption and scheduling of activities. With
RT.js, we provide a real-time abstraction that provides soft–
real-time properties, as far as possible in an interpreted lan-
guage, and allow for the preemptive and prioritized execution
of jobs with a bounded interrupt-detection latency. Thereby,
we purely rely on standardized ES6 features (i.e., generators)
and do not modify the execution engine itself. This makes
RT.js – out of the box – compatible with all modern browsers
and Node.js.



A. Programming Model

As an extension to the normal JavaScript programming
model, we provide the possibility to selectively annotate
long-running functions with @preempt. Executed with the
RT.js machinery, these functions become preemptable at every
function call and before each loop iteration in their own
function body. Un-annotated library functions, even called
from a @preempt function, execute in their regular fash-
ion. With this controlled introduction of preemptability, we
preserve most of the synchronicity guarantees of JavaScript
since consecutive instructions (basic blocks), conditionals,
and library calls still execute atomically. If further atomicity
guarantees are required, RT.js also provides an API to erect
further-reaching non-preemptive critical sections (NPCSs).

In order to provide the necessary real-time parameters,
like deadline and static priority, RT.js jobs are created from
a JavaScript class that inherits from Task and provides
a @preempt entry function, or created ad-hoc from a
@preempt function and a parameter set. These jobs are
submitted to the RT.js machinery, which schedules and ex-
ecutes them according to the chosen strategy. In our current
implementation, we support fixed-priority (FP) and earliest–
deadline–first (EDF) scheduling. In Figure 1b, we see how
RT.js proxies the job execution: instead of waiting as callbacks
in the JavaScript queue, a job resides in RT.js’s (prioritized)
queue and gets invoked by the scheduler.

Instead of registering her functionality as an event handler,
the user registers a proxy function that submits an RT.js job.
For example, in Figure 1b, proxy2() creates a T2 job every
50 ms and submits it to RT.js. If she wants to react to the
return value of the submitted job, she can supply a callback
function that gets invoked after the jobs have completed.
During their execution, jobs can create and submit more jobs,
erect critical sections, or install (periodic) timers. We also
integrated RT.js with asynchronous functions: a @preempt
function that resolves a promise with await is paused until
the promise gets resolved.

After the developer has set up the event handlers and
submitted the initial jobs, she starts the RT.js scheduler, which
handles the execution of the supplied jobs and reinserts itself
for another round of execution if work is to be done (see
Figure 1b). While RT.js executes jobs, it regularly gives back
control to the JavaScript engine to allow for page rendering
and for the detection of new events. Furthermore, RT.js can be
used alongside a normal event- and callback driven JavaScript
program.

B. Preemption of Running Jobs

For our RT.js concept, it is essential that the scheduler is
able to regain control from the running jobs before they finish
their execution. However, unlike bare-metal hardware, the Ja-
vaScript engine provides no option to forcefully execute an OS
function (e.g., via an interrupt) while a user-defined function
is running. Therefore, we can never reach full preemptability
if we want to leave the JavaScript engine unmodified; a
highly desirable goal keeping in mind the billions of deployed

function counter() {
let counter = 0, i = 0;
for (; i < 1000000; i++) {

counter += 1
}
return counter;

}

(a) Original Function

function* counter() {
let counter = 0, i = 0;
for (; i < 1000000; i++) {
yield;
counter += 1

}
return counter;

}

(b) ... with yield

Fig. 2: Preemption of JavaScript functions using generators.

JavaScript engines. Instead, we perform code transformation
of the task’s code (transpiling) ahead of time to include
synchronous preemption points (PPs) at sensible points. For
this, we mark the annotated functions as generators and insert
regular yield statements, which results in the function giving
up control cooperatively.

In Figure 2a, we see a minimal example of a long running
function that will block the engine. When called, counter()
increments its variables until the loop terminates and the
function returns its result. In order to regain control from
counter() while it is currently running, we mark it a
generator (see Figure 2b, “*”) and insert a yield at the
beginning of the loop body. Thereby, *counter() gives
back control to its caller on every loop iteration. While the
generator is suspended, its execution context still holds the
current counter value.

Since generators give back control to their direct invocation
context, we have to treat function calls between annotated
functions specially: Instead of a normal function call, we use
generator chaining (i.e., yield* counter()) to hand over
control from the parent to the child generator. For example,
in Figure 1b, T1() is only continued after foo(23) and
bar(3) reached the end of their function bodies. Thereby,
we establish preemptability for all @preempt functions that
are on an unbroken call chain of @preempt functions.

In order to achieve compatibility with existing JavaScript
software, we also support the integration with asynchronous
functions: Annotated functions can be async and are allowed
to resolve a promise with await. In the transpilation process,
we exchange the async with the generator annotation and
replace every await keyword with a yield statement that
hands the promise object to the scheduler. The scheduler
removes the resolving job from the RT.js queue and unblocks
it only after the promise got resolved.

RT.js also supports that a user manually inserts yield
statements to introduce preemptability in a very controlled and
explicit fashion. However, since for most applications, such a
tedious and cautious control of preemptability is not required,
we provide an automated tooling to introduce PPs. For this, we
utilize a technique that is common practice in the JavaScript
world (e.g., to translate between different language revisions):
transpilation. In a source-to-source transformation, which hap-
pens ahead-of-time before the deployment, the abstract syntax
tree (AST) of the program gets transformed according to
predefined rules (see Table I). For our implementation, we used



Pattern Replacement

for(...) {...} for(...) {PP; ...}
while(...) {...} while(...) {PP; ...}
do {...} while(...); do {PP; ...} while(...);
fn(...); PP; fn(...);

PP (alternatives) yield
if (--budget == 0) yield

preemptFn(...); yield* preemptFn(...);
await asyncFn(...); yield asyncFn(...);

TABLE I: Rules to introduce preemption points (PP)

the TypeScript1 compiler [10], which provides an interface for
user-defined source-to-source transformations.

In the transpilation process, TypeScript searches for all func-
tions with @preempt annotation and makes them generators.
Furthermore, it searches the function-body AST recursively
for predefined patterns and introduces PPs (see Table I). The
general rule is that PPs are added at the beginning of loop
bodies and before function calls (to catch recursive loops).
Thereby, we ensure that a job cannot monopolize the executor
in an annotated function. In this step, we also handle calls to
annotated (preemptFn()) and asynchronous (asyncFn())
functions.

Since PPs are hit frequently during the program execution
and each yield statement comes with an overhead, there is
a trade-off between responsiveness and induced system over-
heads. The more functions, from the task entry downwards, are
marked with @preempt and the more PPs we introduce, the
more frequent the scheduler regains control of the executor.
However, since the hit frequency of a PP is unknown ahead
of time, we cannot simply leave out every second PP without
giving in to potential executor monopolization.

Instead, we introduce an integer-typed global budget vari-
able that the scheduler fills with a constant before it hands
control to a job. The budget is comparable to a thread quantum
in systems like Windows or Linux in that it represents a
(logical) time interval, in which the running thread does not
need to relinquish the CPU. We alter the inserted code at
the PPs, such that the budget variable is decremented on
every visit and yield is only called if the budget hits zero.
With the budget, we control the number of dynamically-
executed yield statements, and can, thereby, adjust the trade-
off between responsiveness and preemption overheads. In
Section IV-C, we will investigate experimentally on an upper
limit for the budget.

C. The RT.js Scheduler

With the transpiled task bodies, RT.js is able to hand
control to a job for a budgeted number of PPs and it will
regain the executor afterwards. However, we still have to
schedule between different jobs and integrate the RT.js sched-
uler with the JavaScript execution model. For the scheduling,
RT.js currently supports the fixed-priority/rate-monotonic and
the (unicore) earliest-deadline–first scheduling policies [11].

1TypeScript is a JavaScript super set that supports optional typing.
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Thereby, especially the EDF scheme is well suited for use
in the browser as the human-perception thresholds provide us
with scenario-specific time bounds, where periods or minimal
interarrival times are hard to give.

However, we still have to integrate the scheduler loop into
the execution model (see Figure 3). For this, we chose a
three-level execution schema that consists of budgets (PP-
count bound), slices (time bound), and rounds (time bound).
On the finest level, we continue the execution of a job for
a job-specific budget of PPs. We execute multiple budgets
in sequence, checking the current wall clock time after each
budget, until the slice duration has expired. After each slice,
we invoke the scheduler to switch between jobs with the same
priority in a round-robin fashion. For example, in Figure 3, T1
and T2 have the same priority and we only switch to T2 after
the first slice has expired. Multiple slices make up one round,
which is a normal JavaScript job that checks, after each slice, if
the round duration has expired. On expiry, we reinsert another
round with setImmediate() into the JavaScript job queue
if there is still a pending job and return control to the event
loop. Thereby, we poll for events after each round and the
round duration becomes the detection latency.

D. Further System Abstractions

a) Synchronization: Since RT.js adds concurrency to the
application and the JavaScript consistency is weakened (see
Section III-A), we have to provide additional synchronization
mechanisms between jobs. Since we still promise that basic
blocks and branches are executed without preemption, Boolean
flags can provide some kind of protection. However, we also
provide an API to establish NPCSs, where events are still
detected, but no rescheduling is done between slices. In the
future, we plan to incorporate more complex synchronization
protocols, like the priority-ceiling [12] or the stacked-resource
protocol [13], that interact with the scheduler and guarantee
freedom from deadlocks.

b) Alarms: JavaScript-native timers (setTimeout())
have two essential drawbacks: (1) While the engine is active,
timer activations, like all other events, are delayed until the
current job has finished. (2) The browser only guarantees a
minimum but no maximum latency before the callback is
executed. Therefore, we provide an alarm API that eases



both problems and provides more precise (periodic and non-
periodic) timers.

For the implementation, we keep an ordered list of pending
alarms with their absolute activation time. After each slice, we
check the first alarm for expiration and call, directly from the
scheduler loop, a user-defined callback that can, for example,
submit a job. If the scheduler is currently not active, we fall
back to the normal JavaScript timer mechanism to activate
the callback function. Thereby, alarms can trigger while RT.js
jobs are executing and the timer latency is bounded by the
slice duration if RT.js is currently active.

IV. EVALUATION

In the evaluation, we want to investigate the presented
preemption mechanism and scheduling policy on three level
of detail. First, we measure the cost of a single voluntary
preemption via yield and look into the influence of calling
yield only on every N th preemption point. Second, we use
periodic task sets from the real-time domain to inquire the
benefits of scheduling JavaScript jobs instead of using the
default FCFS policy. At last, we perform a macro benchmark
in a web browser to show the improved responsiveness in a
realistic usage scenario with simulated user input.

A. Evaluation Setup

We performed all benchmarks on an Intel Core i5-6400
CPU with 2.70 GHz and 32 GiB of main memory that runs
Ubuntu 18.04. For the preemption-overhead measurements and
for the execution of the generated task sets, we used Node.js
v8.10.0, which is a standalone JavaScript runtime environment.
For the macro benchmark, we used the Google Chromium
73.0.3683.86 and Mozilla Firefox 67.0 browsers. Since both
Node.js and Google Chromium use the V8 JavaScript engine,
we expect that measurements and qualitative conclusions are
transferable between both environments. Mozilla Firefox uses
the SpiderMonkey JavaScript engine.

B. Preemption Overhead

First, we want to quantify on the lowest level, how much
overhead we introduce into a program if we insert preemption
points with generators and by calling yield. This overhead
measurement is comparable to measuring the dispatching over-
head in a bare-metal RTOS or to the overheads of switching
user-level threads. We explicitly measure only the preemption
overheads and execute everything in this section without the
RT.js scheduler.

We perform a micro benchmark on Node.js, where the
workload function runs a tight counter loop (see Figure 2)
for 262144 (256 ·1024) iterations. For the baseline variant, we
measure the runtime for executing the workload and divide it
by the number of loop iterations. We executed the workload
n = 10000 times and show the (arithmetic) mean of the run
times and the standard deviation in Table II. For one loop
iteration, Node.js requires about 1 ns.

For quantifying the yield overheads, we use the generator
version of the counter loop (see Figure 2b). We resume the

[ns] Mean Std. Dev. Per Yield

Baseline 0.98 0.02 –
Generator (1 Level) 18.80 0.01 17.82
Generator (2 Level) 49.10 0.21 48.13
Generator (3 Level) 71.45 0.19 70.47

TABLE II: Microbenchmark of Javascript Generators. Base-
line is a tight counter loop (i ≤ 256 · 1024) that was executed
n = 10000 times. For the generator variants, a n-level deep
generator-function call chain executes the tight loop and calls
yield after each iteration.
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Fig. 4: Run-Time Overhead per Preemption Point. With a
budget, the introduced preemption points invoke yield only
on every Nth time. (n=10000, tight counter loop i < 256·1024)

generator execution context in tight loop until it finishes
and record the required time. Thereby, we measure, besides
the counter calculation, one yield and one return-from-yield
operation for each loop iteration. Furthermore, we want to
quantify if the costs of a preemption increase if the workload
nests invocation of generators with yield*. For this, we
execute the loop directly in the called generator (1 Level),
in a generator that is invoked with yield* from a generator
(2 Levels), or if the loop is located on the third generator level
(3 Levels). Thereby, we measure if the cost of PPs changes
deep down the calling hierarchy.

From the results (Table II), we see that a preemption in
the first generator level takes about 18 ns (per yield) if
we subtract the nanosecond for the minimal workload. If we
deepen the generator level, the preemption overhead grows by
20-30 ns per call-hierarchy level. Here, the increase indicates
that the runtime iterates over the whole yield* chain instead
of jumping directly to the invoker of next().

As we have already discussed in Section III-B, we introduce
a budget of PPs that a job can visit before it actually calls
yield. Of course, this budget value is specific for each job
and depends on the amount of code a job executes between
two PPs. However, we want to find an upper bound for the
budget where the overheads per PPs no longer decrease but
only the scheduling latency grows. For this, we run the same
tight counter loop (generator, 1 level), which is the worst-case



scenario for the overhead of our pseudo-preemptive approach,
with a varying budget size and show the results in Figure 4.

With the PP budget, we introduce additional computation,
namely the decrease of the budget and the budget-exhaustion
check, at each preemption point, while we reduce the yield
frequency. The results show that the overhead drops rapidly
with an increasing budget but flattens out if the budget exceeds
300. There, the budget check dominates the yield overhead
and, on average, one preemption point costs around 3 ns.
Therefore, a budget size of 300 provides the lowest possible
cost per PP and we will use it as the default value for our
evaluation.

C. Generated Task Sets

For an integrated view on the influence of RT.js, we perform
a second evaluation with generated real-time task sets with
varying utilization. While real-time task sets will not perfectly
match the actual workload that arises in a web browser, they
can still provide significant insights into the properties of the
JavaScript engine itself, as well as the improvements that we
get by using RT.js. As task model for this evaluation we use
a set of independent and periodically activated tasks, whose
deadlines are equal to their periods.

For the task-set generation, we used SchedCAT2, which
uses the Roger Stafford’s randfixedsum algorithm [14] to
produce task sets with a given utilization. We generated
1000 task sets, which consist of 15 tasks with a period of
[15ms, 5000ms] and a logarithmic-uniform distribution. We
varied the utilization between 0.05 and 1.00 in increments of
0.05, such that 50 task sets were generated for each utilization
step.

From the task-set description, we generate a baseline sys-
tem, where released jobs are directly executed by the Java-
Script engine in FCFS order. Each task executes (blocking)
for its WCET and then hand back control to the JavaScript
engine for handling further events. We run each system for
10 seconds and control the task activation explicitly: Before
the run time, the benchmark generates a list of events that
have to happen during the 10-second duration. From this
event list, we calculate the absolute deadline for each job
and use setTimeout() to release at the given time. With
this event-list precalculation, we ensure that blocking the
JavaScript runtime has no influence on release times and
absolute deadlines.

For the RT.js variants, we make the task function preempt-
able by the described transpilation and execute the jobs with
RT.js either with rate-monotonic/fixed-priority scheduling (FP-
RM) or with earliest-deadline-first (EDF) scheduling. Task
priority and absolute deadlines are derived from the period,
which is also the relative deadline. The RT.js scheduler is
configured to use a budget size of 300, a slice length of 1 ms,
and a round length of 5 ms. For the RT.js variant, we use the
supplied alarm mechanism (see Section III-D) to handle the
event list.

2https://github.com/brandenburg/schedcat
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Fig. 5: Deadline-Miss Ratio for Generated Task Sets (n=1000).
The task sets are binned according to their utilization (i.e., first
bin is [0, 0.10)), and the bar (logarithmic!) indicates the mean
(and standard deviation) over the ratio between released jobs
and missed deadlines. The task sets were executed for 10
seconds.

We execute the three variants for each generated benchmark
for 10 seconds, which also includes the t = 0 instance where
all periodic tasks are activated at once. As the longest period
is 5 seconds, each task is activated at least twice during the
benchmark. For each job, we record the planned release time,
the actual detection time, the job’s actual computation time, the
completion time, and the absolute deadline, which is derived
from the planned release time. After the benchmark run, we
count all missed deadlines and the overhead introduced by
RT.js.

In Figure 5, we see a statistic of the ratio between released
jobs and missed deadlines for the three variants. The systems
are binned according to their planned utilization factor into
10 buckets (width is 0.10) and we use the average over
the miss ratios for each system. As we can see, the miss
ratio for the baseline system scales about linearly with the
increasing utilization rate, while both RT.js variants perform
better by (at least) one order of magnitude. Over the whole
utilization range, the baseline system misses 29.6% of all
deadlines, while FP-RM misses 0.045% and EDF misses
1.1%. Although EDF theoretical promises to execute these
task sets without deadline misses, the timing uncertainty of
the engine and the overheads of RT.js still yield some deadline
misses.

In Figure 6, we look at the run-time overhead for the
scheduling and compare the job’s computation time with the
time that was spent in scheduler rounds. For the baseline
variant, these numbers are, of course, equal as no overheads
have to be paid. For the RT.js variants, we see that the
overheads are highest for task sets with a small utilization
but stay below +13.2% for a bucket. Of course, for task sets
with a small utilization, the overheads have a percentual higher
value. Over all task sets, the median overhead for FP-RM is
4.4% and 3.8 for EDF.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

1

1.05

1.1

1.15

1.2

Utilization Factor

S
c
h
e
d
u
le
r-
O
v
e
rh
e
a
d
F
a
c
to
r

Baseline FP-RM EDF

Fig. 6: Run-Time Overhead for Scheduling. With the same
binning as in Figure 5, we show the average (and standard
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Fig. 7: Screenshot of the Macro Benchmark

D. Macro Benchmark

Lastly, for quantifying the impact of RT.js on real-world web
applications, we designed a benchmark scenario that resembles
the requirements regarding reactivity under a high computation
load. The benchmark consists of an HTML page with a moving
gray box, a text input, a selection of options, a frames-
per-second (FPS) graph (see Figure 7), and four JavaScript
components that compete for computation time.3 The scenario
that we are mimicking is a user who inputs data into an
animated web application, which runs different periodic and
sporadic computation tasks. The goal of this benchmark is to
measure the influence of the additional payload on the frame
rate, and, therefore, on the user’s experience.

The workload consists of two mandatory and two optional
components:

1) The box task is released periodically via request-
AnimationFrame() (p = 16.6ms, d = 10ms) and
only moves the box between the left and the right border.
Since its jobs complete fast, they never deplete their
budget and, therefore, never call yield.

3This benchmark can be found at https://sra.uni-hannover.de/Research/rtjs/
demo.html

2) The input task (d = 32ms, sporadic) is triggered on text
input (at the key-up event), records the input on the web
page, and releases an AES job (if enabled).

3) The AES task (d = 500ms, sporadic) concatenates the
input text 16 times, encrypts it 350 times, and writes
the results to the JavaScript console. Its jobs complete
normally in [35, 75]ms and we set the yield-budget size
to 10.

4) A set of SchedCAT-generated tasks with a combined
utilization of 0.75.
(n=15, p ∈ [1, 53] s, d = p, WCET ∈ [15, 1815]ms)

The whole benchmark consists of 8 subtests that run for
60 seconds each. After an initial grace period of 60 seconds,
we run the baseline benchmark, where the unmodified code is
executed in a non-preemptive FCFS manner by the JavaScript
runtime itself. In the first subtest ([60, 120] s), we only
execute the box task and the input task with no additional
background load. We simulate the user input with a timer that
triggers every 500 ms and inputs one word from an English
word list. In the following three subtests ([120,300] s), we
activate different load scenarios: only the AES task, only the
SchedCAT tasks, or all described tasks together. The task setup
for each subtest is activated programmatically.

After the baseline test, we have an additional grace period of
60 seconds, such that we start the RT.js subtests at t = 360 s.
We execute the same scenario as for the baseline but with
the RT.js scheduler enabled. Here, we use the EDF policy, a
default yield budget of 300, and we give back control to the
JavaScript event loop every millisecond. Only in these four
subtests, we use the transpiled JavaScript code.

We run the described benchmark scenario in Firefox 67.0
and Chromium 73.0.3683.86. For measuring the frame rate, we
use an additional requestAnimationFrame() callback
that is not connected to the RT.js machinery. This callback
records the frame rate during the benchmark and flushes
them only after the benchmark has finished. If the JavaScript
runtime is blocked at the time of the next animation frame, this
callback gets executed late and the measured frame rate drops.
We used this JavaScript-implemented FPS measurement since
the browser-internal FPS graphing mechanisms did not provide
adequate export mechanisms, configurable buffer sizes, and
even skewed the FPS measurement for an idling system (Fire-
fox). We executed the whole benchmark five times, reload the
browser tab in between, and calculate the arithmetic average
for each second.

Excluding the two grace periods, we show the measured
FPS rates in Figure 8. Without the intense computation loads,
we see that both systems do not hinder the page-rendering
performance and reach the maximal value of 60 FPS. For the
baseline JavaScript engine, we see how already the relatively
short-running AES task, which introduces, on average, 40 ms
of computation every 500 ms, introduces a noticeable FPS-rate
decrease. We also see that the impact of these computations
is much higher for Firefox than for Chromium. However, if
we enable the SchedCAT tasks, which introduces a few long-
running computations and has a utilization of 0.75, the frame
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Fig. 8: Frames rendered per second in the macro benchmark

rate widely varies and regularly drops to zero. For the user, this
results in an unusable web application, where the input field,
as well as the animated box, freezes sometimes for several
seconds.

By using the RT.js scheduler, the frame rate stabilizes
and becomes an almost flat line. Due to the introduced PPs
and the prioritized job scheduling, we could not measure
any influence of the background computations on the page
rendering. Thereby, the web application, although under heavy
computation load, is able to react quickly to user input and
produces visual feedback that is “smooth” for the user.

V. DISCUSSION

A. Threats to the Validity of Evaluation Results

Regarding our evaluation results, we see the following
threats to the validity of our results: First, we have no control
about the JavaScript engine internals. For example, the just-
in-time compilation could have optimized out some of our
benchmark code. However, if we set the execution frequency
(Section IV-B) for two integer increments (1 ns =̂ 1 GHz) and
for two user-level context switches (18 ns ≈̂ 55 Mhz) into
the context of the evaluation machine, our results are in a
reasonable range. Also, this lack of control poses no threat to
the SchedCAT task sets as the exhaustion of WCET budgets
was tied to actual progress of the physical time during the job
execution.

Another concern could be that our benchmark tasks are not
representative enough to reflect the code structure of actual
applications. However, by using very tight loops with minimal
bodies, we hit the worst case for our pseudo-preemptive
rescheduling scheme as the ratio between computation code
and PPs is highly unfavorable for us. We also cover a wide
range of possible utilization factors and used an actual algo-
rithmic payload (AES) in the macro benchmark.

B. Applicability

Regarding the generalizability, one could argue that manual
annotation is cumbersome and error-prone. Even if the devel-
oper already uses RT.js, she could forget to annotate a long-
running function. Since we only introduce PPs selectively, this
could result in a single budget duration that exceeds its slice.
However, RT.js could detect such excessively-long budgets
automatically and warn the developer about it.

Furthermore, we could, in principle, also replace JavaScript
jobs with RT.js jobs entirely: With a list of all runtime-
API functions that take a callback for later invocation, we
wrap each callback into a proxy function that submits an
RT.js job. Together with making every user-defined function a
generator, we would achieve that no job could ever monopolize
the executor. However, this non-selective application of RT.js
could lead to undesirable overheads due to deep yield*
chains (see Table II).

C. Alternatives to Generators

In our development of RT.js, we also explored two al-
ternative mechanisms to achieve preemptive and concurrent
execution of functions: async/await and web workers. With
the former, we can achieve the same preemption behavior by
making all @preempt functions async and calling await
on pseudo promises in every PP. The scheduler, then, resolves
the promise of the currently running job which, again, waits
after its budget is exhausted. However, in our measurements
we saw that this alternative preemption mechanism performs
poorly and achieves only about 700 preemptions per second.
This performance decline stems from the subsequent rein-
troduction of jobs into different JavaScript queues that are
handled subsequently by the event loop.

We also investigated on using web workers as job executors.
Web workers, or service workers, are independent JavaScript
runtime incarnations, which are supported by current browsers



to offload computations. However, as they have some severe
drawbacks, they are more orthogonal to RT.js than a com-
petitor. Being independent from the main runtime, they share
no state and all data transfer is done by explicit message
passing; in particular, they cannot modify the DOM directly.
Furthermore, they are quite heavy weight to start (≈40 ms,
[15]) and require a separate JavaScript file as an entry point.
For our approach, we can interpret web workers as separate
processors and could spawn individual instances of RT.js,
similar to a partitioned-scheduling real-time system.

D. JavaScript Engine Optimizations and Improvements

The proposed RT.js approach achieves preemption of jobs
and prioritized scheduling by using injected generators to
save and restore execution contexts. Thereby, RT.js can be
applied to any existing JavaScript engine. Nevertheless, by
only relatively small extensions to the JavaScript engine itself,
it would be possible to boost RT.js’ performance: We have seen
that PPs are still expensive and get more expensive the deeper
a yield* chain gets (Table II). This came to our surprise as
we believe that yield* could, in principle, be implemented
with the same overhead as yield. The top-level generator
context could hold a pointer to the continued context, which
is updated on every yield* and a pointer to the caller context
of next(), so no yield*-chain walking is necessary.

In a similar direction, it would be highly beneficial for RT.js,
to have actual coroutines [16] instead of having only genera-
tors. Both concepts differ in their possible return points: where
a coroutine can continue its execution in any other coroutine,
generators have to yield to their invoker. Therefore, our job
switch involves two context switches (job→scheduler→job)
instead of only one (job→job).

It would also be beneficial for RT.js to get an indication
from the runtime, whether one of the JavaScript job queues
contains at least one item. Thereby, we could drastically reduce
the event-detection latency as we could end rounds early.

A deeper integration of RT.js into the JavaScript engine
could be achieved by integrating prioritized job scheduling.
As long as such an integration excludes the preemptability of
jobs, the traditional execution model, and the accompanying
atomicity guarantees, would remain backward compatible.
In order to explore such a non preemptive but prioritized
scheduling, one could exclude the transpilation step and only
utilize the scheduler abstraction of RT.js.

VI. RELATED WORK

A. System Software for JavaScript

With JavaScript still being the only universal language
of the browser ecosystem, different projects provide tran-
spilation from other languages to JavaScript. For example,
Emscripten [17] automatically transpiles LLVM [18] IR code
to JavaScript and provides, together with the C/C++ front end
Clang, a complete transpilation chain from C/C++ to Java-
Script. For the Go language, which has a built-in coroutines
abstraction, GopherJS [19] provides the same service. Both
transpilers replace blocking calls, like sleep() or reading

from a Go channel, with async versions to implement passive
waiting within jobs. For this, all functions that directly, or
indirectly, call a blocking function, become asynchronous and
the required await statements are inserted automatically.
Thereby, both transpilers only provide the possibility of self-
suspension of jobs, but leave out prioritized or preemptive
scheduling. However, in principle, they can be combined with
the orthogonal RT.js approach.

Powers et al. proposed Browsix [20], which brings stan-
dard Unix abstractions like the shared file system, processes,
pipes, signals and sockets to the browser. The JavaScript-only
framework provides the required Unix system calls and maps
regular processes to web workers. With the help of Emscripten,
they transpile large Unix programs, like TEX, and execute
them in the browser. Since Browsix uses web workers, they
rely on the browser and the underlying operating system for
preemption and scheduling. Thereby, Browsix cannot respect
the relative importance of different jobs and they have to pay
the communication overheads between the main thread and
the web workers (see Section V-C).

The recently released WebAssembly [21] specification
brings another, more low level, front end to the JavaScript en-
gine. WebAssembly, which is already supported as an LLVM
back end, defines a memory-safe virtual-machine interface that
is supposed to be more load- and run-time efficient than Java-
Script. While WebAssembly programs can directly manipulate
the DOM, they have only implicit access to their call stack
and there is no support for generators. In the specification,
threads are only mentioned as a possible future extension;
Google Chrome already supports an experimental version
of WebAssembly threads [22], but there is no indication
about prioritized thread execution. However, as WebAssembly
functions can be called from JavaScript, they can be invoked
as non preemptable leaf functions from RT.js jobs.

B. From Events to (Pseudo-)Preemptive Scheduling

RT.js integrates a thread concept with preemptive scheduling
into an originally purely event-driven framework. As men-
tioned in the introduction, this transition of purely-event-
driven-for-simplicity to multithreaded-for-reality appears to
be a recurring pattern in the rise of frameworks address-
ing a new domain, such as sensor networks, cyber-physical
systems, the Web 2.0, or the Internet of Things: Originally
motivated by simplicity and resource constraints, Contiki [23]
was quickly extended by protothreads [2], which are basically
light-weight and explicit to employ function-local generators
for C, but provide neither preemption nor scheduling facilities.
TinyOS [24] got extended by TinyThreads [25], which imple-
ment full coroutines with FIFO scheduling, but no preemption,
and TOSThreads [3], which provide preemption, but have
to serializes all access to the TinyOS kernel by message
passing for better backward compatibility – a goal that also
has driven the design and implementation of RT.js. While
Contiki and TinyOS target extremely constrained sensor nodes,
Arduino [26] was intended as an easy-to-use platform for
teaching and developing networked cyber-physical systems (a



classical real-time domain) using a solely event-driven run-
to-completion execution model. Here, Cheng, Li and West
recognized the inherent limitations and presented Qduino [4],
an RTOS that provides an extended Arduino API for threading
and priority-based fully-preemptive scheduling, but replaces
the existing Arduiono software stack. In contrast, RT.js is
implemented for compatibility with existing JavaScript en-
gines by exploiting JavaScript language features (i.e., gen-
erators) and the idea of pseudo-preemptive scheduling (i.e.,
forced cooperation by transpiler-inserted yield statements).
A somewhat comparable approach to interrupt-less preemptive
threading can be found in a workshop paper by Luc Bläser
about an Oberon-based component model for embedded de-
vices [27], in which “the compiler automatically inserts checks
in the machine code, initiating preemption of a process if a
certain execution time has passed.”

VII. CONCLUSION

With RT.js, we presented a method to integrate (pseudo-)
preemptive and prioritized job execution with the JavaScript
execution model, while being compatible with unmodified
JavaScript engines that implement the ECMAScript 6 stan-
dard. Thereby, we mitigate the impact of JavaScript’s non-
preemptive and first-come–first-served job-execution order on
the user-input reaction times and improve the page-rendering
performance.

In an upfront transpilation step, we introduce synchronous
preemption points into the application and use JavaScript
generators to regain control over the executor from an already
started job. Combined with real-time scheduling policies, like
earliest–deadline–first or fixed-priority, RT.js becomes a soft-
real–time capable proxy layer between the JavaScript engine
and the application jobs. By handing control back to the
browser, we achieve bounded event-detection latencies and a
high degree of reactiveness.

In the evaluation, we quantified the overheads of generator-
based context switches to be lower than 20 ns and showed a
drastic reduction of the deadline-miss ratios from, on average,
30 % to 0.045 % (FP) at a median runtime overhead of less
than 5 %. For an RT.js-enabled web application, we achieved
60 FPS page-rendering although long-running and computing
intense background jobs competed for the JavaScript executor.

The source code of RT.js is available at: https://
github.com/luhsra/RT.js.
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