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Abstract—Real-time control applications are usually imple-
mented by mapping their real-time model (i.e., tasks, shared
resources, and external events) onto software instances of RTOS
abstractions, such as threads, locks and ISRs. These instantiated
objects and their interactions define what actually happens on
the imperative machine; they implement the desired behavior.
However, during the lifetime of many projects, the initial real-
time model gets lost, becomes outdated, or never existed at
all, as all (further) development has been code centric: The
source code is all that we have. So developers face a situation
where further modifications of the real-time system, but also any
attempt of static RTOS tailoring, requires the extraction and
the understanding of the employed RTOS instances and their
concrete interactions from the source code.

We present ARA, a tool capable of automatically retrieving
instance-level knowledge (e.g., the instanciated threads, locks, or
ISRs) from a given (real-time) application. ARA is an RTOS-
aware static analyzer that derives, given the application source,
a graph of the employed RTOS abstractions, their concrete
instances, and how these instances interact with each other at
run time. We describe the design principles behind ARA and
validate its implementation with four example applications for
OSEK/AUTOSAR and FreeRTOS.

I. INTRODUCTION

In the domain of real-time systems, application development
often begins by mapping tasks, shared resources, and exter-
nal events onto the underlying real-time operating systems
(RTOSs) abstractions, like threads, locks, and interrupt service
routines (ISRs). This implementation later executes on the
actual machine, leaving the application code as the ground
truth that defines the system behavior. It consists of concrete
instances that interact, mediated by the RTOS, with each other.
For example, an externally-activated ISR activates the data-
processing thread after data has been received.

Since developers often use only a small part of the RTOS,
leaving a lot of functionality unused, application-specific system
specialization bears significant improvements [4], [7], [21]. At
OSPERT’18, we presented a taxonomy of specialization levels
for (real-time) system software [10]. There, we defined three
levels on which the RTOS can be specialized: (1) On the level
of abstractions, whole RTOS abstractions can be dropped if
applications do not need them. (2) On the level of instances,
we can use specialized RTOS data structures and algorithms
best suited for the known set of instances. (3) On the level of
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interactions, we specialize the RTOS with knowledge about
individual interactions, like having a single queue writer.

We demonstrated with the example of the GPSLogger1

application, an real-world real-time application, how instance-
and interaction-level knowledge can be used to further specialize
the underlying FreeRTOS in order to reduce the memory
footprint and startup time. With instance-level knowledge, we
were able to initialize all stacks, thread-control blocks, and
scheduler data structures statically, which reduced the startup
time by 10 percent compared to the unmodified system. With
interaction-level knowledge, we could embed a short running
thread directly into the activating ISR as it did not interact
with any other thread. For this, however, we had to manually
analyze the source code of the application and how it exactly
utilizes the RTOS; a tedious task. We are convinced that manual
specialization is infeasible and that an automatic process to
retrieve the used instances and their interactions is needed.

As a follow-up of our previous work, we present ARA
(Automatic Real-time system Analyzer), a tool2 that automati-
cally extracts instance-level knowledge. From the application’s
source code, ARA extracts all application–operating-system
interactions and identifies all instances of RTOS abstractions.
Furthermore, ARA retrieves the interactions between the
instances and provides further system information, like the
number of thread activations. As a result, ARA produces
theinstance graph, a data structure that captures instances as
nodes and their interaction as edges. For example, for a queue
with only one writer, the instance graph contains only a single
write edge with the queue node as target.

Thereby, ARA is not restricted to one specific RTOS.
Currently, it is able to analyze applications written against
the OSEK/AUTOSAR standard [2], an RTOS API with static
instances, and FreeRTOS [3], an RTOS with a POSIX-like
interface, where all instances are created dynamically. As both
RTOSs name their thread implementation “task”, we will use
thread and task as interchangeable terms.

The knowledge about instances and interactions cannot only
be used for specialization but also for other phases of the
development process: When new developers join a project, the
instance graph becomes a documentation artifact and provides
a fast overview of the code base, easing the introduction phase.
Since ARA calculates the instance graph in an automated way,
the time-consuming manual extraction and updating of an –
often outdated – design document is avoided.

1https://github.com/grafalex82/GPSLogger
2Available at: https://github.com/luhsra/ara
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ISR i1 {

CATEGORY = 2;

PRIORITY = 101;

SOURCE = "PORTA";

}

TASK t1 {

PRIORITY = 2;

SCHEDULE = FULL;

}

TASK t2 {

PRIORITY = 1;

SCHEDULE = FULL;

AUTOSTART = TRUE;

}

.oil BoundedBuffer bb;

ISR(i1) { // priority: 101

bb.put(readSerial());

ActivateTask(t1);

}

TASK(t1) { // priority: 2

while(data = bb.get())

handleSerial(data);

}

TASK(t2) { // priority: 1

while (true)

handleADC(readADC());

}

.cpp

List. 1: OSEK example code

Furthermore, the instance graph, which captures the actual
usage of RTOS abstractions, can act as a base for further
static analyses, like searching for misused RTOS APIs or
protocol violations. For example, interaction knowledge makes
it possible to check whether calls that take and release a lock
occur pairwise. In ARA, we already provide such checks based
on the instance graph.

Summarized, the instance graph has three benefits: It serves
as a knowledge base for further RTOS specialization. It gives
an overview of the application’s code base and becomes a living
documentation of the program. It provides knowledge to check
the application for incorrect or unusual usage of operating
system abstractions.
With this paper, we claim the following contributions:
1) We define the instance graph as a knowledge base that

captures RTOS instances and their interactions.
2) We present automated methods to statically retrieve an

instance graph from a given OSEK or FreeRTOS application.
3) We apply our methodology to four real-world applications

to validate our approach.

II. SYSTEM MODEL

The input of ARA is a statically configured (real-time)
system, so the entire application code is known at compile
time. In particular, we have chosen two (real-time) operating-
system APIs that meet this requirement: OSEK and FreeRTOS.

A. Overview of OSEK
The OSEK standard defines an interface for fixed-priority

RTOSs and has been the dominant industry standard for
automotive applications for the last two decades.

It offers two main control-flow abstractions: ISRs and
tasks. Additionally, primitives for inter-task synchronization
are provided. All instances must be declared statically in the
domain-specific OSEK Implementation Language (OIL) [18],
[19].

Listing 1 provides an example OSEK system. We see two
tasks and one ISR: task t1 waits for a notification from ISR i1

and consumes its input, while task t2 runs constantly and
handles the analog-digital converter. All instances are statically

BoundedBuffer bb;

TaskHandle_t t1, t2;

int main() {

t1 = xTaskCreate(task_1, 2);

t2 = xTaskCreate(task_2, 1);

vTaskStartScheduler();

}

isr_1 { // priority: ∞
data = readSerial();

bb.put(data);

vTaskNotifyGiveFromISR(t1);

}

task_1 { // priority: 2

while(1) {

ulTaskNotifyTake();

while(data = bb.get())

handleSerial(data);

}

}

task_2 { // priority: 1

while (true)

handleADC(readADC());

}

List. 2: FreeRTOS example code

RTOS

Task1

late: False ulTaskNotifyTake

Task2

late: False

_Z5isr_1v

late: False
vTaskNotifyGiveFromISR

main
vTaskStartScheduler

xTaskCreate

xTaskCreate

Fig. 1: Instance graph for the given example as generated by
ARA. Edge labels always belongs to the edge below them.

declared in an OIL file (printed on the left side). The scheduler
starts task t2 automatically at boot, while task t1 gets activated
by ISR i1. It is noteworthy that the used bounded buffer bb is
not an RTOS abstraction, but used as global data structure.

B. Overview of FreeRTOS
FreeRTOS is an RTOS stewarded by Amazon to use it

together with their cloud instances [11]. One of its core features
is the high number of ports to different microcontrollers.

FreeRTOS offers tasks as a control-flow abstraction and
several synchronization primitives like semaphores or queues.
Unlike OSEK, FreeRTOS does not directly offer an ISR
abstraction. Instead, it defines a special class of system calls
that can be called from an ISR and they can be recognized by
their “FromISR” suffix.

In contrast to OSEK, the FreeRTOS API is dynamic: The
application creates all OS instances at run time; either in an
initialization phase or during the continued operation. Listing 2
shows the running example using the FreeRTOS API. To foster
readability, we have left out some system-call arguments, like
the stack size or the name of the created thread (xTaskCreate()).
Compared to Listing 1, this example contains a main function
that sets up the system and starts the scheduler. FreeRTOS is
not aware of isr_1 being an ISR, but we can recognize it by
the vTaskNotifyGiveFromISR system call.

III. INSTANCE GRAPH

In this section, we will define the instance graph and will
present a method to automatically create it. An instance graph
describes all instances that will exist in the whole application
lifetime together with their (flow insensitive) interactions.
In Figure 1, we show a simple instance graph that ARA
automatically extracted from Listing 2.
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Fig. 2: ICFG for the given example as generated by ARA.
System-call blocks are colored in orange (square shape),
function-call blocks are colored in green (rounded square shape),
computation-blocks are colored in blue (round shape).

The instance graph contains all mentioned instances and
their interactions as well as an additional RTOS instance. This
pseudo instance collects all interactions that do not take place
between two regular instances. Additionally, interactions that
originate from the main function reflect the system startup.
Since all “late” attributes are set to false, we know that all
instances are created before the scheduling begins.

For the construction of the instance graph, two steps are
necessary: (1) Building a system-call–aware inter-procedural
control flow graph (ICFG). (2) Creating the instance graph
based on the ICFG.

A. System-Call Aware Inter-Procedural Control Flow Graph
All interactions between instances originate in system calls;

in FreeRTOS also the dynamic instance creation is done
via system calls. Therefore, ARA traverses the ICFG of the
executed code and then interprets the influence of every system
call. For this, it first builds an system-call–centric ICFG that
abstracts from the irrelevant code parts.

First, ARA extracts the control-flow graph, which covers the
application code with its basic-block nodes. Then, it partitions
the control-flow graph into atomic basic blocks (ABBs), a
concept introduced by Scheler and Schröder-Preikschat [20], to
abstract from the application’s micro structure. As an adaptation
of the original ABB concept, ARA constructs and connects the
ABBs differently, for the whole application at once:

1) Split every basic block (BB) that contains a function or
system call. The split is done directly before and after
the function or system call. Therefore, all function and
system calls reside in their own BB.

2) Each BB gets a type assigned: system-call block, function-
call block, or computation block.

3) Merge several computation BBs into a single computation
node, if they form a single-entry-single-exit (SE-SE)
region, which can only be entered via one distinguished
entry BB and left via exactly one exit BB.

Each block constructed with this technique forms an ABB.
Afterwards, we have a local ABB-graph for each function
within the application code. By assigning a type to every
ABBs, we focus on the application logic that is visible to the
operating system and all irrelevant computation is subsumed
into computation ABBs. Interaction with the kernel is only
possible in system-call blocks. Figure 2 shows all application
ABBs derived from Listing 2.

Every system call is the intention of an interaction and gets
represented by an edge in the instance graph. Usually, the
system-call arguments identify the source and the target node
together with the exact system-call semantics. Sometimes, the
source and target are also defined by the calling instance itself
(e.g. the vTaskDelay call in FreeRTOS). In order to deduce the
system-call arguments, we perform a value analysis: Starting
from the call site, we search backwards in the function-local
def–use chains and follow the callee–caller relationship if we
hit a function beginning. With this interprocedural search, ARA
recognizes arguments that have an unambiguous value. In the
current implementation, we do not support operations, like
an addition with a constant, that change propagated values
deterministically.

B. Instance Graph Creation
With the information about the system calls and their

arguments, an interpretation of their semantics can be performed.
In the first step ARA creates all instances. Here, OSEK and
FreeRTOS are handled differently. Since OSEK requires that
all instances must be declared in the OIL file, it directly
provides information about all instances. As all instances in
FreeRTOS are created via system calls, ARA needs to find all
instance-creation system calls: It traverses the ICFG, beginning
from the system’s entry point (usually the main function).
Whenever ARA detects an instance-creation system call, it
emits a corresponding node in the instance graph. Since it is
possible that system calls are invoked in a loop or under a
condition, it can happen that the concrete number of actually
existing instances cannot be determined ahead of time. This also
applies if the system call is contained in another function that
is called in a loop or condition. ARA detects such situations,
creates exactly one instance, and labels it as being a template
for multiple, or an optional, instances.

Additionally, FreeRTOS needs a special handling for ISRs.
For all system calls that are recognized as ISR system calls,
ARA assumes that they are called within an ISR. To find
the actual function that defines the ISR, we traverse the call
hierarchy up to a root node.

In FreeRTOS, instance creation can happen anywhere in the
application. Therefore, it is important to differentiate whether
a creation takes place before or after the start of the scheduler.
Since the system entry point is executed exactly once, the code
block executed between the entry and the scheduler start gets
executed exactly once. For code within a task context, we do
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Fig. 3: Manually derived interaction graph for GPSLogger

not have this guarantee, since the task cannot run not at all or
it can execute multiple times. Therefore, we analyze all system
calls, with respect to their call graphs, and deduce if they are
called before or after the start of the scheduler. Also, the call
to the scheduler start is a dynamic one. If this call is made
in a condition or a loop, no statement can be made. For all
instances that are created after the scheduler start, we set the
“late” attribute of the instance (see Figure 1).

After the instance creation, we analyze the interactions
between them; a step that is equal for FreeRTOS and OSEK.
For this, we traverse the ICFG of all tasks and, dependent
on the system call, create an edge between the corresponding
instances. Since we aim to find all possible interactions, the
context (loop or condition) of the system call is irrelevant for
the edge creation. Interactions whose source or target cannot
be determined are assigned to the RTOS instance.

The combination of the system-call–aware ICFG extraction
and the subsequent instance and interaction extraction is an
automated process and results in the instance graph.

IV. PROGRAM ARCHITECTURE

ARA uses LLVM [14] and reads multiple files in the
LLVM intermediate representation as input format (e.g., clang
can create these files easily). The initial control flow graph
(CFG) extraction into BBs is performed entirely in LLVM.
Additionally, analyses already implemented in LLVM, like
dominator analysis or loop information, are used. The LLVM-
specific and performance-critical parts of ARA are written in
C++, while we default to Python for fast prototyping.

V. EXPERIMENTAL VALIDATION

To validate the correctness of ARA, we create instance graphs
of four real-world applications: The I4Copter with (1) and
without (2) events (based on OSEK), the SmartPlug (3, based
on FreeRTOS), and the GPSLogger (4, based on FreeRTOS).
The generated instance graphs are rather big and can therefore
be found in the appendix.

A. I4Copter
The I4Copter [26] is a safety-critical embedded control

system (quadrotor helicopter) developed by the University of
Erlangen-Nuremberg in cooperation with Siemens Corporate
Technology. We used it as a validation base for OSEK systems.

The I4Copter exists in two variants: an implementation for
OSEK extended conformance class 1 (ECC1, with events) and
another one that runs on the simpler basic conformance class 1
(BCC1, without events). We analyzed both systems with ARA
and the instance graphs can be found in Figure 5 and Figure 7.
For the event variant, 14 tasks, 4 alarms, 11 events, and 1
resource were identified. From the variant without events, 11
tasks, 4 ISRs, and 1 resource were extracted. We showed the
results to an author of the I4Copter who confirmed the results.

B. SmartPlug

The SmartPlug3 is a hardware power switch controllable
via Wi-Fi. It runs on an ESP8266 and uses FreeRTOS to
orchestrate its tasks. The project does not provide any building
documentation and depends on several unprovided libraries. We
therefore replaced all library calls that do not perform any kind
of RTOS interaction with stubs. When analyzing the source
code, ARA found 11 tasks, 2 queues, 1 semaphore and 1 ISR,
presented in Figure 6. ARA detects 4 tasks that are always
created and 7 tasks that are created only if some condition
is met (indicated by the question mark at the creation system
call). We performed a manual validation which confirmed that
these optional tasks are created depending on a configuration
option, which is retrieved at run time by reading a file.

C. GPSLogger

The GPSLogger is a freely available application to collect
GPS information.

It runs on a “STM32 Nucleo-F103RB” evaluation board that
is equipped with a STM32F103 MCU. It is connected to a
graphical display (I2C), a GPS receiver (UART), an SD card
(SPI), and two buttons (GPIO). Due to a broken SD card library,
we had to replace the SD card operations with a printf(). In
a previous work [10], we created the instance graph manually
as shown in Figure 3. The application consists of 5 tasks, 3
ISRs, 2 blocking queues, and one binary semaphore.

The instance graph as created by ARA is shown in Fig-
ure 4. Both graphs are almost isomorph. The automatically-
derived graph contains an additional main instance to show
all creation system calls and an RTOS instance that captures
unassignable interactions. As a main difference, ARA detects
the ISR interactions but assigns them to the RTOS instance.
ARA does this as a fallback, since the correct instance that
the vTaskNotifyGiveFromISR call gets as argument is not a
global variable but derived dynamically. Also, ARA does not
detect one interaction of the “Display Task” with the RTOS
(ulTaskNotifyTake), since it occurs in a function that ARA’s
reachability analysis cannot find due to an unresolved function-
pointer call.

While we saw some specialties in the analyzed systems, we
were able to construct instance graphs from all applications.
All instance graphs are providing a compact system overview
and can be used as knowledge base for further analysis.

3https://github.com/KKoovalsky/Smartplug

4

https://github.com/KKoovalsky/Smartplug


VI. DISCUSSION

In the previous section, we have seen how ARA can extract
interaction graphs from different unknown applications, and
we validated the results by comparing them with manually
extracted graphs and by manual code inspection. While the ARA
approach has a great potential to foster application knowledge,
its static nature has some limitations; both aspects will be
discussed in the following.

A. Limitations

The main limitation of ARA lays in limitations of its value
analysis. On the one hand, this is seen during the extraction of
argument values. Values retrieved as result of a function-pointer
call or an unambiguous assignment (e.g., in a branch) cannot
be retrieved.

On the other hand, ARA does not decide whether to take
a branch or how often to execute a loop, so the amount of
therein created instances cannot be retrieved. In the current
implementation, ARA detects these cases and marks the result
appropriately.

In the future, we want improve the recognition by using
already implemented compiler techniques such as dead-code
elimination and constant folding to remove branches or loop
unrolling to determine loop iterations. Another known technique
is symbolic execution, which, however, comes with high
costs [5]. Nevertheless, we believe that most embedded systems,
while programmed against a dynamic API, are rather static in
their OS interactions. Mostly, tasks are defined in some kind
of main function before the actual scheduler starts and system
calls only interpret constant values or global arguments. The
analyzed real-world systems are developed this way, except for
the SmartPlug, where one task acts as a configuration instance
that creates several other tasks. Nevertheless, ARA recognizes
this creations but cannot make a statement about the exact
amount of instances.

ARA performs a reachability analysis, beginning at the
system and task entry points to decide whether an interaction
is executed or not. In this analysis, ARA does not resolve any
function pointers. In the current implementation, ARA stops the
traversal at this point, resulting in possibly unanalyzed system-
calls, if they are only reachable via a function pointer. This
can lead to unrecognized instances and missing interactions.
In the specialization use case unrecognized instances lead to
a more generic implementation and thus only to a weaker
specialization. However, missing interactions can lead to the
selection of the wrong specialization for the corresponding
instances and, thus, provoke incorrect system behavior. One
way to solve this problem is to retrieve a restricted set of
possible call targets by comparing function signatures. A better
value analysis will further limit the call-target set of a function
pointer. We want to address this limitation in our future work.

The described limitations are inherent for static analysis.
Tracing an actual run of the system would circumvent these
problems. However, tracing does not detect dynamically uncre-
ated instances. This can be seen in the SmartPlug where on an
actual run only a subset of all tasks, which are found by static

analysis, is created due to dynamic configuration. We plan to
extend ARA to additionally support traces.

When we analyzed the real-world applications, we saw
different code qualities. Especially the GPSLogger seems like
a hobby project that was developed incrementally without a
real-time system model. For example, the source base contains
two copies of FreeRTOS; both of them are used. Additionally,
the analyzed applications are rather small in its code size. We
see a threat to validity of ARA’s analysis results, that we want
to address in our future work with the evaluation of more and
larger applications.

ARA considers only interactions that involve the RTOS. For
example, ARA does not detect an communication via shared
memory like the bounded buffer in Listing 1. Since our main
goal is a knowledge gain for RTOS specialization, this is not a
limitation. While ARA currently only supports FreeRTOS and
OSEK, we plan to extend it to more RTOS APIs.

B. Advantages
Application overview is given by a good visualization of the
system composition. This is on the one hand useful to get
an overview of the developer’s own application as seen by a
machine. Often, applications are developed with a program-
design model in mind. The instance graph can be used as
visualization of this model and prove that it was actually
implemented. If the model gets outdated in further development,
ARA can serve as a tool to retrieve it in an automated manner.
On the other hand, the instance graph is useful as program-
design documentation for external developers. Especially for big
code bases, it provides the unexperienced developer a compact
overview about system composition so she is able to quickly
find parts in the source code that are responsible for an observed
behavior. ARA is a tool to generate this design document in
an automated manner and can, therefore, be integrated into the
continuous integration (CI).
Application verification is provided by automatic checks.
With knowledge about used operating system (OS) abstractions,
ARA is able to check for their correct usage. To demonstrate
this, we have implemented two verifications in ARA. The first
one checks if an ISR in FreeRTOS only uses ISR-enabled
system calls. The second one verifies if system calls to enter
and exit a critical region always occur pairwise. Automatic
lock verification is a topic of ongoing research [13], [16], [15],
[9]. Our approach does not try to verify correct lock usage,
but it is able to detect lock misuse. Given the already retrieved
instance graph, these checks are easy to implement. Again, this
functionality of ARA is useful for a CI process.
Knowledge gain for specialization is achieved in an auto-
mated manner. Instance knowledge at compile time can
be used to create a specialized variant of the underlying
RTOS. For example, instances can be statically initialized and
preallocated at compile time. More efficient data structures
(like arrays instead of lists) can be used when the number of
instances is known. Algorithms can be improved when the
communicating instances are known beforehand. For example,
queue synchronization can be reduced if only one producer
and one consumer is detected.
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VII. RELATED WORK

There are several other solutions to statically extract the
application knowledge that is required to specialize the RTOS.
Bertran et al. [4] track – based on the binary application image
– those control system that cross the system-call boundary and
eliminate dead system- and library calls from Linux and L4.
However, they do not extract instance knowledge or try to
interpret the system calls. In [7], we built the global control
flow graph (GCFG), which we used for excessive system-call
specialization. However, the GCFG captures the system only
on a flow-sensitive interaction level (instead of the feature and
instance level), proved to be computationally more expensive
than ARA, and was only implemented for OSEK. Schirmeier
et al. [21] transform the CFG in Kripke structures to be able
to apply model checking in computational temporal logic
(CTL) for patterns that lead to an automatic OS configuration.
They apply the method to eCos and its powerful configuration
framework. While CTL may be usable to extract instances, the
authors aim to use eCos’ existing configuration framework and
do not try to extract instances or interactions.

A classical approach to document a program structure
are UML diagrams. With StarUML [22], BOUML [6], and
ArgoUML [1] several tools exist to automate the diagram
generation by performing a static analysis on the application
source code. Class diagrams are another program-structure vi-
sualization, as generated by Structurizr [24], Structure101 [23],
NDepend [17], or Doxygen [8] in an automated fashion.
However, all these tools extract no instance knowledge, are
control-flow agnostic, and do not consider the RTOS.

Especially for the RTOS domain, several tools like Grasp [12]
and Tracealyzer [25] exist that retrieve information from the
real-time system to show timing behavior of RTOS instances.
Therefore, they build an implicit form of an instance graph but
with focus on actual execution times. Nevertheless, they use
tracing information to retrieve instances and timing behavior
and do not perform any form of static analysis. As a result,
they only retrieve all actual executed instances. Instances that
are defined in the application but not executed in the trace are
not retrieved.

VIII. CONCLUSION

In this paper, we have presented the instance graph, which
is capable of describing all instances of RTOS abstractions
together with their interactions. With ARA, we presented a tool
to automatically generate an instance graph for applications
written against the FreeRTOS or the OSEK API.

We validated the correctness of ARA with four real-world
applications and compared the automatically extracted instances
graphs to manually extracted knowledge. While having limi-
tations, mainly stemming from the value analysis, ARA was
able to recognize all instances and most of its interactions.
We have discussed the utility of the instance graph to assist
programmers during the application development, to provide
an knowledge base for further static analyses, and to foster
further RTOS specialization.
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IX. APPENDIX

In the following, the instance graphs of all tested real-world examples are shown. We decided to present them here exactly as
generated by ARA. Due to their size, they are probably difficult to read on printed paper but, of course, zoomable in digital form.
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Fig. 4: GPSLogger
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Fig. 7: I4Copter without Events
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