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Abstract
System software, such as the Linux kernel, typically pro-

vides a high degree of versatility by means of static and dy-

namic variability. While static variability can be completely

resolved at compile time, dynamic variation points come at

a cost arising from extra tests and branches in the control

flow. Kernel developers use it (a) only sparingly and (b) try

to mitigate its overhead by run-time binary code patching,

for which several problem/architecture-specific mechanisms

have become part of the kernel.

We think that means for highly efficient dynamic variabil-

ity should be provided by the language and compiler instead

and present multiverse, an extension to the C programming

language and the GNU C compiler for this purpose. Mul-

tiverse is easy to apply and targets program-global config-

uration switches in the form of (de-)activatable features,

integer-valued configurations, and rarely-changing program

modes. At run time, multiverse removes the overhead of eval-

uating them on every invocation. Microbenchmark results

from applying multiverse to performance-critical features

of the Linux kernel, cPython, the musl C-library and GNU

grep show that multiverse can not only replace and unify the

existing mechanisms for run-time code patching, but may in

some cases even improve their performance by adding new

dynamic variability options.
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1 Introduction
The Linux kernel is known for its versatility with support for

32 architectures (v4.16.7) and application to a broad range

of domains from small embedded systems up to supercom-

puters. Most of this flexibility is provided by means of static
variability: More than 17 000 Kconfig options influence the

code generation in the Kbuild build system and, on finer

granularity, via the C preprocessor.

A Static Binding

C Multiverse

inline
void spin_irq_lock(raw_spinlock_t *lock) {
#ifdef CONFIG_SMP

irq_disable();
spin_acquire(&lock);

#else
irq_disable();

#endif
}

inline
{+ __attribute__((multiverse)) +}
void spin_irq_lock(raw_spinlock_t *lock) {
if (config_smp) {
irq_disable();
spin_acquire(&lock);

} else {
irq_disable();

}
}

B Dynamic Binding

[avg. cycles] A B C

SMP=false 6.64 9.75 7.48
SMP=true 28.82 28.91 28.86

Figure 1. Impact of static, dynamic, and multiversed vari-

ability in a (slightly simplified) Linux spinlock.

Take CONFIG_SMP in Figure 1.A as an example, a feature

flag for the kernel’s symmetric multiprocessor (SMP) system

support. Here, it controls the conditional acquisition of a

spinlock in spin_irq_lock(), a function used inside low-level

kernel code for interrupt synchronization. By omitting the

spinlock acquisition if not needed (i.e., in a uniprocessor (UP)
system), the run time of this performance-sensitive opera-

tion could be reduced from 28.82 to 6.64 cycles on average.

However, to yield these benefits, it has to be decided at com-

pile time that the kernel is supposed to run on UP systems

only, which in practice prevents all major Linux distributions

from exploiting the option. The SMP configuration is more

general, and multicore hardware appears to be “standard

anyway” – a perception that is not necessarily true: Even

on multicore hardware, the system may utilize only a single

CPU most of the time to save energy. Low-cost virtual ma-

chines offered by cloud providers typically provide only a

single CPU (but of course, more CPUs could be added later at

run time for extra money). Such systems might even switch

from UP to SMP and back to UP at run time.
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Figure 1.B shows an alternative implementation using

dynamic variability that would make it possible to support

UP and SMP systems with the same implementation: In this

setting, config_smp has become a global integer variable that

is set at early boot time and expected to change only rarely

at run time. The spin_irq_lock() implementation, however,

has to check it on each invocation to decide if taking the

extra spinlock is required or not. While this seems to reduce

the run time in the UP case to 9.75 cycles at no extra cost

for the SMP case, the numbers from Figure 1 reflect only

the microbenchmark situation with a warm branch target

buffer (BTB). In real kernel execution paths, the induced

branch has a high chance to be mispredicted, which causes

a penalty of 15–20 cycles
1
that would effectively kill the

possible benefit. Kernel developers are aware of the costs of

extra branches and avoid them as far as possible in critical

paths.

With multiverse, it becomes possible to provide such dy-

namic variability without the extra branching costs bymeans

of partial specialization and run-time binary patching. This

is sketched in Figure 1.C: In a nutshell, the programmer just

has to mark the spin_irq_lock() function and the config_smp

variable (not shown) with an additional attribute; the GNU

C compiler (GCC) then generates additional specialized ver-

sions of the function for config_smp = {0, 1} that omit the ex-

tra test and, thus, any potential penalty from branch mispre-

diction. At run time, these special versions (multiverses) can

be patched or even inlined into all call sites of spin_irq_lock()

when the value of config_smp changes. Thereby, multiverse,

in this case, effectively combines the performance of static

variability (case A) with the flexibility of dynamic variability

(case B). Compared to the #ifdef approach, the multiverse

solution has the additional benefit that every code path gets

compiled and statically checked.

1.1 Problem Statement
For the system-software developer, dynamic variability is a

double-edged sword. On the one hand, it enables the run-

time adaptation of the system to the actual environment

(such as availability of extra processor features), while on

the other hand, additional tests and branches affect the per-

formance on every invocation – even though configuration

decisions are rare events and in many cases occur only once

at boot time. In general, the issue is dealt with in three ways:

Avoidance – the induced overhead outweighs the po-

tential benefits. Example: The discussed spinlock im-

plementation.

Acceptance – the overhead is considered marginal in

comparison to the functional benefits. Example: Sup-

port for non-ascii search patterns in GNU grep.

1
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Mitigation – the overhead is too high, but the flexibility

is highly in need. Reduce the overhead by patching the

decision into the binary code. Example: alternative
macros in Linux to patch in processor-specific instruc-

tions.

In performance-critical parts of the code, Linux developers

either employ the avoidance or, if unavoidable, the mitiga-
tion strategy. In fact, for the latter the Linux kernel contains

several special-purpose mechanisms that all aim to mitigate

the costs of dynamic variability by patching the binary code:

The alternative and alternative_smp families of macros

are used to mark and align single instructions in the code

so that they can be overwritten by alternative instructions

later at boot time. For instance, the Supervisor Mode Access
Protection (SMAP) feature is deactivated at boot time by over-

writing it with nop instructions if the boot processor does not
support it. Xen paravirtualization [4] is supported by invok-

ing critical instructions (such as cli and sti) not directly,
but as PV-Ops – small functions – via a function pointer.

However, the kernel patches the code at boot time and re-

places the indirect calls by direct calls or even the respective

target instructions (i.e., performs some sort of function in-

lining). Besides this, also Ftrace, Ksplice [3], and kpatch [29]

bring their own code patching facilities to mitigate the costs

of dynamic branches at run time.

Overall, it is apparent that the existing mitigation mecha-

nisms based on binary code patching provide little reusability.

They are highly architecture-specific and tend to be tricky

to use, which increases long-term maintenance costs. Hence,

they are rarely used, and dynamic variability is often avoided

– or its overhead is simply accepted. We think that instead

of establishing dozens of home-grown binary code patch-

ing mechanisms, the necessary means to patch the code

for highly efficient dynamic variability should be provided

directly by the instance that knows it best – the compiler.

1.2 About This Paper
We present multiverse, an extension to the C programming

language and GCC, for exactly this purpose. Multiverse is

easy to apply to existing software and provides dynamic

variability via the well-known interface of conditional state-

ments and function pointers. At run time, multiverse re-

moves the overhead of evaluating them on every invocation.

We claim the following contributions:

1. The multiverse language as a minimally intrusive ex-

tension to the C programming language to express

dynamic variability (Section 2).

2. A compiler-assisted approach to ahead-of-time variant

generation (Section 3).

3. Run-time support for highly efficient function-level

binary-patching in both, user and kernel mode (Sec-

tion 4).
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We describe our implementation in Section 5. Our evaluation

results (Section 6) from applying multiverse to performance-

critical features of the Linux kernel, cPython, the musl C-

library, and GNU grep show that multiverse replaces and uni-

fies existing mitigation techniques for run-time code patch-

ing without any compromise on performance and makes it

easy to improve existing system software by new or more

efficient means for dynamic configuration. We discuss the

implications of multiverse in Section 7, present related work

in Section 8, and finally conclude our findings in Section 9.

2 The Multiverse Language Extension
With multiverse, we provide an extension to the C program-

ming language that enables the developer to express dynamic

variability in performance-critical paths. We target program-

global configuration switches in the form of (de-)activatable

features, integer-valued configurations, and rarely-changing

program modes. These switches can be used to change the

control- and data flow while multiverse removes the run-

time overhead of evaluating them on every invocation.

In order to decrease the initial hurdle for the developer

to use multiverse, we follow the principle of the least sur-

prise and keep close to the regular C semantic: (1) configu-

ration switches are annotated integer-like global variables

that can be read, used, and written like regular variables.

(2) performance-critical parts are explicitly annotated func-

tions and all introduced optimizations work on the granu-

larity of whole functions. (3) the developer has full control

over the multiverse run-time mechanism and the employed

binary patching must be invoked explicitly. All in all, multi-

verse keeps the program behavior (nearly) unchanged and

integrates seamlessly into the C language.

As the only extension to the C syntax, we added a dec-

laration attribute multiverse that can be added to global

variables and function definitions. Annotated global vari-

ables are treated as configuration switches, while annotated

functions are considered variation points where the switches

take effect. For our implementation, we restricted the possi-

ble variable types to signed and unsigned integer types, as

well as enumeration types. However, it should be possible

to extend multiverse to globally-defined records that act as

namespaces for configuration switches.

#define multiverse __attribute__ (( multiverse ))

multiverse int config_smp;

multiverse void spin_irq_lock () {...};

If the multiverse API is not invoked, the multiversed pro-

gram defaults to the usual execution, and all configuration

switches are evaluated dynamically. Only with an explicit

commit library call, we inspect the current assignment of all

configuration switches and choose pre-generated, optimized

variants for each annotated function. The selected variants

are then installed in the running process image via binary

int multiverse_commit(void)

Inspect all multiversed variables, select optimized function

variants, and install them in the process.

int multiverse_revert(void)

Revert all modifications of the process image and use

generic function variant in all places.

int multiverse_commit_refs(void* variable)

int multiverse_revert_refs(void* variable)

Commit and revert functions that reference a variable.

int multiverse_commit_func(void* function)

int multiverse_revert_func(void* function)

Commit and revert a single function.

Table 1. The Multiverse API

patching such that these optimized variants are called from

now on. In the following listing, we select and install the

SMP variant for spin_irq_lock() and all other variation

points that depend on config_smp:

void hotplug_add_cpu () {

nrcpu ++;

config_smp = true;

multiverse_commit ();

}

With the commit, the semantic of the multiverse function

changes as they no longer dynamically evaluate the configu-

ration switch, but assume it to be constant. Hence, a change

in the configuration switch has no direct effect until the user

explicitly re-commits the change or requests that the binary

is reverted to the original, unmodified state. Multiverse guar-

antees that the currently committed function variant is called

under all circumstances – even through function pointers or

external calls (see Section 4).

Phrased more abstractly, we bind the functionality of the

variation point at the commit time, instead of binding it

at compile (#ifdef) or execution time (if()). Thereby, we
come close to the run-time benefits of static variability while

keeping the flexibility of dynamic variability. By default, we

bind all referenced configuration switches within a func-

tion at commit time. However, we also provide support for

binding a subset of the referenced variables for individual

functions.

Table 1 gives an overview of the provided multiverse

API. In addition to the universal commit and revert

functions, which affect all multiversed functions in the

program, there are more constrained alternatives. The

multiverse_{commit|revert}_func class of functions

only applies to a single function. The functions with the

ref suffix make it possible to update all functions that refer-

ence a particular configuration variable. In contrast to the
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multiverse bool A;
multiverse int B;

config.c

extern multiverse bool A;
extern multiverse int B;

multiverse void multi() {
if (A) {

calc();
if (B) {

log();
}

}
}

multi.c

extern multiverse void multi();

void foo() {
multi();

}

caller.c

void multi() { // Generic
if (A) {...}

}

void multi.A=1.B=0() {
calc();

}

void multi.A=1.B=1() {
calc();
log();

}

void multi.A=0.B=01() {
}

[{&A, .width=1, .signed=0},
{&B, .width=4, .signed=1}]

.section multiverse.variables

[{ .func=&multi, .variants=[,
{ &multi.A=1.B=0, .guard=[,

{ &A, .low=1, .high=1},
{ &B, .low=0, .high=0}

]},
{ &multi.A=1.B=1, .guard=[,

{ &A, .low=1, .high=1},
{ &B, .low=1, .high=1}

]},
{ &multi.A=1.B=01, .guard=[,

{ &A, .low=1, .high=1},
{ &B, .low=0, .high=1}

]},
}]

.section multiverse.functions

[{.caller=&foo, .callee=&multi,
.callsite_offset=14

}]

.section multiverse.callsites
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Figure 2. Ahead-of Time Variant and Descriptor Generation with the Multiverse Compiler Plugin. Besides the generic version

of multi(), four variants are initially generated. Since both function bodies for A=0 are equal after optimization, we merge

them and their descriptors. The generated descriptors reference the multiverse variables, functions, and relevant call sites and

are located in separate sections.

universal API calls, these constrained alternatives give the

developer fine-grained control over the patching state.

As multiverse hands over the explicit control over the

commit mechanism, it is the users’ responsibility to ensure

the program is in a patchable run-time state. In order to be

integratable into complex run-time environments, like the

Linux kernel, it is crucial to make the consistency model in-

dependent of the dynamic-variability mechanism. Therefore,

multiverse deliberately avoids synchronization. A transac-

tion pattern with an additional object-layout change might

look like this:

void subsystem_set_config(bool _A, bool _B) {

wait_sync_and_lock (& subsystem );

A = _A; multiverse_commit_refs (&A);

B = _B; multiverse_commit_refs (&B);

translate_objects (& subsystem );

unlock (& subsystem );

}

Summarized, multiverse collects annotated configuration

switches and generates specialized function variants with a

compiler plugin. We remove the run-time penalty for evalu-

ating the switches by binary patching (or even inlining) the

variants into the call sites.

3 Ahead-of-time Variant Generation
Multiverse is split into two parts: the generation of variants

with bound configuration switching and installing the vari-

ants according to the current configuration. For multiverse,

we decided to do the variant generation as a compiler plugin,

since there we already have a rich code-analysis and opti-

mization machinery at hand. Thereby, we also avoid the re-

quirement for a run-time code-generation framework, which

should ease the acceptance within conservative system-level

software projects, like the Linux kernel. Only a small run-

time library (see Section 4) is required for the binary patching.

Due to the compiler integration, we can also provide more

reliable information for binary patching than other ad-hoc

mechanisms that utilize inline assembler (see Section 1.1).

The compiler plugin works in four phases at different

points in the code analysis and generation: (1) collect con-

figuration switches and their value domains; (2) clone and

specialize annotated function bodies for the cross product

of all referenced switches; (3) merge function bodies that

become equal after optimization; (4) generate descriptors

used by the run-time library for configuration switches, vari-

ants, and call sites. In Figure 2, we give an overview of the

variant-generation results.

First, the plugin identifies all variables that are annotated

with the multiverse attribute as configuration switches, and

we decide on a domain of values for which we want to gen-

erate variants. For integer-typed variables, we default to 0

and 1 as they act as the different boolean values in C (see
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stdbool.h). For enumeration types, we choose all declared

enumeration items as specialization values. Besides these

default policies, we also provide an extended syntax for the

multiverse attribute, where the user can explicitly set the

domain of a configuration switch. In Figure 2, we can iden-

tify two configuration switches A and B, which have both

the domain {0, 1}.
After the immediate-code generation, but before the opti-

mization passes, we generate the different variants for every

defined and annotated function. For that, we inspect all refer-

ences to global variables in the function body and calculate

a set of the used configuration switches. We build the cross

product of the domains of the switches and clone the generic

function body once for every possible assignment. For each

clone, we replace each read of a switch with the constant

value from the assignment and emit a warning if a switch

is written. Furthermore, we rename all clones and mark the

generic variant as non-inlineable to avoid the uncontrolled

spread of configuration-switch dependent code. We will dis-

cuss the topic of variant explosion, which stems from the

value cross product, in Section 7.

Since we did the value replacement before the compiler’s

optimization passes, the function variants are optimized per-

fectly for their configuration assignment. Of special effec-

tiveness are the constant propagation, constant folding, and

dead-code elimination as they directly benefit from the in-

troduced constants. Due to the optimization, some cloned

function bodies become equal, and we can discard all but one

variant to save space. In Figure 2, the assignmentA = 0,B = 0

and A = 0,B = 1 result in the same (empty) function body

of multi(), and we have to keep only one variant.

Besides the code for generic functions and the optimized

variants, we also generate descriptors for variables, functions,

and call sites that hold important information for the run-

time library (see Figure 2). For each configuration switch,

we record the variable address, its width in bytes, and its

signedness such that the run-time library can inspect the

current value. For each annotated function, we record the

address of the generic function and all variants. We also

record a guarding expression over the configuration switches

that indicates for which assignment a variant is usable. In

the guarding expression we use value ranges ([.low, .high])
instead of single values to be able to cover multiple merged

variants (see multi.A=1.B=01).
With the third class of descriptors, we collect information

about every call site in the program that references a multi-

versed function. For that, we hook into the code-generating

compiler backend to place a label exactly at the emitted call

instruction and reference it from the call-site descriptor. Mul-

tiverse is limited to the call sites that the compiler is able

to see. This precludes indirect calls via function pointers

and calls from assembly or other foreign languages without

multiverse support.

multi:
push rbp
mov rbp, rsp
...

foo:
push rbp
mov rbp, rsp
call multi
pop rbp
ret

Initially Loaded Binary

(a)

multi:
jmp multi.A=1.B=0
...

foo:
push rbp
mov rbp, rsp

call multi.A=1.B=0
pop rbp
ret

A=1, B=0

(b)

multi:
jmp multi.A=0.B=01
...

foo:
push rbp
mov rbp, rsp
nop

pop rbp
ret

A=0, B=1

(c)

multi:
push rbp

mov rbp, rsp
...

foo:
push rbp
mov rbp, rsp

call multi
pop rbp
ret

A=3, B=4

(d)

multiverse_commit_fn(&multi)

Figure 3. Binary Patching Mechanism. After writing the

multiverse variables, the user must explicitly trigger the

reconfiguration of the text segment via the multiverse API.

If the run-time library does not find a valid variant, the text

segment is reverted to the initial state (d).

4 Late Feature Binding via Binary Patching
The multiverse run-time library is a light-weight binary-

patching mechanism that interprets the provided descriptors,

selects variants, and installs them into the running process

image. For this, it patches a concrete variant into the call

sites and the address of the generic function. Figure 3 shows

different text-segment configurations for the example in

Figure 2.

For the commit, the run time inspects the configuration

switches for their values and searches a viable function vari-

ant where all guard expressions are fulfilled. If no suitable

function variant is found, we use the generic function, which

still exhibits the correct behavior for the current value (see

Figure 3 d). Since the generic variant lacks the being-bound

semantic, we signal this situation to the user.

After a function is selected for installment, we inspect its

call sites, check if they point to a expected call target, make

the code location writable, and insert the new call target (see

Figure 3 b). In order to force all function pointers and calls

from assembly or foreign languages to execute the selected

variant, we save the first bytes of the generic variant and

overwrite it with an unconditional jump. If the user wants to

revert the changes, we restore this overwritten prologue and
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install the generic function in the call sites. After all changes

to the text segment are done, we undo our write-permission

changes and flush the instruction cache for the respective

locations.

While the described mechanism already fulfills the multi-

verse semantic, we added a few optimizations and extensions

that increase the utility of multiverse. First of all, the library

detects if the function body of a variant is smaller than a

call instruction, and we inline the body directly into the call

site.
2
Thereby, we remove all function-call overheads and

are able to eradicate empty function bodies completely by

inserting a suitably large nop instruction (see Figure 3 c).

Since the run-time library already includes a binary patch-

ingmechanism,we extended the approach to capture another

commonly-used form of dynamic variability where the vari-

ant generation is done manually by the developer: function

pointers. For this, we also allow function pointers to be at-

tributed as configuration switches such that the compiler

plugin records all call sites. When such a function pointer

is committed, we reuse the patching mechanism to insert it

into the call sites.

5 Implementation Caveats
In this section, we report on technical details of the compiler

plugin and the run-time library that do not influence the

general operation of multiverse but are important for its

actual application.

As C projects normally use separated compilation, we

have to handle multiple translation units where variable

and function definitions, and the call sites can be located

in different source files. To keep the multiverse semantic

over all object files, we demand that the attribute is added to

the declaration (in the header file), such that the compiler

knows for every occurrence of a function or variable that it

is multiversed.

In order to collect the descriptors from different transla-

tion units, we use a separate binary section per descriptor

type. Since the linker concatenates all sections with the same

name from different objects, we can address the descriptors

as a regular array. Furthermore, since we use the address-of

operator in the descriptors, the compiler emits relocation

entries and the linker (or loader) injects the actual numeri-

cal addresses. Thereby, we get support for relocatable and

position-independent code for free. However, our current

implementation does not support dynamic linking since we

only inspect the descriptors of the binary itself. Nevertheless,

there is no general problem in inspecting also the descriptors

of all dynamically loaded modules.

Since we want to provide a unified binary-patching mech-

anism for function-level dynamic variability, the portability

of multiverse is an important aspect. Hence, we separated

the architecture-dependent functions (e.g., call-site patching,

2
On IA-32, a far-call site is 5 bytes large.

short function-body detection) and the platform-dependent

functions (e.g., memory allocation, changing code protection)

from the rest of the library. All in all, the whole run-time

library consists of less than 850 lines of code. We currently

support binary patching for IA-32/AMD64 (130 lines) and

work on support for ARM. As platforms, we currently sup-

port the Linux user space (41 lines), the Linux kernel (63 lines)

including the early boot, and the OctopOS [26] research op-

erating system (49 lines).

The run-time library compiles down to 6.5 KiB code for

AMD64/Linux user. For the descriptors, we add 32 bytes for

every configuration switch, 16 bytes for every call site, and

(48 + #variants · (32 + #guards · 16)) bytes per multiversed

function to the binary.

The compiler part is implemented as a GCC plugin
3
and

is tested for version 6.3 to 8.2. It works with the shipped

Ubuntu and Debian Unstable GCC packages. While we tested

the plugin only for IA-32/AMD64 and ARM code, we are

confident in the portability as there is no platform specific

code in the plugin since we operate on the architecture-

independent intermediate representations of GCC (GIMPLE,

RTL). In total, the GCC plugin consists of 2439 lines of code,

whereby 1289 lines are located in GCC compatibility headers

that we inherited from the Linux kernel.

6 Evaluation
In order to evaluate our approach in the kernel-space and

user-space, we applied multiverse in different places in the

Linux kernel and in cPython, the musl C library, and GNU

grep.We usedmicrobenchmarks tomeasure the performance

of multiversed variation points. In this section we report on

the integration of multiverse in these codebases and present

our benchmark results.

6.1 Lock Elision and Paravirtual Operations
In the Linux kernel, we appliedmultiverse in two places: spin-

locks and paravirtual operations. Both are already targeted

by variability management (static or dynamic). Also, both

mechanisms are known to have a considerable performance

impact and thus are heavily optimized. This makes them

perfectly suitable to assess the applicability of multiverse

and its possible performance benefits.

We chose microbenchmarks to measure the performance

changes caused by our modifications. This decision is based

on the assumption that possible performance benefits will be

rather small and thus difficult to observe in the ambient noise

of an application-level benchmark. Besides this, our changes

are applied to an already strongly optimized codebase. The

measurements were performed on a recent desktop com-

puter equipped with an Intel
®
i5-7400 CPU. On the software

side we worked with the stable Linux kernel version 4.16.7

3
Source code is available as free software at:

https://github.com/luhsra/multiverse
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Figure 4. Average Run time (n=100 million) for spinlocks

(lock+unlock) and paravirtual operations (sti+cli) with dif-

ferent elision and patching mechanisms.

and with GCC 7.3.0. We used the processor-local Time-stamp

Counter (TSC) to capture the execution timewith a high accu-

racy and minimal disturbance. The TSC provides a resolution

similar to the processor’s maximum frequency [19, p. 17-42].

Its value can be retrieved with a single machine instruction

(rdtsc). We used the Linux rdtsc_ordered function, which
combines the instruction with an appropriate memory fence

(as suggested in Intel’s Developer’s Manual [19, p. 4-541])

to prevent inaccurate time-stamps caused by out-of-order

execution. For each measurement we recorded 1 million sam-

ples, each consisting of 100 calls to the respective functions.

In all result sets a small amount (not exceeding 0.04%) of

clearly distinguishable outliers could be observed, presum-

ably attributable to the occurrence of processor interrupts

during measurement. These outliers were excluded in the

evaluation.

In the case of lock elision, we transformed a build-time

configuration switch to a run-time variation point (see Fig-

ure 1). We measured the spinlock functions in four different

kernel variants: (1) the unmodified mainline kernel with an

SMP-capable configuration without lock elision as used in

all major Linux distributions, (2) a modified kernel with lock

elision through control flow branching, (3) a modified kernel

with multiverse-enabled lock elision, (4) the mainline kernel

configured without SMP capability (which results in static

lock elision). Each kernel variant was benchmarked in uni-

core (UP) mode and once again in multicore (SMP) mode –

except kernel no. 4, which is statically determined to UP. The

measurements are performed after the startup stage of the

kernel, shortly before the invocation of the first user-space

process. This point was chosen to minimize the interference

with other system activities.

Figure 4 shows the average CPU cycle count that it takes

to acquire and release a spinlock in each of the variants. In

the multicore case the measurements reveal no significant

difference between the three SMP-capable kernels. Regard-

ing the mainline kernel and the multiversed kernel, this is

consistent with our expectations as these two candidates

should virtually run the same code. In this scenario, the pres-

ence of an additional control flow branch does not make

the spinlock code in the modified non-multiverse kernel run

measurably slower. As already stated (see Section 1), the rea-

son for this lies in our microbenchmarking setup, which runs

repeated invocations in a tight loop, resulting in a favorable

situation for branch prediction techniques. When looking at

the unicore results, we observe considerable differences be-

tween the candidates. The statically tailored UP kernel yields

the best benchmark results, followed by the multiversed ker-

nel, which is roughly twice as fast (in regard to spinlock

functions) as the mainline SMP kernel. The modified non-

multiverse kernel scores better than the mainline kernel but

is significantly slower than its multiversed counterpart.

Multiverse prevents the compiler from inlining the generic

variant. This could be a performance drawback. However,

Linux kernel spinlocks are usually not inlined, despite in

some rare cases where this is explicitly turned on.

Apart from the benchmark results, our kernel with mul-

tiversed spinlocks showed no errors or misbehavior during

normal use. Multiverse records 1161 call sites of spinlock

functions. Patching all these call sites takes approximately

16 milliseconds. Looking at the zipped kernel image, the total

increase in size is 40 KiB, compared to the mainline kernel

with the same configuration (total size: ∼10 MiB).

In the area of paravirtualization, the Linux kernel is al-

ready equipped with a binary-patching mechanism. To be

able to run as a paravirtualized guest, privileged operations

have to be replaced by appropriate hypercalls, matching the

hypervisor’s interface. In the x86 architecture, Linux encap-

sulates all sensitive operations in a common interface that is

implemented by the different hypervisor adaptions [32]. The

set of these operations is referred to as operations for paravir-

tualized kernels (PV-Ops). PV-Ops are realized as function

pointers. Depending on whether the kernel is running on

real hardware or in a paravirtualized environment, appropri-

ate implementations are assigned to these function pointers.

They either implement the native operation or perform a

call to a specific hypervisor.
4
This approach allows the use

of the same kernel binary on native hardware and in paravir-

tualized environments alike. Due to performance issues with

heavily used PV-Ops like interrupt enable/disable, the vari-

ability approach has been equipped with a binary patching

facility to replace the indirect invocations with direct calls

during run time. From a technical perspective the binary

patching mechanism is similar to the one that multiverse im-

plements. The approach is also capable of inlining function

bodies in some special cases, and it also uses an ELF section

4
LKML: Chris Wright. “[PATCH 0/7] x86 paravirtualization infrastructure“

https://lkml.org/lkml/2006/10/28/191
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to store information on patch-sites. Unlike multiverse, the

PV-Ops patching mechanism does not come with a compiler

extension. Therefore, every call to a PV-Op function pointer

has to be manually wrapped inside a preprocessor macro,

which generates the necessary inline assembler directives to

record the call site’s metadata.

We multiversed two PV-Ops: enable interrupts and dis-
able interrupts (sti and cli). To evaluate the impact of this

modification, three benchmarking kernels were built: (1) an

unmodified baseline kernel with PV-Ops patching, (2) a mod-

ified kernel with multiversed interrupt operations, and (3) an

unmodified kernel with statically disabled paravirtualization

support (which causes all PV-Ops to be statically determined

to use the native operations). We benchmarked the kernels

on bare metal and as paravirtualized guests running inside

the XEN hypervisor.
5
Figure 4 shows the benchmark results.

In the non-virtualized environment, all the three candidates

appear to perform similarly. The two dynamic kernels (1)

and (2) are not worse than the kernel with statically disabled

paravirtualization. The reason is that both patching mecha-

nisms (current and multiverse) are capable of inlining these

simple function bodies (consisting of a single sti or cli
instruction) into the call site.

In the paravirtualized environment, the microbenchmark

results show a difference between the baseline and the mul-

tiversed kernel. The reason for this is the usage of a custom

calling convention in the current PV-Ops implementation,

which has no volatile (or scratch) registers, i.e. all registers

have to be saved and restored by the callee. Thus, if the reg-

ister pressure on the caller side is low, a lot of unnecessary

store and load operations are performed. Apparently, this

is the case in our microbenchmarking code and the multi-

versed candidate, which uses the standard calling convention,

is faster. In general, it is beneficial to integrate the variant

generation into the compiler and let it handle the low-level

details, such as calling convention, instead of implementing

them manually. We assume that multiverse could fully re-

place the current PV-Ops mechanism without performance

loss.

6.2 User-Level Case Studies
In order to demonstrate its broad applicability, we report on

the integration of multiverse into three important user-space

source-code bases: cPython (version 3.6.6), the musl C library

(version 1.1.20), and GNU grep (version 3.1). For each project,

we manually chose existing configuration switches and vari-

ation points that we multiversed, and measured the run-time

impact with microbenchmarks. We used GCC version 8.2.0

to compile the assessed software projects. Each program was

built with its default compile flags and configuration.

5http://www.xenproject.org
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Figure 5. Improvements for the musl C library. Accumu-

lated run time for 10 million invocations if musl is in single-

threaded (left) or in multi-threaded (right) mode.

6.2.1 CPython
For cPython, we identified the boolean enable flag in the

garbage collector as a good potential multiverse candi-

date, as it is only modified through API calls (gc.enable(),
gc.disable()) and influences the object-allocation path

(_PyObject_GC_Alloc()). For the multiverse application,

we modified 12 source-code lines in a single file. Although

we intensely tried to minimize any jitter (compile benchmark

into interpreter, use Linux single user mode, core pinning,

real-time priority), we could not produce stable results (not

even for the unmodified baseline). Therefore, we cannot

report on a significant influence of multiverse on the object-

allocation time for cPython.

6.2.2 musl C Library
In the musl C library, an alternative implementation of

the C standard library, we multiversed the locking mech-

anisms that ensure POSIX semantics in multi-threaded pro-

cesses. For that, we extend the normal (owner-less) spin-

lock (__lock()) and the (owned) stdio file-object locking

(__lockfile()) such that we skip the lock if only one thread
is running. To detect the single-threaded situation, we use

the existing threads_minus_1 integer variable that musl

keeps up-to-date with every pthread_{create,exit}().
We mark it as a configuration switch, annotate the

lock and unlock functions as variation points, and call

multiverse_commit() before/after the second thread is

spawned/has exited. Thereby, the multi-threaded but multi-

versed scenario remains equal to the unmodified musl stan-

dard codebase. Overall, we had to change 67 source-code

lines and 10 files.

We quantify the run-time impact on three C library func-

tions with microbenchmarks that run the function 10 million

times in a tight loop. We measure the whole benchmark

program, including the overhead introduced by multiverse,

with the perf stat tool, which is provided by Linux. In

Figure 5, we show the average and the standard deviation

8
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for 10 000 runs. The benchmarks were performed on an

Intel
®
i5-6400 processor in the Linux single user mode on an

Ubuntu 18.04. In order to minimize interference with other

processes, we pinned the benchmark process to a single CPU

and executed it with the highest real-time priority. We ran

the benchmark in single-threaded or in multi-threaded mode

(threads_minus_1 ∈ {0, 1}) and without/with a multiverse

commit. As malloc(0) is a special case in the specification

(it can return NULL), we show results for the arguments 0

and 1.

In Figure 5 (right), we see that the removal of the early

return by multiverse has only a minor impact on the multi-

threaded scenario. However, for the single-threaded sce-

nario, we see an immense impact of multiverse on all three

functions that ranges from −43 (random()) to −54 percent

(malloc(1)). For fputc(), which emits one byte per func-

tion invocation, we achieve an increase in output bandwidth

from 124MiB/s to 264MiB/s. The impact of multiverse stems

from call-site inlining and the thereby reduced number of

branches (−40 % in the case of malloc(1)).

6.2.3 GNU Grep
GNU grep is a broadly used tool to search for regular expres-

sions in text files. We identified a mode variable that affects

the inner matching loop as a potential multiverse candidate:

At start, grep decides upon the current language settings

(i.e., locale) and the search pattern, whether the matching al-

gorithm has to take care of multi-byte characters (i.e., UTF-8)

or not. Since this mode is fixed after the setup is done, we can

commit the specialized matching algorithm with multiverse.

In total, we changed 50 source-code lines in 4 files.

We performed an end-to-end measurement for the run

time of grep with the same hardware setup as for the musl C

library. We invoked grep with the search pattern “a.a” on a

2 GiB large file of hexadecimal-formatted random numbers

and measured its run time with perf. The processed file was

placed in a virtual RAM drive (ramdisk) to ensure that the

workload is CPU-bound. Averaged over 100 measurements,

multiversing the mode variable reduces the overall run time

by 2.73 percent (7.84±0.01 s→ 7.63±0.01 s). Given the rele-

vance and maturity of grep, we can assume its inner loop to

be a well crafted and optimized piece of software; therefore,

we consider the impact of multiverse as a noteworthy result.

7 Discussion
7.1 Design of the Patching Mechanism
Wedecided to implementmultiverse’s variability on function-

level granularity. This has several advantages. It makes the

patching process during run time very simple and robust

because it basically consists of replacing a single call instruc-

tion. There is no need to perform complex binary decoding

and run-time code generation. It also facilitates multiverse’s

hybrid approach with pre-compiled variants, which gives

us the advantages of an ahead-of-time compiler despite the

usage of run-time variability. Another important point is

that function-level granularity offers great flexibility: There

is no space limit or functionality restriction for variants.

The big threat arising from a function-level approach is

the possibility of combinatorial explosion. This can easily

happen when multiple multiversed configuration variables

are referenced in a function. In many cases, however, it is not

necessary to generate all possible variants, but only those

with a clear influence on performance. The generic version

of a function can still be used in all other cases. So our mit-

igation to combinatorial explosion is to give the developer

fine-grained control over which variants are generated: The

domain of a configuration variable can be explicitly speci-

fied (see Section 3). In addition, multiverse supports partially

specialized function variants in which only some of the ref-

erenced configuration variables are fixed to a constant value.

Another design choice of multiverse is the usage of call-

site patching to install variants. As an alternative we also

considered body patching, that is replacing the function body

with the to-be-installed variant instead of modifying the call

sites. Body patching would be faster and would make it un-

necessary to record the call sites. The main point against

it is that it would require the multiverse support library to

relocate variant bodies. This would cause a significant com-

plexity increase of the library and thus contradicts our con-

cept of a compiler-based approach with a small and simple

run-time system. Also, in our opinion, the speed of patch-

ing is not crucial to overall performance, as changes to the

configuration variables are rare and are executed relatively

fast anyway – even with many call sites (see Section 6.1).

Apart from that, the current patching mechanism allows the

inlining of simple bodies into the call site, which in some

cases leads to a huge performance improvement. Run-time

body inlining could even be expanded in future versions by

adjusting the sizes of call sites in certain cases to allow the

inlining of larger bodies. Of course, there is always a trade-

off between sophisticated body-inlining capabilities and the

simplicity of the run-time library.

On the other hand, we chose to disallow the compiler to

perform inline expansion on multiversed functions; more

specifically, on the generic variant (see Section 3). This is a

conscious choice as functions that have inlined a multiverse

function would have an unclear semantic. Furthermore, pro-

hibiting inlining stops the uncontrolled spread of multiverse-

variable references throughout the binary, which makes it

easier for the user of multiverse to ensure the system is in a

patchable state. Also, function boundaries limit the number

of multiverse variables and thus the number of generated

variants.

All optimizations other than inline expansion are applied

to multiverse functions (generic and specialized variants).

Of course, the prohibition of inlining may have a negative

impact on performance. In general, inline expansion can
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improve execution speed in two ways: It removes the call

overhead and allows further optimizations due to now larger

function bodies [10]. Especially the more comprehensive op-

timization scope can be quite significant, depending on the

function that is to be inlined. However, during our evaluation,

we did not observe any conditions inwhich the overall perfor-

mance of multiversed functions deteriorated. In many cases,

inline expansion is not possible anyway, because caller and

callee are located in different compilation units (e.g., Linux

spinlocks). In some other situations, we observed that the

compiler does not choose to inline a specific function despite

the possibility to do so (e.g., grep).

7.2 Impact of Run-time Code Modification
Run-time binary patching enables multiverse to achieve a

performance close to static variability. Yet modifying the

text segment also entails some drawbacks and pitfalls. The

ability to perform binary patching requires a von Neumann

processor architecture. This prevents many small microcon-

trollers from using multiverse. Another requirement is that a

program is allowed to write to its text segment. While this is

usually prohibited by default, operating systems provide the

means to change the protection of memory regions through

system calls (POSIX
6
, Microsoft Windows

7
). This is neces-

sary for some widespread techniques, like just-in-time (JIT)

compilation or loading dynamic libraries during run time.

In principle multiverse should also work with BSD’s W^X
(Write xor Execute) security mechanism

8
where a memory

page cannot be executable and writable at the same time.

However, this worsens the synchronization problem: The

developer would have to ensure that no thread executes code

which is located in the affected pages during patching. Apart

from that, there are no further special prerequisites concern-

ing the execution environment. Other security mechanisms,

like ASLR do not interfere with multiverse. In order to mini-

mize security risks, multiverse makes the required memory

locations writable only during the patching process (see Sec-

tion 4). During normal operation the multiversed program is

protected. An attacker would have to tamper the multiverse

descriptors and interrupt the patching process in order to be

able to execute code. This already requires a certain degree

of control over the program. At this stage it would probably

be easier to invoke the respective protection system calls

directly.

An alternative to the usage of multiverse is the employ-

ment of ordinary function pointers to express dynamic vari-

ability. This eliminates the mentioned security risks and

removes the need for synchronization and the patching cost.

However, in comparison to function pointers, multiverse has

two main benefits: the compiler-assisted variant generation

6https://pubs.opengroup.org/onlinepubs/9699919799/functions/mprotect.html
7https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx
8https://www.openbsd.org/33.html
SELinux also implements this mechanism.

and the usage of direct calls. Automatic variant generation al-

lows expressing variability in a natural way (via conditional

statements) – yet multiverse is also compatible with vari-

ability via function pointers. The additional cost of indirect

calls is significant in various situations as we showed in our

evaluation.

Another impact of run-time code modification concerns

the use of debugging tools. We experienced that the min-

imally intrusive nature of multiverse mitigates the effects

on debuggers. In GDB, we observed that patched call sites

are not displayed correctly: It always shows the original call.

Nevertheless, it is possible to break and step into multiverse

variants as expected.

7.3 Potential of Protocol Violation
The patching process in multiverse must be initiated man-

ually by the developer via an explicit commit library call

(see Section 2). We are aware that this is a potential source

of bugs caused by missing commit calls. As an alternative,

we also considered an implicit approach where multiverse

would automatically detect a write to a configuration vari-

able and update the code accordingly. Though, this approach

is accompanied by other problems and disadvantages. Most

importantly, it is not always advisable to patch immediately

after every variable change. In some cases, the developer

might want to consolidate multiple writes and commit sev-

eral configuration variables changes at once, especially when

the program must apply some kind of synchronization mech-

anism. Furthermore, in C the compiler is not able to deduce

every write to a variable (e.g., certain indirect modifications

through pointers). This makes automatic change detection

incomplete and thus does not fully solve the problem of po-

tentially missing commits. Apart from that, the developer

may prefer to use multiverse’s functionality only selectively

in certain execution paths in the program. By making the

commits explicit, we follow the principle of minimal intru-

sion: The commit semantics aligns well with the design of the

C language, which is unsafe but in return very flexible. The

goal is to make multiverse usable in existing codebases with-

out enforcing code refactoring. Despite this, the developer

is free to use appropriate abstractions to prevent uninten-

tional behavior, for example by using accessor functions to

multiverse variables.

7.4 Soundness and Completeness
As we promise a defined semantic for multiversed functions,

soundness and completeness are important aspects: (Sound-

ness) As we generate the function variants by only replacing

variable reads with constants and use the compiler infrastruc-

ture for the optimization, the resulting functions have, for the

respective assignment, the same functionality as the original

function. Furthermore, if no specialized variant is present,

we fall back to calling the generic, un-specialized function.
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(Completeness) We inject an unconditional jump at the ad-

dress of the generic function (which will be revised when

multiverse reverts to the generic function, see Section 4).

Therefore, we will capture all invocations of the function,

also those that were made through function pointers, wild

pointer arithmetic, call instructions from the assembler, or

run-time generated code. For the aspect of completeness, the

collection and the patching of call sites is a mere optimiza-

tion.

Another general benefit of variability that is implemented

with regular control-flow statements instead of preprocessor

directives is the increased coverage of static code checkers.

As the preprocessor can remove code sections that are en-

closed with #ifdef, the compiler or another checker can

only emit warnings for the code that is included in the con-

figuration unless more complex checking strategies are em-

ployed [34, 20]. With control-flow–implemented variability,

the static analysis sees all branches at once and can report

errors and protocol violations.

7.5 Validity of Benchmark Measurments
In the kernel microbenchmarks we used the Time-stamp

Counter (TSC) to capture the execution time. On modern In-

tel processors this counter is incremented monotonously at a

constant rate which is close to the processor core’s maximum

frequency [19, p. 17-42]. In particular, this rate is indepen-

dent of the current core clock frequency that may change

from time to time. This is a threat to validity as the mea-

surements could be influenced by frequency changes during

the benchmarks. We mitigate this effect by performing a

high number of repetitions (1 million) and capturing mul-

tiple calls per sample (100). Our observations showed that

the measurements are quite stable. Furthermore, possible

frequency changes would affect all benchmarks equally. An

alternative to the use of TSC is the CPU_CLK_UNHALTED per-

formance counter, which is incremented in accordance to the

processor clock [19, p. 18-9]. However, this counter cannot

be retrieved inside a XEN guest due to the lack of privilege

in paravirtualization. For the spinlock benchmarks, we re-

peated the measurements using this performance counter

and obtained qualitatively similar results as with the TSC

method.

8 Related Work
On module granularity, dynamic code adaptation has a long

tradition in operating systems: From dynamic linking in

Multics [27] over dynamic module replacement in DAS [17],

restartable servers in Mach [1], Spinlets [7], and more, we

today find means for run-time loadable kernel modules in

basically any general-purpose operating system.

Newer approaches focus more on dynamic update tech-

niques which operate on a fine-granular level, (mostly) for

the purpose of run-time security fixes: Examples include

K42 [5, 6] and Proteos [16], for which run-time patching

has been a design goal from the very beginning, but also

more language-oriented approaches based on dynamic as-

pect weaving [13, 14, 33]. But also for existing systems, es-

pecially for Linux, several approaches have been suggested:

DynAMOS [21] provides means to update non-quiescent

functions, variables, and even datastructures in an unpre-

pared Linux kernel. LUCOS [9] provides similar features if

the kernel runs in a XEN VM. Ksplice [3], kGraft [28], and

kpatch [29] have been suggested for integration into the

kernel itself. Unlike earlier approaches, Ksplice analyzes run-

time updates at an object-code level, enabling automated

live-patch generation in many cases. A hybrid of kGraft

and Ksplice was finally integrated into the mainline ker-

nel. Binary patching is also used in tracing solutions, like

Ftrace in Linux. Dtrace [8], which can be used on multiple

systems (including BSD, Linux, and Windows), employs dy-

namic code rewriting to implement zero cost probes and

instrumentation without the need of prior static preparation.

Several further approaches target not the kernel, but user-

space programs [18, 2, 25]. Among them, Ginseng [25] has

many similarities to multiverse’s hybrid patching approach

in that it relies on the to-be-patched functions to be prepared

by the compiler with the help of programmer-provided code

annotations.

Multiverse, however, has a different scope than the men-

tioned mechanisms. Live-patching aims to install new code

into the system in arbitrary places, whereas multiverse’s goal

is to facilitate efficient run-time reconfiguration by using pre-

defined variants and patch points. Live-update approaches

are typically not capable of call-site patching. Instead, code

installation is achieved by using translation tables for patch-

able functions [5], introducing trampoline calls and redirec-

tion handlers [21, 9, 2, 25, 3] or replacing the entire text

section [18, 16]. Multiverse is more light-weight and avoids

this overhead by call-site patching, which makes it suitable

even for very low-level and performance-critical code, such

as an adaptable spinlock implementation. Windows dynamic

libraries [30] implement late binding by function prologue

patching, which is similar to what multiverse uses for redi-

recting indirect calls to the generic function.

The multiverse approach to install compiler-generated

configuration-optimized variants of kernel functions at run

time is closely related to in-kernel just-in-time compila-

tion (JIT) techniques. Synthesis [23, 22] adapts frequently

used kernel routines to their precise requirements at a spe-

cific system state by binding all known parameters and re-

compiling the code with an in-kernel C compiler. As with

multiverse, this results in a partially specialized and opti-

mized version of the kernel function. Recently, also the Linux

kernel introduced a JIT compiler with the Extended Berkely

Packet Filter (eBPF) [11]. This advanced form of the origi-

nal Berkely Packet Filter [24] has evolved into a universal

in-kernel virtual machine for kernel extensions [12]. eBPF

11



allows code to be dynamically attached to designated code

paths inside the kernel [15]. Due to its event-based nature,

eBPF is well suited for packet filtering, debugging, and anal-

ysis, but not as a general tool to facilitate dynamic variability

in all parts of the kernel, especially the low-level core ser-

vices. In general, JIT-based techniques are more flexible than

multiverse, as they can perform variant generation and vari-

ation point determination at run time. The downside is that

this requires a respective analysis framework plus an entire

compiler to become part of the run-time system. Further-

more, compilation at run time can take considerable time

and energy. The built-in compilers tend to produce less opti-

mized code than an external ahead-of-time compiler due to

the trade-off between compilation speed and optimization

level.

Another compiler-assisted approach to dynamic variabil-

ity management is the function multi-versioning (FMV) fea-

ture of GCC [31]. Like multiverse, it instructs the compiler to

generate versions of functions, in this case specialized for the

instruction-set extensions of different processor architecture

generations. Variant selection and call-site patching is per-

formed by the dynamic loader and cannot be overridden later.

In comparison to multiverse, FMV has a very narrow area of

application and is not able to handle generic functionality

variation.

Finally, there are the existing special-purpose patching

mechanisms in the Linux kernel (see Section 1 and 6). PV-Ops

and the alternative/alternative_smp families of macros

let the compiler do the variant and metadata generation

through an elaborate combination of the C preprocessor,

inline assembly statements and assembler directives. Variant

determination and patching is done during early boot time.

However, these solutions are not generalizable and difficult to

maintain. Multiverse, in contrast, delegates the architecture-

dependent part to the compiler and comes with an easy to

use language interface to define variation points.

9 Conclusion
Efficient run-time variability is still an insufficiently re-

searched area. Previous work often involves invasive inter-

vention in programming and design paradigms or requires

complex run-time environments. In real-world system soft-

ware, dynamic variability is either avoided, realized with

overhead or implemented by special-purpose binary patch-

ing mechanisms. With multiverse we provide an extension

to the C language to efficiently handle dynamic variability by

means of binary patching with compiler assistance. Unlike

previous work, we focus on a minimally intrusive mecha-

nism that is easy to integrate into legacy code bases. In our

tests, the usage of multiverse was possible without any diffi-

culty in kernel-space (lock elision & PV-Ops) as well as in

user-space (cPython, musl C-library & GNU grep). Bench-

mark results certify a performance benefit in many cases and

show that multiverse is able to compete with existing special-

purpose binary patching mechanisms. The main objective

of multiverse is to narrow the gap between dynamic and

static variability by allowing the developer to easily employ

run-time configurability at zero or low cost.
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