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Abstract

In the operation and maintenance phase of a deployed soft-
ware component, security and bug-fix updates are regular
events. However, for many high-availability services, costly
restarts are no acceptable option as the induced downtimes
lead to a degradation of the service quality. One solution to
this problem are live updates, where we inject the desired
software patches directly into the volatile memory of a cur-
rently running process. However, before the actual patch
gets applied, most live-update methods use a stop-the-world
approach to bring the process into a safe state; an operation
that is highly disruptive for the execution of multi-threaded
programs.

In this paper, we present a wait-free approach to inject
code changes into a running multi-threaded process. We
avoid the disruption of a global barrier synchronization over
all threads by first preparing a patched clone of the process’s
address space. Into the updated address space, we gradually
migrate individual threads at predefined quiescence points
while all other threads make uninterrupted progress. In a
first case study with a simple network service, we could
completely eliminate the impact of applying a live update
on the request latency.

1 Introduction

In the usual paradigm of software development, we fre-
quently modify code, recompile and restart a test instance
of a program, and verify that our changes implement the
desired behavior. With deploying the software, this rate of
changes drops significantly as the project enters the oper-
ation and maintenance phase. However, due to bug fixes
and security updates, the change rate of actively maintained
software never really drops to zero. Therefore, we must not
only deliver a static update file, but we also have to apply
these changes to our deployed systems.
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1 void worker_thread() { handle_event:

2 while (1) { 100 . ..

3 m = receive(); 180 cmp %eax, DIGEST_LEN
4 r = handle_event(m); 185 jle 18c

5 reply(r); 187 ...

6

7 // quiescence point

8 if (patch_pending) {

9 barrier();

10 @8 if (thread_id()==0)

1 88 apply_patch(); handle_event:

12 barrier(); 100 . ..

13 } 180 cmp %eax, DIGEST_LEN
14} 185 jl 18c

15 } 187 ...

Figure 1. Multi-Threaded Network Server with Bug Fix. This
program is manually prepared to apply live updates at run
time. At the quiescence point (line 7ff), a barrier synchro-
nization is used to bring the process into a safe state before
the bugfix patch (at address 185) gets applied (line 11).

However, not for all systems it is viable to just restart a run-
ning instance, since the update-induced downtimes become
too expensive. The prime example for this are operating-
system updates as rebooting requires us to stop processes,
reinitialize the hardware, and restart all applications. While
this problem was long confined to the OS domain, we increas-
ingly see similar issues on the application level: For example,
if we want to update and restart an in-memory database,
like memcached [6] or Redis [21], we either have to persist
and reload its large volatile state or we will provoke a warm-
up phase with decreased performance [18]. For other high
availability systems, even if they are stateless, downtimes
pose a threat to the service-level agreement as they provoke
request rerouting and increase the long-tail latency. With the
advent of nonvolatile memory [16], these issues will become
even more widespread as process lifetimes increase [12] and
eventually even span over several OS reboots [23].

One solution to the update—restart problem is dynamic
software updating through live patching, where the update
is directly applied, in binary form, to the code and data seg-
ment of the running process. For the OS itself, this possibility
has become widely used in practice, while solutions for ap-
plications are still not commonly employed.

Quiescence Points in Multi-Threaded Programs Most
live-patching methods require the whole system to be in a
safe state before the binary patch gets applied. Thereby, sit-
uations are avoided where the process still holds a reference


https://doi.org/10.1145/3365137.3365404

PLOS’19, October 27, 2019, Huntsville, ON, Canada

to memory that is modified by the update. For example, for
a patch that replaces a function f, the system is in a safe
state if no call frame for f exists on the execution stack. Oth-
erwise, it could happen that a child of f returns to a, now
altered, code segment and provokes a crash. While defining
and reaching safe states is relatively easy for single-threaded
programs, it is much harder for multi-threaded programs,
like operating systems or network services.

In general, a safe state of a running process is a predicate
Woroc Over its dynamic state S. For a multi-threaded process,
this predicate can normally be decomposed into multiple
predicates, one per thread (th1, th2, ...), and the whole pro-
cess is patchable iff all of its threads are patchable at the
same time:

Wproc(s) 4 \ythl (S) A ‘Pthz(s) s

One possibility to define a safe state is to insert quiescence
points into the source code: At these points, a thread is in a
patchable state and its Wy,n becomes true. In order to reach
Woroc, these points are part of a barrier synchronization that
block threads at the quiescence point until all threads have
arrived. In this stopped world, we can apply all kinds of
code patching and object translations [10, 11] as we have a
consistent view on the memory.

Figure 1 shows a condensed version of a network service
whose code is prepared to apply a live patch with the barrier
method: The process executes several worker threads (left),
which receive and handle messages in an infinite loop. In
between messages, the thread comes to the quiescence point,
checks if a patch is pending (as shown on the right), and
synchronizes at the barrier. After all threads have arrived,
thread 0 applies the bug-fix patch (making it take effect for
all threads), before all threads resume message handling.

However, this live-patching method comes at the cost of
an operation disruption for multi-threaded programs: With
the blockade of more and more threads, the overall progress
rate deteriorates, before it becomes zero during the patching
itself.

It is this time period, between the initiation of the patching
process and its completion, that we want to make wait-free.
We achieve this by migrating threads incrementally between
two address spaces; the unpatched and patched one. Both
address spaces remain in the same process and share all
memory except for the modified regions. In particular, we
claim the following contributions:

o We propose the idea of wait-free code patching on the
basis of address-space generations and incremental
thread migration.

e We provide a proof-of-concept implementation for
Linux that provides code-segment updates and safe
state definition based on quiescence points.

e We demonstrate the applicability and the benefits of
our approach with two case studies.
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Figure 2. Process during the Wait-Free Patching. For the
patching, we clone the original address space (Gen. 0) such
that all mappings are shared. In the new address space (Gen.
1), we un-share the patched pages and modify them. Suc-
cessively, threads migrate from the original to the patched
generation with an explicit system call (wf_migrate()).

2 The Wait-Free Patching Approach

Previous live-patching mechanisms require a global safe state
before applying the changes to the address space (AS) of the
process. With our approach (see Figure 2), we reverse and
weaken this precondition with the help of the OS: Instead of
modifying the currently-used AS, we create a (shallow) clone
AS inside the same proccess, apply the modifications there,
and migrate one thread at a time to the new AS, whenever
their Yy,n becomes true. In the migration phase, we require
no barrier synchronization and all threads make continuous
progress. After all threads have migrated, we can safely drop
the old AS.

While both AS generations exist, we must synchronize
changes to memory between them. We achieve this effi-
ciently by sharing all mappings from the old AS (Gener-
ation 0) with the new AS (Generation 1): We duplicate the
memory-management unit (MMU) configuration (page direc-
tories and page tables) but reference the same physical pages.
Thereby, all memory writes are instantaneously visible in
both ASs and even atomic instructions work as expected.
Only for those pages that are affected by the live update, we
untie the shared mapping, copy the old contents to a new
physical page, and apply the patch.

In this paper, we exclusively focus on updates to read-only
memory, like the code segment or constant data. Thereby,
we exclude situations where a thread in the old generation
wants to make an update to memory that has been modified
by the patch. Furthermore, we also exclude updates that
modify the data layout or the meaning of already allocated
objects. Thereby, all writable memory regions have the same
interpretation before and after the update. We also demand
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that the developers annotate quiescence points, which are
valid for all considered updates, in the program.

2.1 System Interface

As our wait-free method is provided as an OS service,
we introduce two new system calls: wf_patch() and
wf_migrate(). With the integration into the kernel are we
able to modify the AS without bringing the whole process
to a halt.

With wf_patch(), the application starts the update pro-
cess and prepares the new AS. Any thread, even from a signal
handler, can invoke wf_patch() with an array of changes:
Each change consists of (1) a pointer to the patch data, (2) the
length of the patch data, and (3) the virtual address where
the patch should be applied. With this interface, we only
support the application of in-place updates. If an updated
function body is larger than the original function, or if mem-
ory should be moved, the user of our interface must provide
an appropriate change list.

Within the OS, wf_patch() duplicates the AS of the cur-
rent process, which results in a new virtual address space
that references the same physical user pages. For all pages
that are affected by the change list, we copy its old contents
into a newly allocated page and apply the patch. We update
the new AS, which is not yet inhabited by any thread, to
reference the updated page.

While wf_patch() only prepares the patched AS,
wf_migrate() performs the actual incremental thread mi-
gration. The thread invokes this system call explicitly at a
thread-local quiescence point. The OS modifies the thread
control block to use the patched AS and with the system-call
return, the thread directly continues.

Besides memory writes, we also have to keep both ASs syn-
chronized when the process requests a change to its virtual-
memory mappings. This includes adding and removal of
mappings (i.e., mmap (), munmap()) and the change of page
protections (i.e., mprotect()). While we explicitly forbid
modifications to the mapping that would affect patched ar-
eas, we allow other changes and apply those to both ASs.

In our current implementation, we do not yet support
the creation of new threads or child processes (i.e., fork())
during the transition. However, in principle, new threads
should inherit the AS of its parent thread. For fork(), the
new process only contains a clone of the invoking thread,
which should be placed in the same AS generation.

2.2 Implementation for Linux

We implemented our wait-free approach prototypical for
Linux 5.1 and the AMD64 architecture. On this architecture,
the virtual memory mappings of an AS are encoded as page
directories of up to 5 (sparsely-populated) indirection levels.
Thereby, all nodes in this page-directory tree are page sized
(4K) and can hold up to 512 sub nodes.
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Figure 3. Page-Directory Duplication. Instead of keeping
two independent page-directory trees, we always allocate
two 8K pages for each directory. In this example, each di-

rectory level can hold up to two children and a live update
(’b’—’x’) is currently in progress.

In order to provide multiple ASs per process, we decided to
always allocate two page directories (see Figure 3) and keep
them synchronized, even when no migration is in progress.
For this, we modified the page-directory allocation to return
two consecutive 8K aligned pages instead of one 4K page.
With this page-directory duplication, we can switch between
generations by flipping a single bit in a pointer. This pre-
vents us from having to maintain an explicit mapping for
each directory! While this technique allows for fast synchro-
nized modification of both directories, it doubles the memory
requirement for the MMU configuration.

In order to integrate our method with the rest of the Linux
memory subsystem, we modified the normal setter functions
for page directories. These setters, which are often called
with a pointer to a page-directory sublevel, are used to man-
ifest all high-level AS changes (i.e., mmap()) in the actual
MMU configuration. Instead of modifying only the given
page directory, the setters now also flip the generation bit
and perform the same modifications for the sibling directory.
For wf_patch(), we use specialized setters that only affect
one generation.

For the bookkeeping of the AS generations, we have ex-
tended the thread control block (task_struct): For each
thread, we store the current AS generation and the target
generation. While the former is used during the context
switch to load the correct page directory, the latter is used
for wf_migrate(). Furthermore, we store the number of
threads that are not yet migrated to the target generation.

Another technical issue during the context switch are
address-space identifiers (ASIDs), which are used to distin-
guish between translation-lookaside buffer (TLB) entries from

1 This technique is similar to KPTI (previously KAISER [9]), which switches
between separate kernel and user page directories. Our implementation is
compatible with KPTL
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different ASs and help to avoid full TLB flushes. Therefore,
we cannot use the same ASID for both generations, although
both ASs are largely equal. Again, we solve the problem by
duplicate allocation: Instead of one core-local ASID, we allo-
cate two ASIDs when a thread gets dispatched for the first
time on a processor and decide upon its current AS gener-
ation which ASID to use. On AMD64, this is no limitation
as 4095 ASIDs are supported and Linux uses at most six of
them ASIDs — which we increased to twelve.

3 Case Study: Updating a Network Service

With a small case study, we investigate on the feasibility
of our approach and compare its performance against the
barrier method. For this, we build a computationally-bound
network service as a test bed for benchmarking the influ-
ence of live update on the end-to-end latency. In the server,
a main thread listens for new connections and spawns a
worker thread for each incoming connection. Upon a client
request, the worker thread iteratively performs MD5 hash
computations, starting from a client-provided initialization
vector, until the first 20 bits of the hash digest become zero.
The resulting hash, as well as its predecessor hash, are sent
back to the client.

3.1 Evaluation Scenario

For our evaluation, we induced a bug into the server (see
Figure 1), which we want to remove with a live update: The
request handler (handle_event()), which is called by the
worker threads, has an off-by-one error, due to a wrong
comparison, in the hash-digest generation. Furthermore, we
defined the quiescence point for the worker thread in their
main loop; here, we either call wf_migrate() or synchronize
all threads with the barrier method. We manually prepared
a binary patch for the induced bug by extracting the correct
function body for handle_event() from the fixed server
binary. Both function bodies, the buggy and the correct one,
are of equal length (1136 B), such that an in-place update is
possible.

The measurements were performed on a setup with two
recent desktop computers equipped with an Intel Core i5-
7400 CPU (4 cores) and 32 GiB of memory. We connected
both hosts by a switch via Gigabit Ethernet and used Ubuntu
18.04 LTS. One machine runs the server component, while
the other is used as the client. On the server, we installed
a modified Linux-5.1.0 kernel with our wait-free patching
extensions.

To determine the server’s response time, we measured
the latency of each request on the client side: Four client
connections are maintained during a benchmark run, in order
to fully utilize all CPUs on the server. The clients repeatedly
send requests with the same initial seed but with a random
inter-request delay of 0 to 10 milliseconds. Each benchmark
run has a total length of 16 seconds and starts with the buggy
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Figure 4. Request Latencies of a Multi-Threaded Network
Service during a Live Update. The benchmark was run 1000
times and we binned (bin size: 1 ms) the observed latencies
on the time axis.

version of the server. One second after the server was started,
we establish the client connections. Around 9 seconds after
the run was started, we trigger the live patching of the server
with a Unix signal.

3.2 Request Latency

We conducted 1000 benchmark runs each for the barrier-
synchronized method and the wait-free patching approach.
Figure 4 shows the observed request latency values grouped
into 1 ms bins along the time axis. The results for the barrier-
synchronized patching (Figure 4a) and the wait-free patching
(Figure 4b) benchmarks share a common baseline of a median
request latency of about 18 ms.

At approximately 9 seconds? after the clients were started,
we observe a latency spike in the barrier synchronization
benchmark. This indicates blocked threads before the safe
state is finally reached and the program is again able to
progress. The median latency goes up to 30 ms and the 99%-
percentil more than doubles its initial value. As expected, we
do not see any latency change with the wait-free patching
because the threads are able to seamlessly migrate, one by
one, into the patched address space.

2The spike occurs shortly before the 9 seconds have elapsed. This is due to
the non synchronized benchmark start times between the two computers
and an initial client initialization delay.
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3.3 Memory Overheads

Since our implementation doubles the memory requirement
for the MMU configuration, we measured the memory over-
head of our server application while running the benchmark.
Immediately before the migration, the page-directory tree
contains 27 internal nodes for the user space and 2161 for the
kernel space. Because all kernel nodes are shared between all
processes, they are only needed once for the entire system.
This results in 108 KiB (27 pages - 4KiB) overhead for the
server process. Since we applied the AS duplication tech-
nique for all processes in the system, the overall memory
overhead for our prototypical implementation is the sum
over all user spaces plus the kernel space. At the time of the
benchmark, 50 processes required 1997 page-directory nodes,
which results in 16.24 MiB of additional memory demand.?
The total system memory consumption with buffer/caches
included was 609.31 MiB.

4 Case Study: Memcached

Besides the latency comparison with the barrier method,
we also validated the applicability of our wait-free ap-
proach with a real-world application. For this, we performed
a live update of a running memcached [6] instance. We
choose an actual bug-fix commit* that touched two functions:
drive_machine() and item_size_ok(). We converted the
commit into a suitable binary patch but eased the patch cre-
ation, which is not part of our contribution, with additional
function padding in the unpatched version to account for
grown function bodies.

The bug fix touches a central component of mem-
cached’s event-driven architecture: the state-transition func-
tion drive_machine(), which the worker threads repeat-
edly call for newly arrived requests or after an I/O opera-
tion has completed. With the bug fix, not only did the two
function bodies change, but so did a jump table in the read-
only segment, which the compiler generated for the central
switch—case statement of drive_machine(). In total, the
binary patch touched 11703 bytes in three places.

We are able to apply the live update with our wait-free
method even under heavy request load (1 GBit/s) without
observing any measurable difference in the request latency.
However, we cannot report a quantitative comparison with
the barrier method since we were unable to prepare a fair
competitor that uses the barrier method so far. The reason
is that, besides the worker threads, memcached also uses
threads for log flushing and LRU-cache maintenance that
perform sleep operations for up to a second.

3The address space is typically sparsely populated, hence the large overhead.
*Git commit hash: 32862944.
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5 Discussion
5.1 Costs and Benefits

A crucial aspect of the wait-free patching method is the light-
weight address-space duplication (see Section 2). Most of the
memory pages are shared. Only the changed regions and the
MMU configuration has to be copied. This comes with bene-
fits, like automatic zero-cost synchronization between the
patch generations and the compatibility with atomic access.
Concerning the MMU configuration, the current proof-of-
concept chooses a rather simple approach. We only allow two
active generations at a time and always allocate two adjacent
sibling page directories which are synchronized at any time
— even for kernel memory and for processes that do not use
wait-free patching. Implementing on-demand address-space
creation and synchronization could significantly reduce the
memory footprint and would prevent unnecessary synchro-
nization overhead. Furthermore, we could support more than
two address-space generations. However, all this is associ-
ated with significant modifications in the Linux kernel, what
we sought to avoid for the prototype.

A major benefit of the address-space duplication concept is
that it is agnostic of the employed patching methodology. We
can choose to use in-place patching (like in our case studies),
but other strategies like function cloning or even replacing
the whole text segment are also possible. In addition, the
approach is flexible when it comes to data. Instead of sharing
the whole memory, we can copy and transform parts of the
program state — even in a lazy on-demand fashion.

5.2 Towards Wait-Free Dynamic Software Updates

We are aware that the presented method is only one com-
ponent of a complete dynamic updating solution. In this
paper, we intentionally focus on wait-free patching as an
isolated approach without combining it with binary patch
generation methods or state transfer techniques. Previous
research has explored these topics in depth and created a va-
riety of different approaches (see Section 6). We believe that
wait-free patching based on address-space duplication can
be combined with many of them, and we plan to investigate
this possibility in the future.

5.3 Other Applications

Run-time binary modification is not limited to dynamic
software updates. In a previous work, we presented Mul-
tiverse [22], a language-oriented approach for low-cost dy-
namic configurability. Based on annotated configuration vari-
ables, Multiverse generates specialized versions of functions
and modifies the running system to use the version that
matches the current configuration. From a technical perspec-
tive, Multiverse overwrites function call sites, which may be
scattered throughout the whole program. In order to achieve
a consistent update behaviour in programs with more than
one thread, the patching procedure must be atomic with
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respect to all calls to the affected functions. Otherwise, two
different multiverse versions could be executed at the same
time while the patching procedure is in progress. Currently,
Multiverse leaves this synchronization problem to the user.
Our wait-free patching approach could be used to ensure
atomicity by applying the modification in a new address-
space generation, and then migrating the remaining threads.
We have already carried out some initial tests, and we were
able to confirm the feasibility of combining both approaches.

6 Related Work

The DAS [8] operating system incorporated an early run-
time updating solution on module-level granularity. It re-
quires absolute quiescence of a module to be patched. This
is implemented by module-owned readers-writer locks and
extended call & return operations. DYMOS [13] is a com-
prehensive language-oriented dynamic updating approach.
It relies on the manual specification of conditions for safe
code and data modification. The K42 [3] operating system
exploits its strict object-oriented design to enable live ker-
nel updates. The event-driven nature with short-lived and
non-blocking threads makes it easy to define a safe state
for concurrent patching, but it nevertheless relies on barrier
synchronization. Proteos [7] is a research microkernel sys-
tem with a process-level live update solution that focuses on
automatic state transfer. Like our wait-free patching tech-
nique, it makes use of MMU-based address spaces, but unlike
our approach the goal is not a seamless thread-by-thread mi-
gration. Instead, the whole process stops during the update
procedure — the separate address space enables hot rollback.

Live-patching frameworks on function-level granular-
ity [1, 2, 4, 5, 15, 19, 20] have become very popular be-
cause functions form a naturally bounded scope for changes,
while still enabling relatively fine-grained updates. These
approaches load a patched version of a function (function
cloning) and install it via placing a trampoline jump at the be-
ginning of the old function body (function indirection). Bar-
rier blocking is the classical way to reach a global quiescence
point where all threads are ready to be patched. But there
are other possibilities: Ksplice [2] uses a polling technique
where the whole kernel is repeatedly stopped and checked
for a safe update state before the function indirection gets
installed. This avoids long blocking delays but comes with
the disadvantage that the patch may be applied late or never.

DynAMOS [15] and kGraft [19] extend the function indi-
rection method: By placing additional redirection handlers
between the trampoline and the jump target, they are able
to decide on a per-call basis which version of a function
(original/updated) should be used. The approach has some
similarities to our address-space migration technique in that
both methods are able to avoid blocking for a global safe state
and instead perform a more sophisticated, context-dependent
migration. However, the approach is limited to the function
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indirection method. Additionally, the trampoline may cause
overhead and installing it may come with caching issues in
SMP systems and poses additional difficulties on variable
instruction-length architectures like x86.

LUCOS [4] tries to solve this by requiring the to-be-
patched kernel to run inside a modified XEN hypervisor
which is able to atomically install trampoline calls. The vir-
tualization layer is also used to enable state synchroniza-
tion between the different versions of a function. POLUS [5]
brought this idea to userspace and relies on the underlying
operating system (ptrace & signals) instead of a hypervisor.
Both approaches completely dismiss the idea of quiescence
points and rely solely on state transfer which, to our knowl-
edge, is not sufficient for all update scenarios. Furthermore,
they are limited to patching on function-level granularity.

Ginseng [17] makes use of source-to-source compilation
in order to prepare C programs for dynamic updating. It
inserts indirection jumps for every function call and every
data access. It does not support multi-threaded programs.

Ekiden [11] and Kitsune [10] provide dynamic updates by
replacing the whole executable code and transferring the
program state. Updates are only possible at certain update
points which also constitute synchronization barriers in the
case of multi-threading. UpStare [14] goes one step further
by allowing run-time updates at arbitrary program states,
enabled by its stack reconstruction technique. However, up-
dating multi-threaded programs is also based on barriers.
The authors suggest inserting barriers in long-lived loops
and using non-blocking IO.

7 Conclusion

We present a wait-free approach for live patching that elim-
inates the operation disruption which is induced by the
barrier-synchronized safe state requirements. We achieve
this by duplicating the process’s virtual address space and
incremental thread migration. Thereby, threads explicitly
switch at predefined quiescence points to the prepared ad-
dress space, without transitioning through a waiting state.

With our prototypical implementation in the Linux kernel,
we support live updating of code and read-only data. In two
case studies with a simple network service and memcached,
we show that our approach allows disruption-free operation
during live patching, even under heavy load. Where barrier
synchronized live patching provoked a request latency spike
of +64 % (median), we could not detect a latency impact with
the wait-free method in our experiments.
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