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Abstract—After power-on, crash or reboot, the system-setup
point is the first deadline that a safety-critical system has to
reach. Up to this point, the application not only initializes its own
state but it also creates all necessary system objects (e.g., threads,
mutexes, alarms, . . . ) in the real-time operating system. And, while
the strict requirements for real-time analyses often result in a
rather static set of created system objects, the commonly-provided
real-time operating system (RTOS) interfaces force developers to
execute these creations at run time, resulting in an unnecessarily
prolonged boot process.

With ARA, we present a static whole-system transformation
that discovers pseudo-dynamic system-object creations (SOCs)
which yield the same object on every boot. By modifying the
application and by RTOS specialization, we transform these
SOCs to semantically equivalent static SOCs, which moves their
instantiation from the run time to the compile time. Thereby, we
maintain the well-known RTOS interfaces for dynamic SOCs but
let developers enjoy the benefits that static initialization provides.
In our case studies with FreeRTOS applications, we could reduce
the boot time by up to 43 percent at a moderate increase of flash
usage.

I. INTRODUCTION

The system setup is the first task that a real-time system
executes after power-on, reboot, or crash. After we have
initialized the hardware, configured the RTOS, and kicked
off the application execution, we reach the system-setup point
(SSP) and can begin the normal operation. The SSP is not
only the first important deadline for a safety-critical real-time
system, but it also impacts the resilience of fail-safe systems
that recover from transient errors by rebooting [2], [3], [4].
For some safety-critical systems, the time to the SSP is even
subject to official regulation: For example, the FMVSS111 [26]
states that a rear-view camera in an US vehicle must provide
an image within 2 seconds after vehicle start and reverse-gear
selection. For automotive systems recovering from an error, the
functional safety standard ISO26262 defines the fault tolerant
time interval as the maximum amount of time allowed from
fault occurrence until a safe state is reached again. If those
systems perform a reboot as error recovery mechanism, the
SSP has an impact on that interval.

An important aspect of the system setup is the configuration
of the RTOS and the creation of system objects, like threads,
mutexes, or message queues. And since real-time analyses
require a decent amount of static knowledge ahead-of-time, the
RTOS configuration, as well as the set of system objects, does
not vary much from boot to boot. While some RTOSes, like

OSEK [27] or µITRON [21], reflect this static nature and drive
a system generator with a configuration file to instantiate system
objects as preconfigured static objects at compile time, many
recent RTOSes, like FreeRTOS [16] or RIOT [6] only provide
dynamic system-object creation at the system-call interface.

However, there is a trade-off between dynamic and static
SOCs: On the one hand, the dynamic variant requires no exter-
nal tooling, allows for run-time configurability, and provides
familiar OS-usage patterns for developers that come from
general-purpose computing (e.g., POSIX [1]). On the other
hand, if we use dynamic SOCs for objects whose parameters
are statically known, we end up creating the same objects
with the same parameters, over and over again, on every boot.
These pseudo-dynamic SOCs delay the SSP without providing
actual flexibility. Furthermore, the initialization routines inflate
the code segment, decrease the resilience against transient
hardware faults [19], and entail the presence of other complex
components, like a heap manager.

So, while a dynamic system setup is easier to manage on
the development side, it comes at the cost of a longer, more
expensive, and less robust initialization phase that could be
avoided in cases where the system configuration is known in
advance. Therefore, some RTOSes, like Zephyr [37], already
provide distinct APIs for static and dynamic SOCs. However,
if developers have no in-depth understanding of the costs of
different system-setup strategies, they will often default to
dynamic SOCs as it is the more familiar and the easier to
maintain usage pattern.

About this paper In order to bridge the semantic gap
between dynamic and static system-setup strategies, we present
ARA, which is an RTOS-aware whole-system compiler that
transforms pseudo-dynamic SOCs to static ones. Based on
a precompiled real-time application, which uses dynamic
object creation, ARA performs the static instance analysis
(SIA) to find pseudo-dynamic SOCs and extracts their creation
parameters. Equipped with this knowledge, ARA performs a
partial specialization of the real-time application and the RTOS
and transfers as many SOCs as possible from the run time to
the compile time to decrease the SSP delay. In particular, we
claim the following contributions:

1) We present the static instance analysis (SIA), which per-
forms RTOS-aware detection of pseudo-dynamic system-
object creations.

2) We provide specialization methods that exploit this knowl-
edge to speed up system setup and to reduce the RTOS’
code segment.



1 StackType_t stack[1024];

2 StaticTask_t tcb;

3

4 int main() {

5 printf("Starting system\n");

6 xTaskCreate("task1", t1_entry, 512, 2);

7 if (unknown_condition()) {

8 xTaskCreate("task3", t3_entry, 128, 1);

9 }

10 library_init();

11 xTaskCreateStatic("task4", t4_entry,

12 256, 2, stack, &tcb);

13 vStartScheduler();

14 }

15 SemaphoreHandle_t mutex1;

16 void library_init() {

17 mutex1 = xCreateMutex();

18 return;

19 }

20 void t1_entry() {

21 xTaskCreate("task2", t2_entry, 256, dynPrio);

22 for(;;) { /* ... */ }

23 }

24

25 void t2_entry() { for (;;) { /* ... */ } }

26

27 void t3_entry() { for (;;) { /* ... */ } }

28

29 void t4_entry() {

30 xTaskCreate("task5", t5_entry, 512, 2);

31 for (;;) { /* ... */ }

32 }

33

34 MessageBufferHandle_t buffer1;

35 void t5_entry() {

36 buffer1 = xMessageBufferCreate(12);

37 for (;;) { /* ... */ }

38 }
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Fig. 1: Example FreeRTOS Application (simplified). Six independent control flows (green) visit SOC sites where they create
and initialize (yellow) system objects. The control-flow entries of the five threads only execute after the scheduling is started
explicitly at the end of the main() entry point (red).

3) We demonstrate the applicability of our approach with
two real-world FreeRTOS applications and reduce their
SSP delay by up to 43 percent. For micro benchmarks,
the speedup is up to 67 percent.

The rest of the paper is structured as following: We explain
the system model that ARA assumes in Section II and describe
our analysis and system-specialization approach in Section III.
We demonstrate the potential and the applicability of ARA in
Section IV, discuss the results in Section V and the related work
in Section VI, before we conclude the paper in Section VII.

II. SYSTEM MODEL

For this paper, we consider real-time systems where
application and RTOS are statically combined into a single
system image that gets deployed onto the target platform’s flash
memory. We demand that the whole application is available
as source code, or at least as an intermediate representation
(IR) (e.g., LLVM IR [22]) that provides us with information
about (function-local) control-flow graphs and function-call
sites. With considerable effort and extensive machine-code
analyses [32], this requirement could even be weakened to the
availability of the application binary. Upon system start, the
application loads its data segment from flash, zeroes out the BSS
segment, and dynamically creates system objects (i.e., threads)
at distinguished locations (SOC sites). After the scheduling is
started explicitly, threads are allowed to dynamically create
further system objects. We assume that every thread gets
scheduled eventually, but make no further assumptions about
scheduling strategy or multi-processor capability of the RTOS.

Without loss of generality, we use FreeRTOS [16] as a
representative example throughout this paper. FreeRTOS, whose
development Amazon stewards to use it together with their
cloud instances, comes in the form of a library operating system
that is configurable by C-preprocessor macros. For example,
system calls may be (de)activated and it ships with five different
heap manager implementations. FreeRTOS applications create
and initialize threads, semaphores, message queues, and other

instances of system abstractions dynamically at run time. And
although newer versions of FreeRTOS (since 9.0.0) have the
possibility to use statically-allocated memory for system objects
instead of dynamic-heap allocations, system-object initialization
is always done at run time.

Figure 1 shows an example system that uses the FreeRTOS
API to create system objects on boot. Within the main()

function, the application unconditionally creates the threads
task1 and task4, while task3 is only created under an unknown
condition. Besides thread creation, the call to library_init()

invokes a SOC for a mutex object. While the user provides
the memory for task4, FreeRTOS uses its internal heap
manager to allocate memory for all other system objects in
the example. After the scheduler starts, task1 creates task2

with a dynamically calculated priority but a static stack size
of 256 bytes. Furthermore, the execution of task4 results in a
SOC for task5, which by itself creates a message buffer of size
12; Besides task2 (dynamic argument) and task3 (conditional
creation), the creation of all other system objects is pseudo
dynamic and could be performed at compile time instead of
executing the SOCs over and over again on every system start.

III. THE ARA APPROACH

ARA is a whole-system compiler (see Figure 2), which
takes the application code as well as the RTOS configuration
as inputs. Thereby, ARA has the whole system at hand and
performs the following analyses and modifications as link-
time optimizations. In the analysis phase ( 1 - 3 ), we read
in the application code as LLVM IR [22], perform necessary
control-flow graph (CFG) preprocessing steps, and execute
the static instance analysis (SIA), which calculates the list
of possibly-created system-object instances. In the synthesis
phase ( 4 - 7 ), we decide on the maximal and desired level of
specialization, transform the real-time application to statically
allocate and initialize objects, and generate a specialized RTOS.
Furthermore, we execute an additional post-processing step on
the binary ( 8 ) to further speed up the system setup.
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Fig. 2: ARA Overview: We analyze the real-time application in combination with the RTOS configuration. With the instance
list, the synthesize phase modifies the application and specializes the RTOS that we link together, further optimize and output a
system image.

To provide RTOS independence, ARA divides all algorithms
into a generic part and an RTOS specific part, the RTOS
model. It provides information about SOCs, especially its
names, signatures and parameter interpretation. To capture
the parameter values of instances, it provides instance specific
objects. For later specialization, it also provides system calls
that only perform partial initialization and object registration.

A. Static Instance Analysis

Goal of the static instance analysis (SIA) is the static
detection of instances that the application creates in its setup
phase. Thereby, we search not only for instances that are
created unconditionally with constant parameters, but we also
detect instances where we can deduce partial knowledge about
parameters or instantiation count. The SIA is a static analysis,
which - roughly speaking - traverses the application’s CFG
in a flow-sensitive and RTOS-specific manner while scanning
for SOCs. For each identified SOC, we extract its creation
parameters with help of the static value-flow analysis (SVF) [30]
and evaluate the SOC according to an RTOS model, which
is supplied by ARA, to build up a list of (possibly) created
instances. Before the actual SIA starts ( 3 ), ARA first has
to preprocess the local control-flow graphs (LCFGs) ( 1 ) to
combine them into multiple interprocedural control-flow graphs
(ICFGs) ( 2 ).

1 Extract the local control-flow graph (LCFG): After we
have extracted the application code from the intermediate
representation, the analysis preprocesses the application’s CFG
such that system calls and function invocations reside in their
own basic block:

1) Split every (maximal) basic block that contains a function
or system call directly before and after the call site,
possibly creating empty basic blocks.

2) Categorize every basic block according to its contents into
system-call blocks, function-call blocks, or computation
blocks.

By following these rules, we get one function-local CFG
(the LCFG) for each function. In their entirety, their basic blocks
cover the whole application code. With the categorization,
we put a focus on the application logic that is visible from

the operating system’s perspective and subsume all irrelevant
computations into computation blocks, while interaction with
the kernel can only take place in system-call blocks. This
concept is strongly inspired by the atomic basic block concept
of Scheler and Schröder-Preikschat [28], which also distills
RTOS interaction into distinct blocks but performs further
block-merge operations in order to form larger single-entry–
single-exit computation regions within the CFG. Figure 1b
shows the LCFGs (black edges) for the main entry point of
Figure 1a.

2 Derive the interprocedural control-flow graph (ICFG):
For the main() function, and for each subsequently discovered
thread entry, we combine the reachable LCFGs into one ICFG
by connecting call sites with their possible callees. While our
LCFG construction already isolated call-sites into their own
basic block, we still have to determine the possible call targets
for each call site. For this, we calculate an over-approximation
of possible call targets, which we further filter down with help
of the RTOS model.

For direct calls, the callee is explicitly mentioned in the
LLVM IR and trivially to extract. For indirect calls via function
pointers, the actual call target only becomes available at run time
and we perform a static (pointer) value analysis to determine
a set of possible callees. For this, we first try to resolve the
function-pointer value with help of the SVF, which internally
executes the Andersen pointer analysis [5]. If this fails, we
filter the list of all possible functions with the required function
signature at the call site. For arguments of non-pointer types
the filter function simply checks for type equivalence. For
arguments of pointer types, we must consider C++ inheritance.
Pointers to the derived class are compatible to base-class
pointers. Unluckily, LLVM implements C++ inheritance by
embedding the base class into the derived class. Therefore, we
accept arguments of pointer types as equivalent if the callers
pointee type is embedded into the callee’s pointee type. This
results in a slight but safe over-approximation. Techniques
of the field of control-flow integrity [25] could lead to an
even tighter over-approximation, but require metadata of the
compiler frontend, which we explicitly forbid. Furthermore, we
also allow for manual annotations to restrict the targets of a
specific call site.
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As a second step, we filter these call-target set to only
contain functions that could invoke a SOC. With help of the
RTOS model, we mark functions that contain a SOC site as
creation relevant. Recursively, every function whose call-target
sets contain a creation-relevant function becomes creation
relevant itself. For each call-site, we intersect the creation-
relevant functions with the set of possible call-targets. If the
set becomes empty, the function-call block is re-categorized as
a computation block.

With the reduced callee set, we construct the ICFG: each
function-call block is connected to its callee’s entry blocks,
while the callee’s return blocks are connected to the successor
blocks of the call sites. Please note that each call site has,
due to our LCFG construction, a unique (although possibly
empty) successor block. Figure 1b shows the ICFG (red) that
we derive from Figure 1a for the main entry point. We see that
the ICFG does only contain an edge to library_init() but not
to printf(), as the latter function is not creation relevant.

3 Execute the static instance analysis (SIA): The SIA
statically analyses the ICFGs to compute the list of instances
that the application can create. In a nutshell, we start the SIA
for the main entry point and perform a flow-sensitive traversal
of the ICFG to iterate over all pairs of the form (call path,
SOC site). For these pairs, we extract the SOC parameters,
interpret them according to the RTOS model, and collect the
created objects in the analysis-time instances list. If we discover
a new thread, we spawn another SIA for the thread’s entry
function. The detailed SIA algorithm is described in Listing 1
as simplified pseudo-code.

The SIA execution starts by calling findSOC() with the
control-flow entry of the application (main()) and an initial
empty call path, which we will extend with function-call blocks.
findSOC() recursively follows the ICFG by iterating over ICFG
successors (line 5, line 29f). When we visit a call site, we
extend the call path (line 7) with the current function-call
block in order to make precise call-path–dependent returns at
the end of a function (line 13f). We end the ICFG traversal
(line 9ff) if the last function on the call path returns or if we
encounter the scheduler-start system call as the initial control
flow terminates there. Furthermore (not shown for clarity), we
visit loops only once and do not follow recursive function
calls. While we descent into the call hierarchy, we also track
(in_thread) whether we are currently executing within a thread
context or within the initial control flow that executes before
the scheduler starts.

For every basic block that findSOC() visits, we use the
RTOS model to identify SOC sites and derive information about
the created instances from it (line 16-27). First, we invoke the
evalSOC() function with the current call path and the discovered
SOC site to create an analysis-time representation (instance)
of the system object that contains the RTOS-specific creation
parameters. For the returned instance, we also store whether
it will be created before or after the scheduler has started.
Furthermore, we inspect the call path to determine whether this
SOC site will yield a unique and unconditionally (exactly_once)
created system object or if the creation cardinality could differ
from one. The SOC is visited exactly once, if neither the
current basic block or any of the function-call blocks on the
call path are located in a conditional branch or within a loop in
their respective function context. Both properties (inLoop and

1 type CallPath = Stack[BasicBlock]

2 global instances : List[SystemObjects]

3

4 def findSOC(callpath: CallPath, bb: BasicBlock, in_thread: bool):

5 next_bbs = bb.icfg_successors

6

7 if bb.isCallSite:

8 callpath.push(bb)

9 else if bb.isReturn and callpath.empty() \

10 or os_model.isSchedulerStart(bb):

11 next_bbs = []

12 else if bb.isReturn:

13 caller_bb = callpath.pop()

14 next_bbs = caller_bb.lcfg_successors or []

15

16 if os_model.isSOC(bb):

17 obj = evalSOC(callpath, bb.syscall)

18 obj.before_sched = not in_thread

19

20 inLoop = any([caller.inLoop for caller in callpath + [bb]])

21 inCond = any([caller.inCond for caller in callpath + [bb]])

22 obj.exactly_once = (not inLoop) and (not inCond)

23

24 if type(obj) is Thread:

25 spawn findSOC([], obj.entry_block, true)

26

27 instances.append(obj)

28

29 for next_bb in next_bbs:

30 findSOC(callpath, next_bb, in_thread)

31

32 def evalSOC(callpath: CallPath, syscall: SOC)-> SystemObject:

33 vfg = SVF.getVFG(filter_by=callpath)

34 args = []

35 for param, ptype in os_model.params(syscall):

36 value_node = vfg.get(param)

37 while value_node.hasUniquePredecessor():

38 value_node = value_node.predecessor

39

40 if value_node.isConstant and ptype == CONSTANT:

41 args.append(value_node)

42 else if value_node.isSymbol and ptype == SYMBOL:

43 args.append(value_node)

44 else:

45 args.append(null)

46

47 obj = os_model.create(syscall, args)

48 vfg.get(syscall.return_value).setValue(obj)

49 return obj

List. 1: The static instance analysis (SIA) (Pseudo-Code).
findSOC() iterates the call-paths of SOC relevant functions
and invokes evalSOC() for every discovered SOC. evalSOC()

extracts the creation parameters and returns an analysis-time
instance. If we discover a new thread, we spawn another
findSOC() recursion for the thread-entry function.

inCond) are calculated on the LCFG with dominator information
and a reachability analysis. When evalSOC() discovers a new
thread, we spawn another findSOC() recursion (line 24) with
the thread’s entry function as starting point and remember that
we are now executing within a thread context.

As explained, we use evalSOC() to extract call-path–
dependent information for the SOC site. For this, evalSOC()

extracts the SOC arguments with a value analysis and creates
an instance of the system abstraction. As base for our value
analysis, we use the SVF [30], which performs a flow-sensitive
and inter-procedural value tracking and returns the value-flow
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void bar(int d) {}

void foo(int c) { bar(c); }

...

foo(a+b); bar(x);

SVF

Fig. 3: Example Value-Flow Graph as constructed by the SVF

graph (VFG), which covers value flows within functions and
across function boundaries. The VFG is a directed graph of
value nodes that represent a symbolic or constant value. If a
value depends on other values (i.e., by copy or calculation),
the corresponding value node is a successor of the respective
source-value nodes. In Figure 3, we see how the SVF tracks
the arguments of foo() and bar() back to the variables a, b,
and x.

In order to extract the SOC arguments, evalSOC() filters
down the VFG (line 33) to contain only value nodes that are
valid on the call path that leads up to the given SOC site.
Thereby, we narrow down the VFG to the relevant value flows
and get a more unambiguous view on the SOC arguments. In
Figure 3, filtering with the call path [foo(a+b), bar(c)] would
exclude the value node for x.

For the argument extraction, we ask the RTOS model for
the signature of the SOC site. Thereby, we not only get the
parameter list but also the information whether the RTOS model
requires a compile-time constant or a globally-defined symbol.
For example, for the thread entry, we require a function symbol
to uniquely identify the thread entry.

We start the argument extraction (line 36ff) at the respective
value node and search the filtered VFG backward until we find
a node that has not exactly one predecessor. Thereby, we follow
value–copy chains until we reach a constant (no predecessor),
a global symbol (no predecessor), or a dynamic computation
(more than one predecessor). We inspect the found value node
(line 40ff) and extract, depending on the required parameter
type, a constant or a symbol; otherwise we mark the SOC
argument as unknown. With the argument list (line 47f), we
create an RTOS-specific system-object instance and return it to
findSOC(). By pinning the instance to the return-value node in
the VFG, we are able to deduce previously discovered instances
as SOC arguments.

During its execution, the static instance analysis (SIA)
collects a global list of discovered and RTOS-specific instances
(line 27). Due to the call-path-sensitivity of findSOC(), it is
certain that SOC sites that are invoked on different call paths
will yield multiple instances. For SOC sites in loops or in
recursion, we only return one instance with exactly_once=false

that represents the possibility of multiple (or none) SOCs at
run time. Furthermore, as the set of call targets is an over-
approximation, we are certain that the SIA visits all reachable
SOCs. In Figure 4, we show the discovered instance list for
the running example (Figure 1). Please note that task3 is not
created exactly once, as its SOC site is located within the
conditional branch in main().

B. Synthesis

Equipped with the instance list, we start the synthesis
phase, where we specialize the application and RTOS to replace
dynamic SOCs with static ones. For this, we first filter ( 4 )
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Creation Parameters:
task1 = {type=Thread, stacksize=512, prio=2, . . . }
task2 = {type=Thread, stacksize=256, prio=UNKNOWN, . . . }
. . .
mutex1 = {type=Mutex}
buffer1 = {type=MessageBuffer, size=12}

Fig. 4: Detected instances and their creation parameters for
Figure 1. The maximal specialization depth can either be Full
(static allocation+initialization), Partial (only static allocation),
or None (dynamic SOC). The created object is either registered
Statically or Dynamically at the RTOS.

the instance list for SOCs that are suitable for specialization
and manipulate the application ( 5 ) to statically allocate and
initialize them. Furthermore, we modify the application’s SOC
site ( 6 ) to use the statically created objects instead of calling
the RTOS API. To finalize the process, we generate ( 7 ) and
link a matching RTOS implementation and post process the
system image ( 8 ).

4 Decision on Specialization Depth: First, we categorize the
discovered instances into different specialization depths based
upon the static knowledge that we could derive in the SIA.
We differentiate between three depths: full, partial, and none.
We define these depths according to the amount of feasible
specialization and the resulting potential for improvements.
While we can pre-allocate the memory for both full and partial
specialized system objects, we only initialize instances at the
full specialization depth at compile time. For a depth of none,
we perform no specialization and leave the dynamic SOCs
unchanged.

As we perform compile-time specialization, we can only
create objects statically, if we know that the object will surely
exist. Hence, all SOCs which are not executed exactly once
are categorized as none. Furthermore, as we do not perform
call-path–specific code modification, we also categorize all
after-scheduler SOCs that share their SOC site with another
SOC as none. Thereby, we know for every specialized SOC
site within a thread that at most one object will be created.
For the yet unclassified SOCs, we categorize the ones where
all creation parameters are known with a depth of full, while
all others are categorized as partial. Thereby, we fall back to
static memory allocation if a creation parameter depends on
run-time knowledge.

For the running example, we show the specialization depth
for the seven detected SOCs in Figure 4. We categorize
task3 as none, since main() creates it only under a condition.
Furthermore, for task2, we cannot know its priority at compile
time and therefore choose a depth of partial. For all other
objects we perform a full specialization.
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5 Static Object Instantiation: For the deeper specialization
depths, we statically instantiate system objects and register
them in the RTOS data structures (e.g., insert a thread into the
ready queue). Technically, we perform static memory allocation
for partial and full specializations, but generate static initializers
only at the full specialization depth.

For the static allocation, we chose to generate C code with
global variables instead of directly encoding objects in LLVM
IR. This is not only simpler to implement, it also fosters the
portability of ARA: As the generated code fragment uses all
necessary RTOS headers and we process it with the same
compiler as used for the application and RTOS, we remain
largely independent of the CPU architecture and the RTOS
version. Even if the LLVM IR states to be platform independent,
there are calculations, such as the computation of a data types
size, which the frontend (clang) performs based on the selected
architecture. By generating C code, we make sure that that the
original application and the newly generated RTOS parts remain
compatible in this respect. We statically allocate memory for
the partial and full specialization depth and, thereby, reduce
the necessity for dynamic memory allocation.

For the full specialization depth, we also initialize the object
state: We derive the required C-initialization statements with
the help of the RTOS model, which interprets the creation
parameters as the RTOS would do it at run time. For example,
we derive the initial top-of-stack address from the supplied
stack size. Thereby, ARA initializes all fields that are direct
properties of the system object.

However, FreeRTOS uses parts of the object state for its
internal housekeeping. While we leave these parts untouched
for SOCs that execute after the scheduler starts, we modify
them on before-scheduler SOCs: By statically preparing the
RTOS state, we emulate the effects of the SOC at compile time
and thereby register statically-initialized objects at the RTOS.
For example, FreeRTOS embeds pointers within its task control
block (TCB) to enqueue the thread into the double-linked ready
queue. While FreeRTOS normally boots with an empty ready
queue, we are now pre-populating the queue with all threads
that are surely created before the scheduling starts.

In Listing 2, we show a (simplified and reduced) version
of the generated C source that statically creates and enqueues
task1 in FreeRTOS’ ready queue. We statically allocate memory
for the task1’s stack and its TCB, as well as for a multi-level
ready queue with five priority levels. Furthermore, we set up
the pointers of xStateListItem and the ready queue such that
task1 is already enqueued at priority 2.

6 SOC Site Transformation: After we have allocated and
initialized as many SOCs as possible, we modify the application
to use these objects instead of dynamically creating system
objects. For reasons of readability, the following examples
are denoted using C code, even though ARA performs all
this modifications by manipulating the application’s LLVM
IR code at the SOC sites. Along the process, ARA takes the
specialization depth into account.

For the partial specialization depth, ARA replaces the call
target at the SOC site to a version of the system call that
avoids the dynamic memory allocation but uses a user-supplied
memory area. FreeRTOS already provides such system calls
with the Static suffix, which eliminates the need for the RTOS

1 #include "FreeRTOS.h"

2

3 StackType_t _task1_stack[512] = { ..., &t1_entry};.

4 TCB_t _task1_tcb = {

5 .uxPriority = 2,

6 .pxTopOfStack = &_task1_stack + 495,

7 .pxStack = &_task1_stack,

8 .xStateListItem = {

9 .pxNext = &pxReadyTasksLists[2].xListEnd,

10 .pxPrevious = &pxReadyTasksLists[2].xListEnd,

11 }

12 };

13

14 List_t pxReadyTasksLists[5] = {

15 ..., /* priority2 = */ {

16 .xListEnd = {

17 .pxNext = (ListItem_t *) &_task1_tcb.xStateListItem,

18 .pxPrevious = (ListItem_t *) &_task1_tcb.xStateListItem

19 },

20 .uxNumberOfItems = 1,

21 .pxIndex = (ListItem_t*) &pxReadyTasksLists[2].xListEnd

22 }, ...

23 };

List. 2: Generated Stack, TCB and Ready-Queue for task1

model to provide them. In our example, task2 has a partial
specialization depth, so we replace the xTaskCreate() with
xTaskCreateStatic().

For the full specialization depth, the required IR modi-
fication depends on whether the SOC is created before or
after the start of the scheduler. As we already registered all
before-scheduler SOCs ( 5 ), we have to replace the SOC site
with IR code that only produces the expected return value. For
example, ARA replaces xMutexCreate() in the running example
with “mutex = &_mutex1”.

If we know that a SOC is executed within a thread, we
replace the creation call with a system call that only performs
the object registration (e.g., thread enqueue). If the RTOS
already provides such an API, we use it, otherwise ARA’s
RTOS model provides one. In the example, we replace the
xTaskCreate() call for task2 with a vTaskResume() call, which
only enqueues the thread without initializing it.

With these modifications in place, the transformation of
dynamic SOCs into static SOCs is complete and ARA writes
the application’s IR to a file to be further processed by the
compiler toolchain.

7 RTOS Specialization: Besides application modifications,
we also specialize the RTOS to the now changed application
requirements and incorporate analyses results for further
optimizations. For this, we change the RTOS configuration
and activate previously unused system calls while deactivating
now unused ones. Furthermore, we adapt the startup routines to
be compatible with our pre-initialized RTOS state and remove
redundant initialization steps. For example, FreeRTOS normally
initializes the ready queue during the startup process; a task
that ARA now performs statically.

Furthermore, we also reduce the configured RTOS heap
size: Since partial and full specialized system objects are now
allocated as global variables, they do not draw memory from
the RTOS-internal heap. If the SIA detects that all system
objects are at least partial specializable, we even disable the
RTOS’s heap manager altogether.
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1 @syscall(categories={SyscallCategory.create},

2 signature=(SigType.symbol, SigType.value, SigType.value,

3 SigType.symbol, SigType.value, SigType.symbol))

4 def xTaskCreate(cfg, abb, state):

5 ...

List. 3: Excerpt of the RTOS model describing the signature
of the xTaskCreate SOC

C. Link-Time Optimization

After application and RTOS are modified, ARA performs
the system-image assembly: We compile the generated source
files with Clang to LLVM IR and link it with the modified
application’s IR and the specialized RTOS. Furthermore, we
process the resulting system image with the link-time optimiza-
tion passes of LLVM such that all system components can be
optimized as a unit. As ARA initializes field values of statically-
initialized system objects only with constant expressions, the
optimizer is able to pre-compute the actual values and transfers
these objects to the data segment, which is copied from
flash to RAM at the boot time. Please note, that these pre-
computable values also include pointer values with constant
offsets (e.g., &_task1_stack + 495 in Listing 2), although they
are expanded at link time by the help of relocations.

For most data structures, it is profitable to use a pre-
initialized image of the object in the data segment, as this
avoids the execution of pseudo-dynamic run-time code during
the system setup. However, this is not universally true for all
(system) objects: Our early evaluations have shown that it is
sometimes cheaper to dynamically write a few values to a
sparsely-populated BSS-initialized object instead of putting the
whole object into the data segment. The reason for this trade-off
is the fact that initializing memory with zero is cheaper than
moving data around. To avoid this setup-time degradation, we
introduce a binary post-processing step.

8 Binary Post-Processing: The described issue arises for data
structures that mostly contain repeating values and are only
sparsely populated with differing values. The prime example
for this issue are pre-initialized stacks: In FreeRTOS, a freshly
initialized thread stack only contains a small initial call frame
to kick off the thread execution. Furthermore, we also found
similar patterns of sparsely-populated objects in one of our
case studies. Such sparsely-populated objects suffer from being
statically initialized as copying their values from flash into RAM
is more expensive than copying only the non-zero values.

To solve this problem, ARA provides a link-time opti-
mization that performs run-length encoding (RLE) of sparsely-
populated memory objects. During the system setup, while
we prepare the BSS and data segment, we also expand the
compressed image of the objects. This allows us to minimize
the flash reads for repeating values to a minimum, resulting in
reduced setup times.

IV. EVALUATION

We implemented the above concepts within ARA in a
combination of Python and C++. The latter is used for the
LLVM-specific code in form of several Python extension
modules. The model and high-level analyses are written in

Python for higher flexibility. Especially the model is expressed
as a Python class with domain-specific decorators to maintain
a concise and readable interface.

For example, Listing 3 shows an excerpt of the model
describing the signature of the xTaskCreate system call. In
particular, the method is used in three cases: To classify a
basic block as system call (os_model.isSOC, line 16, Listing 1),
to provide the necessary knowledge for os_model.create (line
17, Listing 1), and to specify the arguments within the value
analysis (os_model.params, line 35, Listing 1).

To show the improvements of our approach, we apply ARA
to three micro benchmarks and to two real-world case studies.
With the micro benchmarks, we quantify the maximal reachable
enhancement that our approach can achieve without interference
from other application initalizations. With the case studies, we
furthermore demonstrate the general applicability of ARA on
existing projects and also quantify the boot-time improvements
and its moderate impact on flash usage.

As case studies, we chose the LibrePilot CopterControl1

firmware as a safety-critical real-time application for the flight
controller of a quadcopter and the GPSLogger2, an embedded
application for logging GPS positional data on an handheld
device. Both projects use FreeRTOS as operating system and
create system objects before and after the scheduling has
begun. All our evaluations run on a STM32F103 MCU (ARM©

Cortex©-M3 @72MHz, 128KB Flash, 20KB SRAM) on a
STM32 Nucleo-F103RB evaluation board.

Until the SSP is reached, the boot process consists of four
initialization steps: (1) copy the data segment from flash to
RAM, (2) decompress the RLE segment, (3) initialize the BSS
with zeroes, and (4) run the application setup by calling main().
For our time measurements, we record the timestamps for the
SSP and each preceding initialization step with the CPU’s
Data Watchpoint and Trace (DWT) Unit. We repeated all time
measurements 100 times and the standard deviation was always
below 30 cycles, which is not surprising as the system setup
for our benchmarks is not dependent on external inputs. Thus,
the figures error bars are vanishingly small. Additionally, we
collect the sizes of the code, data, RLE, and BSS segments.

For our evaluation, we define three benchmark scenarios
where we limit the maximal specialization depths of the
discovered SOCs:

Baseline As baseline for run-time evaluations and size com-
parisons, the build system bypasses the ARA framework and,
therefore, we introduced no changes.
Partial For this scenario we ran the SIA but limited the
synthesis phase to a maximal specialization depth of partial,
even for objects were a higher specialization level would have
been feasible. Thereby, ARA only replaces dynamic memory
management with static object allocation.
Full For this scenario, we executed the full ARA approach
and applied the maximal possible specialization depth for all
discovered SOCs wherever they are feasible.
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Fig. 5: Result for Queue Instantiation

A. Micro-Benchmarks

To evaluate ARA, we constructed three micro benchmarks
that instantiate system objects such as threads and queues.
Thereby, we can observe the impact of ARA without disturbance
caused by other application logic.

a) Queue Instantiation: For this benchmark, we create 100
RTOS-managed queues via pseudo-dynamic xQueueCreate()

calls. Each SOC is placed in its own statement (not using
a loop) and we consider the scheduler start as the SSP of
this system. In FreeRTOS, queues are only initialized but not
registered with the RTOS. Only after a thread is waiting on
the queue, it becomes known to the RTOS.

Figure 5 shows results for the SSP delay and memory
requirements. For the partial scenario, the specialized system
reaches the SSP 28 663 cycles (32.99 %) earlier than the
baseline. However, since system calls that use statically-
allocated memory have more parameters, each SOC site requires
more instructions. In total, we end up with a flash-size increase
of 11 bytes per queue creation.

For the full scenario, ARA even saves 49 986 cycles
(57.54 %) compared to the baseline. Looking at the memory
consumption, we see that objects move from the BSS to the data
segment. However, as the data segment is loaded from flash,
we require 52 additional bytes of flash memory per queue. In
this scenario, the RLE compression only has a small influence
as initialized queues are not sparsely populated with values.

b) Thread Instantiation, Pre-Scheduler: For this benchmark,
we create 30 threads with xTaskCreate() in a row (without a
loop) before starting the scheduler, which is the SSP for this
benchmark. All threads come with a stack size of 200 bytes
and have a maximal specialization depth of full.

Figure 6 shows that specializing to a partial depth already
saves 21 267 cycles (28.46 %), while the full specialization
even achieves a boot-time speedup of 34 236 cycles (45.82 %).
Similar to the Queue instantiation benchmark, the per-object
specialization comes at the cost of increased flash usage (full:

1https://www.librepilot.org/, Version 16.0.9
2https://github.com/grafalex82/GPSLogger, Git commit: 8808b922
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Fig. 6: Results for Thread Instantiation, Pre-Scheduler
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Fig. 7: Results from Thread instantiation, Post-Scheduler

+239 bytes per thread). However, with the additional usage of
RLE, we can compress the sparsely-populated thread stacks and,
thereby, limit the flash increase to 64 bytes per thread. When
looking at the run-time measurements, we see that enabling
RLE compression further speeds up the boot process of the
full scenario by another 16 798 cycles. In total, this results in
a decrease of the SSP delay by 49 988 cycles (66.9%).

c) Thread Instantiation, Post-Scheduler: As a second thread-
creating micro benchmark, we build a system that creates only
one initialization thread before the scheduling start. This thread
subsequently creates 30 more worker threads with a priority
that is less than the initialization thread. Each thread has a stack
of 200 bytes and is fully specializable. The SSP is reached
when the initialization thread finishes.

Since the 30 worker threads are only created after scheduling
has started, ARA cannot avoid the run-time cost of thread
enqueuing. Still, Figure 7 shows a decrease of the SSP delay
by 46 415 cycles (60.85%) (full+RLE). For this benchmark,
the flash cost per thread (81 bytes) is a little higher as the SOC
sites still invoke the RTOS, but we see a similar benefit of
enabling RLE for the data-segment size and the SSP delay.

8
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Fig. 8: Results from LibrePilot
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Fig. 9: Results from GPSLogger

B. Case Study: LibrePilot CopterControl

The LibrePilot CopterControl firmware is a configurable
and flexible flight-controller firmware for quadcopters that
executes on an ARM Cortex M3 microprocessor, which is
connected to external peripherals and to an external flash storage.
For this evaluation, we mocked the communication with the
peripherals and used the board’s internal flash memory. Thereby,
we reduced the influence of external factors on the boot process.
The system reaches its SSP, when the application reports a
successful boot.

The application consists of 2673 functions with 17 265 basic
blocks, which originate from 78 787 lines of code. It has 2882
normal function-call sites and 223 system-call sites of which
33 are SOC sites. The maximal call-path length to a SOC is 8.
For its initialization, LibrePilot uses a custom linker script to
collect its initialization functions in a function-pointer section,
which is then iterated at boot time. To incorporate this link-time

knowledge, we manually annotated the three call sites that use
this section to use a smaller call-target set.

With these annotations in place, ARA detects 17 thread
SOCs and 24 queue SOCs. Please note that the number of
SOC sites is lower than the number of detected SOCs as some
SOCs are visited on different paths. From the SOCs, ARA can
specialize 5 thread SOCs fully and 2 thread SOCs partially;
none of the queues was specializable as ARA marked them
as being created conditionally. Reason for this low number
of specializable SOCs are assert() statements, which are
effectively irregular control flows that prematurely halt the
boot process. As a failing assert bypasses coming SOCs, ARA
marks all following SOCs as being conditional. In future work,
we want to extend ARA to specially handle failures during the
boot process.

With full specialization and RLE, we achieve a reduction of
the system-setup time by 7592 cycles (see Figure 8). However,
since the start-up phase of the LibrePilot makes liberal usage
of dynamic initialization for library and application objects,
ARA’s SSP reduction boils down to a vanishing 0.31 percent
speedup.

We manually investigated on LibrePilot’s long boot process
and found that wide parts of its system-setup code dynamically
allocates user-level objects and initializes them with data that
does not vary between reboots. Even more, these objects are
never deleted and LibrePilot’s FreeRTOS configuration uses a
heap manager without a functional implementation for free().
Hence, LibrePilot shows the dynamic–object–creation problem
not only on the level of system objects but also on the level
of user-level objects.

C. Case Study: GPSLogger

The GPSLogger is a freely available application that collects
GPS information. It consists of the MCU connected to a
graphical display (I2C), a GPS receiver (UART), an SD card
(SPI), and two buttons (GPIO), all of which are only used
after the SSP. The application code consists of 1311 functions
and 11 165 basic blocks, which originate from 79 573 lines of
source code. In total, there are 2303 function-call sites and 36
system-call sites of which 10 are SOCs. The maximal call-path
length within the creation-relevant functions is three. As all
system objects are created before the scheduler starts, we use
the vSchedulerStart() as the SSP.

ARA detects 6 threads, 3 queues and one mutex and all
discovered instances are suitable for the full specialization depth.
In Figure 9, we see a startup-time reduction of 6790 cycles
(11.65%) for the partial specialization with RLE. However, due
to the delay to copy the data segment, a full specialization of
all ten SOCs leads to an increased SSP delay of 880 cycles
(+1.51%). This increase is mainly driven by the copy operation
of the thread stacks from the flash memory. Therefore, enabling
the RLE limits this effect and ARA achieves an overall SSP-
delay reduction of 24 886 cycles (42.71%).

When looking at the flash requirements (full+RLE), two
effects nearly cancel out each other: On the one hand, ARA
enlarges the data segment by 124 bytes due to pre-initialized
system objects. On the other hand, we are able to eliminate all
dynamic memory allocations from the RTOS and, therefore,
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ARA automatically disables the RTOS-internal heap manager,
which reduces the code size by 1460 bytes. Thereby, the total
flash requirements decrease by 1336 bytes.

Besides the targeted system objects, our RLE compression
of sparsely-populated objects also had an impact on the
GPSLogger application itself: The SD-card library statically
allocates a large object (1136 bytes) that contains a buffer for the
SD-card communication and some constantly-initialized state
variables. Due to the static initialization of a few values, the
compiler puts the whole object, including the large uninitialized
buffer area, to the data segment. The RLE compression of this
buffer accounts for 2931 cycles of our observed boot-time
savings.

V. DISCUSSION

In the evaluation, we have seen that ARA consistently
reduces the SSP delay, although the observed improvements
varied widely between 0.31 percent and 66.9 percent. We pay
this reduction with an increased usage of flash memory as the
binary’s data segment now includes the pre-initialized system
objects. As the system setup is only a rarely occurring event,
the question arises if our achieved improvements are worth the
effort?

For systems that recover from errors by rebooting [2], [3],
the setup phase occurs at a critical moment and its worst-
case delay determines whether the system is able to meet its
deadlines even in the presence of errors. In essence, if we
look at the whole real-time system, the setup phase must be
considered as a non-preemptable sporadic task, executed with
the highest priority, that has a (hopefully) very long inter-
arrival time. Therefore, we believe that boot-time reductions
will directly lead to better guarantees for such systems.

Compared to this boot time improvement, the increased
usage of flash memory seems reasonable. In our case-studies,
we have seen that overall impact on the flash usage varies
(LibrePilot: +0.65%, GPSLogger: -1.9%) but is not significant
compared to the rest of the application. Furthermore, for the
class of embedded systems that ARA targets, the amount of
available flash is often not a limiting factor. However, these
systems often run at low clock speeds, which makes execution
time a precious resource.

Furthermore, applying ARA is fast and automatic: The
combination of ARA’s analysis and synthesis phases ranges
from about 2 seconds to about 70 seconds (LibrePilot) and
happens without user intervention. In comparison to the rest
of the build process, which takes about the same amount
of time, ARA’s compile-time overheads are reasonable and,
as functional properties remain untouched, can be limited to
important system-image builds. Furthermore, ARA is currently
a Python prototype that we have not optimized for analysis
time yet and whose conceptually most complex step (the SVF)
completes in at most two seconds for our benchmarks. By using
ARA in a continuous-integration and deployment pipeline, it
will yield boot-time reductions in production without slowing
down the normal development process.

Also, in contrast to the severe effects of switching to
an RTOS that provides only static SOCs, ARA limits the
RTOS-API usage only in a single aspect: In our current

implementation, it forbids the user to delete static system objects
as their memory was not allocated from the heap manager.
However, system objects that are created exactly once with
fixed creation parameters are unlikely to get destroyed and
neither the GPSLogger nor LibrePilot perform such a system-
object reclamation, which we enforced with an additional check
in ARA. Although FreeRTOS provides heap manager imple-
mentations that are capable of handling memory reclamation, all
examined applications use the simple bumping-pointer allocator
which does not even provide a method to reclaim memory.
Nevertheless, if memory reclamation is desired, ARA could
extend the statically allocated objects with pre-initialized heap-
manager information such that even those objects can get freed.

Another important aspect is the generalizability of our
results to other applications. Although the Embedded Market
Survey [15] suggests that 18 percent of the embedded develop-
ers use FreeRTOS, we had a hard time find available real-world
benchmark scenarios that use it. However, with LibrePilot, we
have successfully processed a representative application that
makes heavy use of dynamic SOCs, which makes us confident
that our approach will also yield boot-time reductions for other
projects.

Although our implementation only supports FreeRTOS, the
ARA approach is generalizable to other RTOSes that adhere to
our system model: Since the presented algorithms are operating-
system agnostic, we were able to encapsulate all RTOS specifics
in a replaceable RTOS model. This RTOS model provides
information about SOC signatures, the interpretation of the
creation parameters, and the necessary methods to encode
static system-object initializers as C code. For the synthesis,
ARA also requires the RTOS model to provide system calls
that only perform a partial initialization and object registration.
At the moment, we are working on Zephyr [37] support for
ARA.

The main factor to achieve large boot-time reductions
is the precision of the SIA, which is mainly driven by the
ability to restrict the call-target set for function-call blocks
(see Section III-A, 2 ). Since ARA is conservative and only
specializes exactly-once SOCs, recursive call paths limit the
specialization depth to none. So, if the call-target set for
an indirect call site cannot be restricted enough, our over-
approximation of the ICFG becomes very loose, and many
SOCs that are actually static are left untouched by ARA.
However, since indirect function calls are also problematic
for other real-time analyses (e.g., WCET calculation), their
usage is often restricted [24] or manual developer annotations
are already available in the source code. Therefore, ARA is
able to make use of such annotations and informs the user
about large call-target sets.

Apart from the boot-time reductions, ARA’s analyses results
also allows for some basic sanity checks of the creation
parameters against the given RTOS configuration. For example,
we check that the given thread priority is in the range of allowed
priorities and are able to emit a warning, where FreeRTOS
silently caps the priority to the maximal available priority.
Furthermore, after we have shrunk the size of the statically-
allocated FreeRTOS heap ( 7 ), we check that the remaining
heap is large enough to hold at least one instance of each
unspecialized SOC and emit a warning otherwise.
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Besides all the technical improvements that ARA provides
for the boot process, there is another benefit of ARA’s
hybridization between dynamic and static SOCs. Developers
can use dynamic SOCs and enjoy their flexibility, while still
getting the benefits of static SOC whenever possible. Thereby,
developers can stick to their known OS-usage patterns as we
retain the “POSIX-like haptic” of the RTOS. This is especially
useful for the broader domain of embedded systems (e.g., IoT)
where hard real-time constraints are less important and the
availability of developers is a main driver of management
decisions. In these domains, a flexible API is often preferred
over the strict corset of a static system design, although
the latter one is easier to analyze and yields better run-time
characteristics.

Additionally, based on ARA’s analysis results, we also
provide a visual representation of the application’s creation-
relevant call graph and captured system objects. This can help
developers to understand the project’s initialization process as
it highlights the important source-code parts where the system
objects originate from. Thereby, ARA assists the developers to
further optimize the boot process.

In future work, we plan to extend the ARA approach to
support static initialization of user-level objects. For LibrePilot,
we have seen such dynamic initializations can slow down the
boot time of dynamic systems considerably. Therefore, we
want to extend ARA to also recognize malloc() as a SOC-like
function call and collect as much constant values as possible
from the initialization site.

Furthermore, we want to extend the process of automatic
staticalization to the used data structures: Currently, ARA
remains compatible with the dynamic API of FreeRTOS and
therefore has to generate objects as if they were allocated
and initialized at run time. Thereby, we allocate and initialize
data structures that are easy to manipulate (e.g., linked lists)
for a system that might never modify these data structures.
Hence, we want to extend ARA to exchange the RTOS-internal
dynamic data structures by fixed-size structures and arrays to
further improve the RTOS’ run-time behavior and memory
consumption.

VI. RELATED WORK

Statically deducing computation results is the essence of
an optimizing compiler and it is an incarnation of the seminal
concept of partial evaluation [17]. For example, the LLVM
framework [22] evaluates trivial constructors of global objects at
compile time and places the initialized object image in the data
segment. Even more, compile-time function evaluation (CTFE)
is a topic of ongoing research [31] and several programming
languages put a focus on better support for explicit CTFE:
Since C++-11 [12], the constexpr keyword enabled developers
to evaluate expressions at compile time and the keyword
became less restrictive with every following language update.
This development was fanned by the D language [14], whose
compilers include an interpreter, and it also inspired the meta-
programming capabilities of the Circle language [7]. In contrast
to ARA, these implicit and explicit CTFE methods focus on
single compilation units instead of the whole system and they
perform no interpretation of RTOS-specific SOCs.

Wimmer et al. [35] extended the GraalVM to allow for
application startup: At build-time, they execute parts of the
application and produce a pre-populated JVM image that
contains user-level objects as well as a pre-heated JIT cache.
Thereby, the application startup boils down to a few mmap()

operations. However, this approach only works for memory-
safe languages as a precise points-to analysis is required and it
remains limited to the application alone. On a broader scope,
link time optimization (LTO) also performs a whole system
optimization. For example, GCC’s WHOPR framework merges
global constructor invocations with the same priority and it
reorders statically-allocated objects to increase code and data
locality [18], [9]. In contrast to ARA, all these techniques focus
on the application but leave the operating system aside.

Cockx [11] performs a manual staticalization of SOCs
and thereby shows that moving pseudo-dynamic SOCs to the
compile time is beneficial and he argues for an RTOS-aware
compiler that performs this manual procedure automatically.
Titzer [33] sacrifices compatibility with legacy applications by
providing a domain-specific language for embedded systems
that only allows compile-time initialization. However, the
proposed language does not provide basic operating-system
concepts like threads or mutexes. In contrast to this, ARA keeps
compatible with legacy applications and with the existing RTOS
interface and semantic.

Yang et al. [36] reduce Android startup times by up to 90
percent by loading whole-system images that were previously
created with the suspended-to-disk mechanism of Linux. Singh
et al. [29] performed a manual analysis of the Android startup
and decrease the SSP delay by identifying parallelization
bottlenecks, dropping unnecessary execution, or moving less-
important initialization tasks beyond the SSP. In contrast to
ARA, these approaches focus on a specific operating system and
involve a lot of manual intervention by the system integrator.

Similar to ARA, Chanet et al. [10] analyze a concrete
combination of application and RTOS to remove unreferenced
system calls and unused system call parameters. Additionally,
they deduce system-wide–constant system-call arguments and
propagate them into the kernel. Lee et al. [23] also perform
a whole system analysis for embedded Linux systems and
eliminate dead code from the kernel. Bertran et al. [8]
generalized this concept of system-wide dead-code elimination
by construction of a global CFG that covers applications,
libraries, and the operating system. Dietrich et al. [13] performs
abstract interpretation of the interaction between RTOS and
application to specialize system-call handlers. Unlike ARA,
these automated whole-system analyses focus on the kernel
behavior after the SSP and do not consider the static execution
of SOCs.

Another direction of whole-system analysis in the real-
time domain is dynamic tracing: Tools like Grasp [20] and
Tracealyzer [34] record the system’s operation to measure its
timing characteristics, whereby they can report on observed
SOCs. However, their reports are intended for developer
feedback and automated testing procedures, and they are not
used for automated system optimization.
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VII. CONCLUSIONS

With ARA, we presented an RTOS-aware analysis and
specialization method to reduce the system-setup point (SSP)
delay. In a call-path sensitive and RTOS-aware analysis of
the real-time application, we detect all system-object creations
(SOCs) before and after the scheduling starts and infer if a spe-
cific SOC happens exactly once. For these SOCs, we statically
allocate memory and, in case of compile-time–constant creation
parameters, we also perform static initialization and registration
with the RTOS. Thereby, ARA automatically transforms pseudo-
dynamic SOCs, which yield the same object on every boot, to
static SOCs, which come at much lower overhead during the
boot process. We demonstrated the applicability of our approach
with two real-world FreeRTOS applications and reduced their
SSP delay by up to 43 percent at a moderate increase in flash
usage. For micro benchmarks, the speed up was even up to 67
percent.
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