
Data-Flow-Sensitive Fault-Space Pruning for the
Injection of Transient Hardware Faults

Oskar Pusz
Leibniz Universität Hannover

Germany
pusz@sra.uni-hannover.de

Christian Dietrich
Leibniz Universität Hannover

Germany
dietrich@sra.uni-hannover.de

Daniel Lohmann
Leibniz Universität Hannover

Germany
lohmann@sra.uni-hannover.de

Abstract

In the domain of safety-critical systems, fault injection cam-
paigns on ISA-level have become a widespread approach to
systematically assess the resilience of a system with respect
to transient hardware faults. However, experimentally in-
jecting all possible faults to achieve full fault-space coverage
is infeasible in practice. Hence, pruning techniques, such as
def/use pruning are commonly applied to reduce the cam-
paign size by grouping injections that surely provoke the
same erroneous behavior.

We describe data-flow pruning, a new data-flow sensitive
fault-space pruning method that extends on def/use-pruning
by also considering the instructions’ semantics when deriv-
ing fault-equivalence sets. By tracking the information flow
for each bit individually across the respective instructions
and considering their fault-masking capability, data-flow
pruning (DFP) has to plan fewer pilot injections as it derives
larger fault-equivalence sets. Like def/use pruning, DFP is
precise and complete and it can be used as a direct replace-
ment/alternative in existing software-based fault-injection
tools. Our prototypical implementation so far considers lo-
cal fault equivalence for five types of instructions. In our
experimental evaluation, this already reduces the number of
necessary injections by up to 18 percent compared to def/use
pruning.

CCS Concepts: · Hardware→ Test-pattern generation

and fault simulation; System-level fault tolerance.

Keywords: reliability, functional correctness, single event
upset, bit flip, fault injection, fault-space pruning

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

LCTES ’21, June 22, 2021, Virtual, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8472-8/21/06. . . $15.00

https://doi.org/10.1145/3461648.3463851

ACM Reference Format:

Oskar Pusz, Christian Dietrich, and Daniel Lohmann. 2021. Data-

Flow-Sensitive Fault-Space Pruning for the Injection of Transient

Hardware Faults. In Proceedings of the 22nd ACM SIGPLAN/SIGBED

International Conference on Languages, Compilers, and Tools for

Embedded Systems (LCTES ’21), June 22, 2021, Virtual, Canada.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3461648.

3463851

1 Introduction

Transient hardware faults have become an emerging chal-
lenge for safety-critical systems [11]. Functional safety stan-
dards, such as the automotive ISO 26262 standard [26, 27],
address with this fact by recommending explicit measures to
assess (and possibly mitigate) the effects of single-event up-
sets (SEUs) causing transient hardware faults (soft errors) [33]
to the functional safety of the system. This is commonly done
by performing extensive fault injection (FI) campaigns on
the target system [2, 8] that try to mimic either the physi-
cal causes for SEUs (by exposing the system to, e.g., heat or
radiation [17, 38]) or their effects (by changing logic signals
on, e.g., pin [32], flip-flop [10], ISA [20], or even program
level [23]). Our focus for this paper is the injection of logic
faults on ISA-level, that is, bit flips in all software-accessible
registers and main memory.

To reach full fault space (FS) coverage of all possible single-
bit faults on this level, one has, in principle, to inject each bit
at every cycle of the application’s execution ś resulting in a
prohibitively large number of required experiments. Hence,
fault-space pruning (FSP) techniques are applied to reduce the
number of experiments by grouping injections that lead to
equivalent results. The long known def-use pruning (DUP) [5,
16, 19, 22, 44] is still considered as a fundamental FSPmethod,
broadly applied by FI tools. Its key advantage is that it is
precise and complete, so DUP can be safely applied regardless
of the actual system-under-test (SUT).

About This Paper. We describe DFPrune, a new data-
flow sensitive FSP method that extends on DUP by also using
the fault-propagation behavior of instructions when form-
ing sets of equivalent faults. The core idea is depicted in
Fig. 1, which presents the example (a) of a code snippet
with four instructions (5 machine states) that operate on
two 4-bit registers, which results in a FS of 40 injections
for full coverage. DUP (b) condenses this FS by constructing

97

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3461648.3463851
https://doi.org/10.1145/3461648.3463851
https://doi.org/10.1145/3461648.3463851

LCTES ’21, June 22, 2021, Virtual, Canada Oskar Pusz, Christian Dietrich, and Daniel Lohmann

// initial r0=5, r1=11

//////////////////////

// shift-left by 1

r0 := SHL r0, 1 //r0=10

// bit-wise XOR with 7

r1 := XOR r1, 7 //r1=12

// bit-wise AND

r1 := AND r0, r1 //r1=8

// move result to r0

r0 := MOV r1 //r0=8

// result in r0

(a) Code Example

r0

r1

t
0 1 2 3 4

SHL XOR AND MOV

fault
equivalence

read
event

write
event fault pilot

(b) Def-Use-Pruned Fault Space (24 inj.)

r0

r1

1
0
1
0

0
1
0
1

0
1
0
1

0
1
0
1

0
0
0
1

1
1
0
1

1
1
0
1

0
0
1
1

0
0
0
1

0
0
0
1

t
0 1 2 3 4

SHL XOR AND MOV

(c) Data-Flow-Pruned Fault Space (4 inj.)

Figure 1. Example Program with four Instructions. The ma-
chine has two 4-bit registers (r0, r1) and we expect the result
in r0 after 𝑡 = 4. The yellow boxes indicate the planned pilot
injection.

one-dimensional fault-equivalence intervals (EIs) spanning
between write (def) and read (use) events, which in this case
reduces the number of required injections to 24 (yellow tips).
With DFPrune (c), the equivalences span across such use

events and into different locations by tracking the flow of
each bit individually across the respective instructions. In-
tuitively, this formation of single-bit-fault equivalences is
possible until the fault’s data-flow may fork into more than
one result location, whereby it becomes a multi-bit fault-
/error. In Fig. 1c, the flows and resulting equivalence sets
are depicted by color: Faults in the gray locations do not
influence the program output and are truly benign, while a
bit flip in one of the colored bits in step 4 is equivalent to a
flip at any other point of the same color. This reduces the
number of required pilot injections to 4 (yellow tips).

Like DUP, DFPrune is precise and complete and thereby
as generally applicable. In particular, we claim the following
contributions:

• The DFPrune method for precise and complete data-flow-
sensitive ISA-level fault-space pruning.

• Utilization of value-dependent bit-wise local fault-
equivalence rules in ISA-level FSP.

• Quantitative comparison against def-use pruning with
campaign-size reductions of up to 18 percent.

The rest of the paper is structured as follows: In Sec. 2, we
describe our fault and system model. In Sec. 3, we describe
our fault-space pruning method and evaluate its reduction
of required fault injections in Sec. 4. We discuss the results
of the evaluation and our proposed method in Sec. 5 and the
related work in Sec. 6, before we conclude in Sec. 7.

2 Fault and Fault-Injection Model

Wewant to investigate the resilience of programs in the pres-
ence of transient hardware faults (soft errors) [33], which
arise from SEUs caused by radiation, electromagnetic inter-
ferences or other environmental influences. These influences
manifest within the system, in combinatorial logic, registers,
and memory cells [7, 25, 43] and surface eventually as bit
flips at the hardware/software boundary, where they be-
come visible as ISA-level faults. In the continued program
execution, the fault can become benign, cause a detectable
failure (i.e., trap, timeout), or propagate as a silent-data cor-
ruption (SDC) into the calculation results.
In the following, we will define the fault and injection

model that we assume for our proposed fault-space prun-
ing technique. We assume that faults happen as uniformly-
distributed bit-flips in the volatile program state (memory,
general-purpose registers) in between two instructions. To
limit the scope of this paper, we do not consider faults in
the instruction memory, in the instruction semantic itself, or
in hardware elements that are not visible on the ISA-level.
For a given program execution, this fault model spans the
(complete) fault space (FS) that consists of one fault for each
state bit before (and after) each instruction. In Fig. 1b, each
black box represents one fault and the fault space contains
40 faults.

For the program-resilience examination, a FI campaign
covers the FS of a single program execution: First, we record
a fault-free execution of the program (the golden run) and
select a (sub-)set of all faults for injection. For each planned
injection, we start the program, execute it deterministically
up to the time of the fault, flip the bit in the desired fault
location, and continue the program. At this point, we make
the assumption that only a single fault happens during one
program execution, which is a reasonable assumption at cur-
rent fault rates [24, 40]. After the injection, the execution
platform observes the subsequent program behavior to de-
duce an failure classification for this fault. This classification
must be provided by the campaign designer and is specific to
the SUT. The FI campaign results in a failure classification
for (parts of) the fault space. We can use this fine-grained
per-fault classification either to identify vulnerable parts of
the program or to summarize the coarse-grained absolute

failure counts [40].
Besides failure classification, also the fault-equivalence

relation is important for our proposed method: two faults are
equivalent if they result in the same deviation from the data-

98

Data-Flow-Sensitive Fault-Space Pruning for the Injection of Transient Hardware Faults LCTES ’21, June 22, 2021, Virtual, Canada

and control flow and, thereby, result in the same erroneous
behavior. If two faults are equivalent they surely fall into
the same failure class; but two faults from the same failure
class are not necessarily equivalent. Hence, fault equivalence
is a strictly stronger relation between faults than failure
classification.
As FSs quickly become huge, fault-space pruning (FSP)

techniques are used to select a representative subset of all
possible faults for injection. From these representative pilot
injections, the pruning method extrapolates the results back
onto the fault space. Depending on their strictness and scope,
we use the terms precise and complete to categorize different
pruning methods: For individual faults, precise methods pre-
dict the same failure classification as if we would perform the
actual injection. Complete methods derive a failure classifi-
cation for each fault-space element instead of only providing
a summary of the program resilience. Hence, precise and
complete pruning methods are general, safely applicable, and
provide us with a fine-grained view of a program’s behavior
in the presence of transient hardware faults.

3 Data-Flow-Sensitive Fault-Space Pruning

The most prominent example of a precise and complete FSP
method is DUP [19, 44], which partitions subsequently fol-
lowing faults in the same location at write (def) and read
(use) events into compact EIs. For intervals ending in a read
event, a single pilot injection is sufficient as the fault can
remains passive until read. Intervals before a write event are
marked as benign without performing an injection as a fault
is surely overridden. In the extrapolation step, DUP projects
the injection result back onto all elements of the interval.
In Fig. 1b, DUP plans 24 pilots (yellow tips), whereof eight
pilots cover two faults, and further eight faults are classi-
fied as benign without conducting an injection. The key of
DUP’s success is its reliance on the strong notion of fault
equivalence, whereby it becomes independent of the SUT
and the used failure-classification schema.
DUP has two shortcomings when it comes to tracking

the propagation of single-bit faults before they escalate to
a multi-bit error: (1) DUP only forms one-dimensional EIs
along the time axis although instructions (e.g., MOV r0, r1)
propagate a fault in both dimensions of the fault space. (2)
DUP does not consider the operational semantic of the exe-
cuted instructions although some instructions only forward
a fault without spreading it. Hence, we propose data-flow
pruning (DFP) as a precise and complete FSP method that
harnesses this optimization potential while being at least as
effective as DUP.
From the golden run, DFPrune constructs a data-flow

graph that contains all observed values and executed instruc-
tions (Sec. 3.1) and instantiates instruction-local fault equiv-
alences that utilize knowledge about the concrete operand
values (Sec. 3.2). From these local equivalences, we calculate

0001

r0 0101 SHL 1010 1010 ε 1010 MOV 1000

r1 1011 1011 XOR 1100 AND 1000 ε 1000

0111

0 1 2 3 4

1011

1010

t

final value

instruction immediate

value

Figure 2. Data-Flow Graph for Running Example from Fig. 1

global fault-equivalence sets (ESs), which can extend across
instructions and locations (Sec. 3.3), and select one pilot
injection per ES (Sec. 3.4).

3.1 Construction of the Data-Flow Graph

The central data structure for DFP is a data-flow graph (DFG)

that represents the flow and transformation of data during
the golden run. We construct the DFG from the recorded
trace, which contains the visited instructions and the ob-
served values. In the following, we will explain its semantics,
its construction, and its relation to DUP’s FS partitioning
into EIs.
The DFG (see Fig. 2) is a directed graph that consists of

instruction nodes (blue) and value nodes (yellow), which oc-
cur in a strictly alternating fashion. Value nodes are asso-
ciated with a specific fault location (e.g., r1), contain a con-
crete numeric value (e.g., 1011), and have a temporal extent
(e.g., t=[0,1]). An instruction node has an operation type
(e.g., XOR), uses its predecessor nodes as source operands,
while its successors are its calculation result. For complete-
ness, we also model immediate values (gray), which are en-
coded in the instruction, even though they are not included
in our fault model.
In Lst. 1, we show the (simplified) pseudo code for the

DFG construction: While we iterate over each instruction
of the recorded golden-run trace, the state variable keeps
track of the current machine state by associating a fault
location (e.g., register r0 or memory address 0x1000) with
its current value, and time keeps track of the current position
within the trace. Like DUP, we use information about the
used fault locations (src_operands) and the defined fault
locations (dst_operands).

First, we collect the source operands: For each used value,
we introduce a pseudo instruction (𝜀) that splits up the source-
value node into two nodes and reflects the influence of read
events on the fault propagation as a post-read injection only
affects the following readers, while a pre-read injection also
affects the current instruction. We use the pre-read node
as argument for the instruction node (l. 15), but update the
machine state with the post-read value and the instruction’s
result. Whenever a value enters or leaves the machine state,
we update its temporal extent (lines 8, 13, 18, 20). For com-
pleteness, we also end all value nodes after we have pro-
cessed the trace (l. 24). Please note that we have not shown

99

LCTES ’21, June 22, 2021, Virtual, Canada Oskar Pusz, Christian Dietrich, and Daniel Lohmann

1 def construct(trace, initial_state):

2 time = 0 # time-axis of fault space

3 state = initial_state # fault location -> value node

4 for instr in trace: # For every golden-run instr.

5 # Step 1: read values, create epsilon nodes

6 arguments = []

7 for operand in instr.src_operands:

8 state[operand].end_time = time

9 arguments.push(state[operand])

10

11 eps = new Epsilon(state[operand])

12 state[operand] = eps.result

13 state[operand].start_time = time

14 # Step 2: create the instruction node

15 op = new (instr.Type)(arguments)

16 # Step 3: write back result values

17 for operand in instr.dst_operands:

18 state[operand].end_time = time

19 state[operand] = op.results[operand]

20 state[operand].start_time = time

21 # Step 4: Forward in time

22 time = time + 1

23 # Close open equivalence intervals

24 for value in state.values():

25 value.end_time = time

Listing 1. Data-Flow-Graph Construction

value nodes of length zero in Fig. 2 and the intermediate
pseudo instructions, which arise if an instruction directly
overwrites one of its source operands. After construction,
we mark some value nodes as final if they are observable
results (see Fig. 2).
It is important to note that the set of DFG’s value nodes

is isomorph to the set of DUP’s EIs: For each location, the
previous value node is split at read/write events while their
temporal extent is equal to the boundaries to the respective
EI. However, with its instruction nodes, the DFG includes
more semantic information, as it also captures the data-flow
relation between value nodes and the instructions that pro-
voke those data flows.

3.2 Instruction-Local Fault Equivalences

Next, we enrich the DFG with semantic information by de-
riving instruction-local fault equivalences that capture the
fault-propagation behavior of a single instruction from its
source operands to its destination operands. For this, we now
focus on a single instruction node and its surrounding value
nodes to derive a bit-wise read mask for each source operand
as well as a set of bit-wise local equivalence relations. In this
derivation, we use our knowledge about the numerical val-
ues and assume that at most one input-bit is faulty. In Sec. 3.3,
we check inter-instruction conditions to utilize these local
equivalences only if this single-fault assumption holds.
With the read mask, we mark source-value bit that can

have any influence on the instruction. For example, in Fig. 3,
the highest bit in a bit-wise left shift cannot influence the
performed calculation or its result. While most instructions
will interpret all input bits, the read mask captures bits that
surely have no influence for this instruction.

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

1011

1011

S
H

L
1

× ↓ ↓ ↓

M α β γ

α β γ δ

0101

1010

L
O

G
IC

N
O

T

↓ ↓ ↓ ↓

α α α α

β γ δ α

0000

0001

source
value

read mask

local
equivalence

set (α)

destination
value

Figure 3. Instruction-Local Fault Equivalences

With the local equivalence sets (LESs), we group input (or
output) bits that provoke the same behavior if struck by a bit-
flip, whereby it becomes irrelevant into which bit of a LES we
inject our assumed single-bit fault. We define LESs to contain
an arbitrary number of source bits and at most one output
bit. If it contains an output bit, a fault into the any source bit
results in flipped output value while no other output bits are
affected. If it contains no output bit, each contained source
bit will provoke the same faulty instruction result, which can
deviate from the golden-run value in multiple bit locations.
By creating a single-element LES, we can express that we
know nothing about a bit’s fault behavior.
Furthermore, we introduce the special valueM to mark

input bits that are masked by the instruction such that a
fault in the input does not lead to an altered output value.
This can either happen if the bit is not interpreted by the
instruction (e.g., most-significant bit in the SHL input), but
also if the semantic of the instruction masks out the fault
(e.g., bit-wise AND with a 0 in the second operand). Masked
bits are not member of any LES.

In Fig. 3, we show the LESs for three instructions where a
Greek letters mark LESs. A MOV operation propagates a fault
in one of its input bits to the same bit position in its out-
put operand. The bit-wise left-shift operation (shl 1) moves
faulty bits by one position and creates a single-element out-
put LES (𝛿), whereby we know that the fault 𝛿 cannot be
provoked by injecting the input values. For the logic not,
which performs the operation of the !-operator in C, a single-
bit fault in any of its input bits will result in the same faulty
result value (𝛼). Here, we also see that LESs can depend on
the numerical operand value: Only if the operand is logically
false (0000), all bits in the input and the least-significant
output bit are member of the same LES.
In our current implementation, we use a small set of

manually-derived LES construction rules for five instruction
types (MOV, AND, OR, XOR, ADD) and the 𝜀-instruction, which
can be treated as simple MOV instruction. For all unknown
instructions, we instantiate one single-element LES for ev-
ery input and for every output bit, whereby the instruction
becomes opaque for our fault pruning technique. In Sec. 5,
we will discuss how this derivation could be automated by a
more formal process.

100

Data-Flow-Sensitive Fault-Space Pruning for the Injection of Transient Hardware Faults LCTES ’21, June 22, 2021, Virtual, Canada

1 def visit(value : ValueNode):

2 # We do not have to inject bits that are not

3 # interpreted as they are surely benign.

4 for bit, count, in read_counts(value):

5 if count == 0:

6 value.symbols[bit] = null_symbol

7

8 def visit(instr : InstructionNode):

9 # Step 1: Back-propagate nulls into read_mask

10 for LES in instr.equivalences:

11 if LES.dst and LES.dst.symbol == null_symbol:

12 for src in LES.sources:

13 instr.read_mask[src.bit] = false

14 # Step 2: Form symbol equivalences

15 for LES in instr.equivalences:

16 symbols = []

17 if LES.dst and LES.dst_symbol != null_symbol:

18 symbols.add(LES.dst.symbol)

19 for src in LES.sources:

20 # Cond. 1: We are the only reader of the value

21 readers = read_counts(src.value)

22 if readers[src.bit] > 0:

23 continue

24 # Cond. 2: The source value must have vanished

25 # from the system before our result is used.

26 if lifetime(src) > instr.dst.end_time:

27 continue

28 symbols.add(src.symbols[bit])

29 # Mark symbols as equivalent

30 make_equivalent(symbols)

Listing 2. Propagation of Global Injection Symbols

3.3 Global Propagation of Fault Equivalences

After the LESs construction, we return our focus on the
whole DFG and establish inter-instruction fault equivalences
for individual bits. For this, we create injection symbols and
propagate them on the DFG under assistance of the LES as
long as we can hold up the single-fault assumption. Fig. 4
depicts an DFG (Fig. 1) in different phases of this propagation.
First, we create a unique injection symbol for each value-

node bit (see Fig. 4a). For example, the symbol łaž denotes
a possible injection into the highest-significant bit of r0

before the AND instruction. Furthermore, we introduce a
null_symbol to mark surely benign injections. In the fol-
lowing, we will try to eradicate symbols by showing their
equivalence before planning one pilot injection for the re-
maining symbols.
For this, we perform a data-flow analysis (see Lst. 2) and

propagate symbols from latter value nodes back into earlier
ones if we can show that both injections are equivalent. As
an intuition, we say that two symbols are equivalent if a fault
in the earlier symbol will always propagate as a single-bit
fault in the latter symbol without having any other influence
on the system. In order to form ESs, we perform a backward
breadth-first analysis (not shown) from the leaves to the

initial state and visit() instruction as well as value nodes
until no further changes happen.

For the propagation, we require two helper functions: For
every bit of a value node, the read_counts() function cal-
culates the number of instructions that read and interpret
it by accumulating their read_mask bit vectors. We perform
an additional increment, if the value is marked as final (see
Sec. 3.1), to ensure that bits that influence the observable
behavior have at least a read count of one. Furthermore,
we require the lifetime() helper function that returns the
maximal life time of a given value in that fault location. For
example, although reading a value from memory ends the EI,
the value still remains accessible until it gets overridden. In
Sec. 5, we will give a more detailed discussion on the impact
of this function and how to improve it. However, for now it
is sufficient to know that after the life time of a value ended
it must no longer be accessible in the machine state.
When we visit a value node (l. 1), we calculate the read

count for every bit and replace the corresponding injection
symbol with the null symbol if the count is equal to zero.
This is possible since a faulty bit that is not read by any
instruction cannot influence the program behavior. In fact,
with this propagation, our DFP method catches up with the
effectiveness of DUP since dead values, which are overridden,
have no reader and therefore require no pilot injection. In
our running example (see r1 in Fig. 4b), this propagation
rule replaces the injection symbols mśp with 0.
For an instruction node and its LESs, which consist of

many source-value bits (LES.sources) and one optional
destination-value bit (LES.dst), we perform two propaga-
tions: First (l. 9), for each LES with a destination bit, we
propagate null symbols back into the read mask of the cur-
rent instruction. Since all faults in a LES are equivalent, the
fault cannot spread to other destination bits outside the LES
and it will end up flipping exactly the destination bit. If this
bit has no influence on the result, we can pretend that all
source bits are not read by the instruction. By this rule, also
all 𝜀-instruction that result in a dead value have a cleared
read mask (see r1 in Fig. 4b).

With the second instruction-node rule, we use the LESs to
establish fault equivalences between value nodes: we filter
the instruction-local LES to include only those bits that can-
not spread to other executed instructions but will end up as
a single bit-flip at the current instruction’s input operands.
For a source-value bit to be included into this set it must
fulfill two conditions: First, the current instruction must be
the only (interpreting) reader of this bit (l. 20). Thereby, we
demand that the current instruction is the only instruction
in the fault-free execution that interprets this bit.
This first condition prevents us from establishing false

equivalences where, for example, a fault can interact with
itself (see Fig. 5a): Although, both MOV and 𝜀 are transparent
for a fault in 𝑥 andmove it without spreading to their outputs,
we are not allowed to make 𝑥 and 𝑦 equivalent, since this

101

LCTES ’21, June 22, 2021, Virtual, Canada Oskar Pusz, Christian Dietrich, and Daniel Lohmann

r0 r1
M

O
V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

ε

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

A
N

D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α β M M α M γ M

α β γ δ

1010

a b c d

1100

e f g h

1000

i j k l

1000

q r s t

1000

m n o p

injection
symbols

pilot
injection

masked
fault

(a) After Construction

r0 r1

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

ε

× × × ×

α β γ δ

α β γ δ

A
N

D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α β M M α M γ M

α β γ δ

1010

q r c d

1100

q f s h

1000

q r s t

1000

q r s t

1000

0 0 0 0

injection
symbols

pilot
injection

masked
fault

(b) After Propagation

r0 r1

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

ε

× × × ×

α β γ δ

α β γ δ

A
N

D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α β M M α M γ M

α β γ δ

1010

q r 0 0

1100

q 0 s 0

1000

q r s t

1000

q r s t

1000

0 0 0 0

injection
symbols

pilot
injection

masked
fault

(c) After Fault-Masking

Figure 4. Data-Flow-Sensitive Fault-Space Pruning for the Running Example from Fig. 1.

x

MOV

ε

y

y

XOR y

(a) Multiple Readers

1 void *ptr = NULL;

2 void *tmp = ptr;

3 if (tmp != NULL) {

4 *ptr;

5 }

(b) Deviating Control Flow

Figure 5. Problematic Situations for the Fault Propagation

would result in a violation of the single-fault assumption
at the XOR node: if the 𝑥 is flipped from zero to one the
XOR-output remains zero, while an injection in 𝑦 provokes a
XOR-output of one.

The second condition (l. 24) is more delicate to understand
as it involves dead values that are only read in a deviating
execution flows after the fault injection. The small (com-
plete) example in Fig. 5b makes the problem more plastic: In
the fault-free execution, the dereference instruction (l. 4) is
not executed, whereby the DFG contains no respective in-
struction node that acts as a second reader for ptr. However,
injections into ptr and tmp are not equivalent as they can
result in different failure classifications: If we inject a fault
into tmp, the control flow deviates at the condition and the
program traps on a null-pointer dereference. But, if we inject
a fault into ptr such that the pointer coincidentally becomes
a valid pointer, the dereference does not lead to a trap and
the program terminates successfully. Therefore, we are not
allowed to use the assignment’s LESs (l. 2) for propagation
although it is the only reader in the DFG.
Therefore, we introduce a second condition that ensures

that the source value has surely become inaccessible before
the propagated fault is used in a following instruction. For
this, we check that the life time of the source value is smaller
(or equal) to the end time of the destination-value node.

Thereby, we ensure that even if the fault results in a deviating
control- or data-flow, the fault cannot interact with itself and
violate the single-fault assumption. For our implementation,
we use the overwrite-time of the value after the last 𝜀-node
as a conservative life-time estimation.
However, in some situations, we could use a shorter life-

time approximation if we can show that a value already
becomes inaccessible earlier: For values that live in registers,
the life time ends if no instruction after LES.dst.end_time
can read the value before it is overwritten. For example,
although the value 1000 in r1 (Fig. 1c) is present until after
𝑡 = 4 it directly becomes inaccessible after 𝑡 = 3 as no
instruction in between uses r1 as an operand.
We mark all source-value bits that meet both condi-

tions and the optional destination-value bit as equivalent
and thereby form inter-instruction and inter-location fault-
equivalence sets (l. 30). In our running example (see Fig. 4b),
we can propagate the symbols qśt back, through the MOV

and the AND instruction, to the input bits of the AND. This is
possible as MOV is the only remaining reader of AND’s output,
whose life time we could shorten to 𝑡 = 3. Please note that
the symbols {c,d,f,h} are still present although we will
mask them in the next step.

3.4 Fault-Injection Masking and Planning

With the read-mask and the injection-symbol propagation,
we can already avoid many pilot injections without sacri-
ficing the precision of the pruning method. However, we
have not yet taken the masking capabilities of individual
instructions into consideration. For example, a bit-wise AND
instruction where both operands are zero will mask out any
single-bit fault in its arguments. In the DFG, we already have
added per-instruction masking information that is able to

102

Data-Flow-Sensitive Fault-Space Pruning for the Injection of Transient Hardware Faults LCTES ’21, June 22, 2021, Virtual, Canada

utilize concrete operand values (seeM in Fig. 4b). In the last
step, we will use this information to plan only those pilot
injections that are not masked by the following instruction.
After our propagation, an injection symbol can occur at

multiple value nodes while it indicates equivalent faults.
Therefore, for each symbol, we can freely choose one of
those value-node-bit-positions and use it as a pilot injection.
However, instead of selecting a pilot at random, we choose
the pilot with the latest possible injection time as all earlier
injection will finally end up as a single-bit flip at this value
and the following instruction nodes are the first possibility
where the fault could escalate to a multi-bit error. Hence,
if all readers of this latest injection symbols mask (M) the
input bit, we know for sure that the injection will become
benign and we can avoid planning the pilot.

In our running example (see Fig. 4c), for the symbols qśt,
we choose the latest value node of r0 and plan four injections.
Furthermore, as the AND operation masks out several bits,
we can avoid the injection of the symbols c,d,f,h. As these
symbols also occur (see Fig. 1c) in the source and destination
operands of the SHL and the XOR operation, we know that
some bits of the initial state are irrelevant for the result.
For the final extrapolation step, we project the injection

results back to all value nodes where the symbol occurs. As
every value node is an EI in the sense of DUP, we can further
project it down to individual faults or weigh the result with
temporal extent of the value node. Thereby, DFP is able to
deduce an injection result for every element of the fault
space, making it a complete pruning method. Furthermore,
as all occurrences of a symbol are equivalent, DFPrune’s
pilot selection and result extrapolation is a precise pruning
method.

4 Evaluation

For the evaluation, we apply the DFPrune method to seven
benchmarks from the MiBench [18] benchmark suite and to
five smaller self-implemented benchmarks, which we call
the micro-benchmark suite. We use the DUP technique as
a baseline and compare DFP in terms of the required pilot
injections and validate DFP’s precision with the DUP results.
We use our described fault model (see Sec. 2), which covers
uniformly-distributed bit flips in registers and memory.

4.1 Experimental Setup

We use the simulation-based open-source FI framework
FAIL* [41] for fault injection. This framework extracts pro-
gram traces, performs DUP, and executes the pilot injections
using the IA-32 simulator Bochs. We extended the FAIL*
toolchain to support our DFP method.

Due to the client-server-architecture of FAIL* and the in-
dependence of the injections, fault-injection campaigns are
highly parallelized via FAIL*. We performed the necessary
fault injections on a cluster using 17 Intel X5650 @ 2.67GHz

Table 1. Benchmark Overview

MiBench Benchmarks

mi/BC Bitcount mi/RDD Rijndael Decryption
mi/BFD Blowfish Decryption mi/RDE Rijndael Encryption
mi/BFE Blowfish Encryption mi/SHA SHA1 Checksum
mi/QSORT Quicksort of strings

Micro-Benchmarks

𝜇/FIB Recursive Fibonacci
𝜇/LSUM Iterative sum over an array of integers.
𝜇/MIXED Many bit-wise operations.
𝜇/QSort Recursive quicksort of 3D-Points
𝜇/QSortIter Iterative quicksort of 3D-Points

(12 cores each) such that 204 injections can run simulta-
neously. We performed the pre-injection DUP and DFP as
single-threaded programs on an Intel i5-7400 @ 3GHz.

4.2 Evaluation Scenario

Our current DFP implementation uses LES rules for the in-
struction types MOV, ADD, and bit-wise AND, OR as well as XOR.
As described in Sec. 3.2, we treat all the other instructions
as opaque such that no equivalence propagation happens
across them and each source-value bit results in exactly one
pilot injection (like DUP).
We use two groups of benchmarks to evaluate the DFP

(see Tab. 1): First, we selected seven programs from the auto-
motive and security branch of the MiBench [18] benchmark
suite, as both branches are critical for safe and secure sys-
tems. Second, we implemented five benchmarks to cover
certain program characteristics: recursive Fibonacci (𝜇/FIB)
is dominated by memory-indirect control-flow instructions,
iterative looped sum (𝜇/LSUM) has nearly no intermediate
results, mixed bit-wise operations (𝜇/MIXED) contains many
ADD, AND, OR and XOR instructions, and recursive vector quick-

sort (𝜇/QSort) as well as iterative vector quicksort (𝜇/QsortIter)
have data-controlled control flows.
We use six failure classes after the fault injection: (1) Be-

nign (OK) ś the program produced the correct result. (2)
Silent-data corruption (SDC) ś the program terminated but
produced an erroneous output. (3) Timeout (TIME) ś the
program took significantly longer than the fault-free execu-
tion. (4) Trap (TRAP) ś the processor reported a trap during
the execution. (5) Write text segment (TEXT) ś the program
tried to write to the read-only code section. (6) Write outer
space (WRITE) ś the program tried to write outside the as-
signed memory space. With TEXT and WRITE, we emulate
the protection capabilities of an memory-management unit.

The fault model (Sec. 2) covers each bit in each of the eight
general-purpose registers of an IA-32 processor and each
(accessed) main memory bit, while faults happen in between
two instructions. We compiled our benchmarks with gcc
(version 8.4) at the common optimization level -O2. For each
benchmark, we recorded a fault-free execution trace, planned
pilot injections, and performed all necessary injections to
cover the complete fault space with DUP and DFP.

103

LCTES ’21, June 22, 2021, Virtual, Canada Oskar Pusz, Christian Dietrich, and Daniel Lohmann

m
i/
B

C

m
i/
B

F
D

m
i/
B

F
E

m
i/
Q

S
O

R
T

m
i/
R

D
D

m
i/
R

D
E

m
i/
S

H
A

/F
IB

/L
S

U
M

/M
IX

E
D

/Q
S

o
rt

/Q
S

o
rt

It
e
r

0

20

40

60

80

100

In
s
tr

u
c
ti
o

n
 B

re
a

k
d

o
w

n
 [

\%
]

Other

ADD

AND

MOV

OR

XOR

Figure 6. Instruction Statistic of the Golden Run. The in-
structions of the golden run categorized according to their
opcode or other if DFP treats them as opaque.

4.3 Benchmark Details

In the first column group of Tab. 2, we show the number of
recorded golden-run instructions for each benchmark. For
the MiBench benchmarks, we adjusted the input sizes such
that the benchmarks run close to 50 000 executed instruc-
tions to keep the campaign size manageable, while providing
enough potential for both pruning methods to form large
ESs. Furthermore, we show the size of the complete fault
space (#Instr. × accessed locations).
Since our pruning method obeys instruction-local equiv-

alences, the distribution of instruction types is a relevant
benchmark property (see Fig. 6): Besides categorizing our
handled instruction types (MOV, ADD, AND, OR, XOR), we use
Other to capture all instructions that DFP treats as opaque.
Thereby, we see that DFP considers between 26 percent
(𝜇/LSUM) and 68 percent (sha1 (mi/SHA)) for its fault propa-
gation.

MOV instructions are the most common with up to 51 per-
cent (𝜇/QsortIter) and show a great potential for the sim-
plest LES rule of our pruning technique. In two benchmarks
(𝜇/LSUM, 𝜇/QSort), the bit-wise instructions (AND, OR, XOR)
are not used at all. Thus, the greatest pruning potential
across all benchmarks stems from the operations MOV and
XOR, whereby in certain benchmarks, as in 𝜇/MIXED, the bit-
wise instructions make up the greater part of instructions
(27 percent) than in others.

4.4 Validation

For validating our pruning approach, we compare the results
of DUP andDFP, wherebywe show that ourmethod is able to
calculate the same complete and precise failure classification
for our benchmarks. For this we injected all planned pilots
with the same fault-injection setup and record the failure
classification in a database. Afterwards, we compare, on
a per-fault basis, that both methods yield the exact same
classification. In total, DUP covered 1.3 ·1010 faults with 2.21 ·
10

7 injections. With LES construction rules deactivated, this
results (as expected) in the exactly same number of injections.

With activated rules, DFP planned 1.93 · 107 injections. In
all cases, both methods agreed on the failure classification,
while DFP was able to cover the FSs with a lower number of
pilot injections.

4.5 Overheads

Calculating the injection pilots via DFP for the micro bench-
marks took not longer than 1.6 seconds and for the MiBench
ones between 4 minutes (blowfish decode (mi/BFD)) and
38 minutes (rijndael decode (mi/RDD)). Over all bench-
marks, DUP took no longer than 17 seconds (rijndael en-
code (mi/RDE)). However, these relatively long pruning times
stem from our current prototypical implementation that vis-
its value nodes more than once. In principle, our proposed
method scales linear with the number of instruction and
value nodes, since the number of DFG predecessors is lim-
ited by the ISA and we have to visit every node exactly once.

Nevertheless, even with our unoptimized DFP, we achieve
a significant end-to-end improvements if we compare the
pruning time with the campaign’s compute-time demand:
For mi/RDD, DFPrune executed single threaded for 0.64
hours to reduce the number of injections by 13.13 percent.
Virtually executed on a single-threaded machine, the DUP
injections would take 188 hours, which we can reduce with
DFP by 24 hours, even if we consider our pruning overhead.

4.6 Reduction of Pilot Injections

In the following, we quantify the pilot-count reduction of
DFP in comparison with DUP and show the results in Tab. 2:
The fault-space columns (discussed in Sec. 4.3) character-
ize the fault space(s). The def-use pruning columns contain
the number of required pilot injections (#Inj.) and the av-
erage weight (�Wght.) of a single pilot in the context of
the whole campaign. With higher per-pilot weight, a prun-
ing method is able to provide more extrapolated results per
performed injection. Under data-flow pruning, we show the
same information for the DFP with additional columns for
the percentual improvements (Δ) the DUP. In the last col-
umn group, we further characterize the planned DFP pilots:
Among the pilots, M.Locs. percent of the DFP pilots cover
more than a single fault location, whileM.Nod. percent cover
more than one value node, which is a superset of the pilots
refer to M.Locs. For DUP, both metrics are zero.

The most important part of Tab. 2 is the percentual reduc-
tion of the required FIs (Δ Inj.): For the MiBench benchmarks,
we have reductions that range from 10.39 percent (blowfish
encode (mi/BFE)) up to 18.42 percent (bitcount (mi/BC)). With
more faults being identified as equivalent, DFP requires
fewer injections, which results in an increased weight per
injection to guarantee the same complete FS coverage as
DUP.
For the micro benchmarks, we see (except 𝜇/LSUM) re-

ductions from 4.36 percent (𝜇/QSort) up to 14.78 percent
(𝜇/FIB), accompanied by the mandatory weight increases.

104

Data-Flow-Sensitive Fault-Space Pruning for the Injection of Transient Hardware Faults LCTES ’21, June 22, 2021, Virtual, Canada

Table 2. Comparision of Def-Use Pruning and Data-Flow Pruning. For the given fault space, each pruning method plans
#Injections with a given weight. For data-flow pruning, the table also shows the percentage of pilots that cover more than one
fault location (M.Locs) and more than one value node/EI (M.Nod.).

Fault Space Def-Use Pruning Data-Flow Pruning DFP Pilots

#Instr. #Faults [106] #Inj. [104] �Wght. #Inj. [104] Δ Inj. [%] �Wght. Δ Wght. [%] M.Locs.[%] M.Nod. [%]

mi/BC 54334 70.33 222.40 31.63 181.43 -18.42 38.77 +22.58 1.56 3.85

mi/BFD 55495 1894.82 331.38 571.79 295.95 -10.69 640.24 +11.97 2.77 4.92

mi/BFE 54799 1880.82 326.93 575.30 292.97 -10.39 641.98 +11.59 2.73 4.67

mi/QSORT 45225 1623.90 270.58 600.15 234.31 -13.40 693.05 +15.48 3.88 4.62

mi/RDD 70632 3506.17 397.60 881.84 345.37 -13.13 1015.18 +15.12 1.56 4.48

mi/RDE 70316 3457.59 397.99 868.77 351.90 -11.58 982.55 +13.10 1.89 4.53

mi/SHA 40565 242.63 252.79 95.98 219.74 -13.07 110.42 +15.04 5.41 9.02

𝜇/FIB 2093 1.15 8.87 12.98 7.56 -14.78 15.24 +17.35 2.35 7.51

𝜇/LSUM 54 0.02 0.26 6.35 0.26 0.00 6.35 +0.00 0.00 0.00

𝜇/MIXED 89 0.03 0.45 6.61 0.40 -11.83 7.49 +13.42 0.00 6.38

𝜇/QSort 238 0.18 1.27 14.38 1.22 -4.36 15.04 +4.56 1.84 4.32

𝜇/QSortIter 777 1.20 4.23 28.43 3.88 -8.18 30.96 +8.90 5.71 7.71

Table 3. Injection Reduction (Δ Inj.) per Failure Class [%]

OK SDC TEXT TIME TRAP WRITE

mi/BC -1.45 -42.00 0 0 0 -4.69

mi/BFD 0 0 -0.85 -0.32 0 -11.19

mi/BFE 0 0 -0.26 -0.36 0 -10.86

mi/QSORT -25.96 -2.86 -0.36 -0.15 -0.10 -0.66

mi/RDD 0 0 -1.63 0 -0.07 -13.55

mi/RDE 0 0 -1.13 0 -0.05 -12.12

mi/SHA 0 -22.38 -0.38 -0.04 0 -0.97

𝜇/FIB -0.10 -38.72 0 -0.73 -11.77 -15.91

𝜇/LSUM 0 0 0 0 0 0

𝜇/MIXED -27.66 -3.39 -2.04 0 0 -2.12

𝜇/QSort 0 -5.59 -2.90 -7.41 -5.44 -2.98

𝜇/QSortIter 0 -15.03 0 0 -2.52 -2.00

For 𝜇/LSUM, DFPrune is not able to reduce the number of
injections in comparison to the DUP. However, given the
structure of this benchmark, which only accumulates an ar-
ray of integer values into a register, this is not surprising:
The array elements are not overwritten (→ maximal life
time) and the program performs no immediate calculation
on the accumulator register. Nevertheless, in this case DFP
gracefully degrades to DUP.
Next, we characterize the planned DFP pilots: In the last

column group, we see that only a small percentage (<5.41%
for mi/SHA) of pilots cover more than a single fault location
or more than a single value node (<9.02% for mi/SHA). All
other pilots represent exact the same set of faults as if they
were planned with DUP. This indicates that only a small
number of DFP pilots are responsible for our reductions and
that if propagation was possible, larger ESs were formed. On
average, such multi-value-node pilots span up to 6.9 value
nodes (mi/BC).

Next, we consider whether DFP is more likely to combine
faults that result in certain failure classifications. For this,
Tab. 3 shows how the percentual change in the number of
pilots that lead to a certain failure classification. Over all
benchmarks, we see that the classes SDC and WRITE often
exhibit larger reductions, while the other classes vary widely.
Therefore, we conclude that DFP’s equivalence propagation
is driven more by the fine-grained data flows of the applica-
tion than the resulting coarse-grained failure classification
of the erroneous behavior.

Summarized, compared to DUP,DFPrune results in reduc-
tions of up to 18 percent without sacrificing completeness
or precision and achieving, even in its unoptimized form,
significant end-to-end campaign speed ups.

5 Discussion

In our evaluation scenarios, our prototypical implementation
resulted in significantly shorter campaign run times. In the
following, we discuss some general benefits and potential
disadvantages of our approach, as well as general threats to
validity regarding our findings.

Benefits and Disadvantages. The major benefit of DFP
is that it is as precise as DUP and relies on fault equivalence,
thus, it can be applied as a direct replacement in any FI frame-
work that currently employs DUP to reduce campaign sizes.
Hence, the approach is broadly applicable to the domain of
ISA-based, precise FI. But also for sampling-based FI, DFP
provides benefits as it increases the weight of each injection.

To achieve these benefits, however, one has to implement
LES construction rules for the instructions of the respective
ISA, which results in a higher one-time per-ISA effort than
DUP ś and deriving these rules can, in fact, be a tedious
and error-prone work if done manually, especially on an

105

LCTES ’21, June 22, 2021, Virtual, Canada Oskar Pusz, Christian Dietrich, and Daniel Lohmann

ISA like IA-32. However, as DFP automatically falls back to
DUP for unsupported instructions, it is safely possible to
do this incrementally, one instruction after the other. Our
results with IA-32 show that even a small subset of supported
instructions quickly pays off, with MOV having the largest
impact. On the longer term, however, we intend to generate
the rules automatically from a formal ISA specification, such
as Sail [3]. In fact, the main reason we did not directly go
this route is that for IA-32, which is most supported platform
by FAIL*, no reasonably complete Sail model is available.
Even though we consider a campaign-size reduction of

up to 18 percent as already useful, there is still much oppor-
tunity for further improvement. Firstly, by providing local
fault-equivalence rules for further instructions ś the cur-
rently implemented five instructions cover on average only
51 percent of the executed trace. Secondly, by a more so-
phisticated life-time analysis of values we should be able to
get smaller lifetime() values (see Sec. 3.3). In the current
implementation, we pessimistically use the overwrite-time
as the point a value surely becomes inaccessible. However, as
already sketched, it is enough to prove that no control flow,
even in the presence of faults, is able to access the value after
the inter-instruction fault propagation. For this, it would be
necessary to perform a binary analysis to deduce all possible
accesses from the point the propagated fault becomes active.
This is relatively easy for registers within the same basic
block, but becomes more challenging if the value remains
present over multiple basic blocks or is located in memory
and might require a pointer and alias analysis. Nevertheless,
such improvements to lifetime() can be provided incre-
mentally with the conservative overwrite-time remaining
the default. This is a topic of future work.

Threads to Validity. Our threats to validity are mainly
rooted (a) in the construction of the local and global fault
equivalences in the DFP as well as in our prototypical im-
plementation and (b) the restricted scope and number of
benchmarks on a single ISA.

Regarding (a), we claim precision and completeness of the
DFP by providing results that are equal to DUP, which is
generally considered to be precise and complete. However,
we have not formally proven this equivalence. We think that
the straight-forward construction of the DFG (Sec. 3.1) backs
our claim by intuition ś under the assumption that the local
fault-equivalence rules are valid. In fact, if we only apply
the LES construction rule for 𝜀-nodes, DFPrune plans the
exact same set of pilots as DUP. We furthermore support our
claim by our extensive experimental validation, where for
all 1.3 · 1010 faults of our benchmarks, DFP and DUP yield
bit-wise equal results. Nevertheless, we consider a formal
proof of correctness of DFP as an important topic for future
work.

With respect to (b), our selection of benchmarks is a threat
to external validity ś the benefits may be much lower, if

DFP is applied to real applications. We took our benchmarks
from the MiBench suite [18] (Sec. 4), as MiBench is an ac-
cepted benchmark for covering typical embedded applica-
tions. We focused on the automotive and security branches,
as we consider them as the best representatives for safety-
critical applications. The applied compiler settings (particu-
larly -O2 optimizations) match the common default of real-
world projects. Given that DFP by construction falls back to
DUP if it cannot achieve better results, we conclude that by
applying DFP one is never łworse offž and that a reduction
in campaign size is realistic in general.

As we conducted all our experiments on IA-32, which we
chose IA-32 as its implementation is the most complete in the
FAIL* framework, our results may not be obtainable on other
ISAs. However, we think that DFP would to lead similar or
even better results on other ISAs, especially RISC architec-
tures: With our current conservative life-time estimation,
our approach works best for values that are kept in registers
as they are often use as immediate values that are directly
over-written. Tough, IA-32 is a CISC architecture and sup-
ports complex memory-addressing schemes, whereby many
immediate results do not become visible on the ISA-level.

6 Related Work

Covering a large FS is often infeasible in practice and several
methods were proposed to reduce the number of required
FIs. The methods can be categorized in terms of completeness

and precision as defined in Sec. 2. Using the precise and
complete DUP, which was proposed several times [5, 9, 19,
22, 44], already reduces the number of injections significantly
by considering the access times. In addition, DFPrune also
uses the instruction semantic to calculate fault equivalences
across to form larger ESs.
Similar to our data-flow analysis, but focusing on the

whole program instead of a single execution path, Bartsch
et.al [6] use program netlists [42] to identify faults that surely
become benign on all possible program paths. Their method
is complementary to DFP, as our approach works for all fail-
ure classes but focuses on a single execution path, which
will result in a better scalability for long-running programs.
Similar to our approach, SmartInjector [30] also combines
multiple EIs into ESs but only works heuristically, making
it an imprecise pruning technique, and they focus on SDCs,
while, in many cases, other failure classifications become
more relevant [12, 31]. In contrast, DFP is precise and works
without knowledge of the failure classifications.

Relyzer [22], and its application to approximate comput-
ing Approxilyzer [46, 47], analyzes and compares multiple
golden-run executions to find faults that might behave equal
in all executions. Thereby, similar to our approach, they con-
sider fault masking and propagation at individual operations.
However, their work differs in three important aspects from
DFP: (1) Precision: In its entirety, Relyzer aims for imprecise

106

Data-Flow-Sensitive Fault-Space Pruning for the Injection of Transient Hardware Faults LCTES ’21, June 22, 2021, Virtual, Canada

pruning, although they in parts rely on DUP to detect equiv-
alences within basic blocks. In contrast, DFP results in a
precise fault pruning and thereby could be used as a building
block within Relyzer. (2) Operand Sensitivity: While their
proposed Constant-based Equivalence and Constant-based

Masking techniques also make use of the instruction seman-
tic to prune faults between input and output bits, they only
consider operations with constant operands (e.g., LSHIFT
a0, 5) and ignore the dynamic operand values that can be
observed in the golden run. As such operations are relatively
rare, they report that these technique only yield minimal
improvements. In contrast, DFP considers the constant and
the dynamic operands of an instruction and thereby is able
to provide significant savings over DUP of up to 18 percent.
Furthermore, our LES definition is not only able to formu-
late equivalences between one input and one output bit, but
also between several input bits, whereby backwards-directed
forking of equivalences becomes possible to express (see AND
in Fig. 1c). (3) Pruning preconditions: We discuss the precon-
ditions (single static reader and inaccessible dead values) on
the data-flow to precise inter-location instruction-sensitive
pruning on the base of the single-fault assumption (see Fig. 5
in Sec. 3.3). Thereby, we argue that their constant-based
equivalence and masking method is inherently imprecise as
they do not consider secondary data-flows from the input
operands to other instructions.
Nie et. al [34] form ESs by searching similar dynamic in-

struction sequences and loops of thread executions in GPG-
PUs, which is complete but not precise. Pusz et. al [35] pro-
poses another heuristic pruning method that only injects
data flows that cross basic-block boundaries and extrapolates
the result back onto all faults within a basic block, making
this approach complete but not precise.

Other sampling methods [28, 36] cover the FS only approx-
imately or concentrate on themost important faults [14]. The
fault-similarity heuristic [39] uses machine-learning on the
recorded machine state to avoid injections of similar faults.
Others use structural characteristics, like data-structure de-
pendencies [13], address bounds [37], or memory states [21],
to find similar faults. However, all of these sampling method
are neither complete nor precise.

Besides FI-based resilience assessments, different vulnera-
bility factors [1, 4, 13, 15, 45] combine information about the
program execution, the program structure, and the proces-
sor architecture to estimate a program’s reliability. However,
these factors provide no quantitative classification of actual
failure behavior and, thereby, provide neither a complete nor
precise picture of an actual FS. Trident [29] split a program
into blocks, between which they propagate SDC probabilities
without performing actual injection. Due to branch proba-
bilities and pruned data dependencies, Trident is neither
complete nor precise.

7 Conclusion

With DFPrune, we propose a novel pruning technique for
the injection of transient hardware faults that reduces the
number of pilot injections that are necessary to achieve com-
plete fault-space coverage. DFPrune performs no heuristic
but provides a precise picture of the resulting failure classifi-
cation as it forms sets of surely equivalent faults by tracking
the flow of faulty bits across instructions and locations until
a fault could escalate to a multi-bit error. Thereby, DFPrune
takes not only the data-access patterns into consideration
but also the instruction semantic and the data-flow within
the pre-recorded fault-free execution trace.

Compared to the defacto-standard def-use pruning (DUP),
we can report reductions of pilot injections for seven pro-
grams from the MiBench benchmarks suite that range from
10 to 18 percent while providing bit-wise equal failure clas-
sifications. Thereby, our prototypical implementation al-
ready provides significantly shorter end-to-end campaign
run times while still leaving room for technical and method-
ical improvements within our provided fault-equivalence-
propagation framework.

Try it out!

The source code and the evaluation data can be found
here: http://doi.org/10.5281/zenodo.4698901

Acknowledgments

We want to thank Horst Schirmeier for his feedback and our
anonymous reviewers for their constructive comments and
suggestions. This work has been supported by the German
Research Foundation (DFG) under the grant no. LO 1719/4-1.

References
[1] J. Aidemark, P. Folkesson, and J. Karlsson. 2001. Path-based error cov-

erage prediction. In Proceedings Seventh International On-Line Testing

Workshop. 14ś20. https://doi.org/10.1109/OLT.2001.937811

[2] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles

Fabre, Jean-Claude Laprie, Eliane Martins, and David Powell. 1990.

Fault Injection for Dependability Validation: A Methodology and Some

Applications. IEEE Transactions on Software Engineering 16, 2 (Feb.

1990), 166ś182. https://doi.org/10.1109/32.44380

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-

sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Kr-

ishnaswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-A,

RISC-V, and CHERI-MIPS. In Proc. 46th ACM SIGPLAN Symposium on

Principles of Programming Languages. https://doi.org/10.1145/3290384

Proc. ACM Program. Lang. 3, POPL, Article 71.

[4] Ghazanfar Asadi and Mehdi Baradaran Tahoori. 2005. An analytical

approach for soft error rate estimation in digital circuits. In Circuits

and Systems, 2005. ISCAS 2005. IEEE International Symposium on. IEEE,

2991ś2994. https://doi.org/10.1109/ISCAS.2005.1465256

[5] Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson. 2005.

Assembly-Level Pre-injection Analysis for Improving Fault Injection

107

http://doi.org/10.5281/zenodo.4698901
https://doi.org/10.1109/OLT.2001.937811
https://doi.org/10.1109/32.44380
https://doi.org/10.1145/3290384
https://doi.org/10.1109/ISCAS.2005.1465256

LCTES ’21, June 22, 2021, Virtual, Canada Oskar Pusz, Christian Dietrich, and Daniel Lohmann

Efficiency. In Dependable Computing - EDCC 5. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 246ś262. https://doi.org/10.1007/11408901_

19

[6] Christian Bartsch, Carlos Villarraga, Dominik Stoffel, and Wolfgang

Kunz. 2017. A HW/SW Cross-Layer Approach for Determining

Application-Redundant Hardware Faults in Embedded Systems. Jour-

nal of Electronic Testing 33, 1 (02 2017), 77ś92. https://doi.org/10.1007/

s10836-017-5643-3

[7] Robert C Baumann. 2005. Radiation-induced soft errors in advanced

semiconductor technologies. IEEE Transactions on Device and Materials

Reliability 5, 3 (2005), 305ś316. https://doi.org/10.1109/TDMR.2005.

853449

[8] Alfredo Benso and Paolo Ernesto Prinetto. 2003. Fault injection tech-

niques and tools for embedded systems reliability evaluation. Kluwer

Academic Publishers, Boston, Dordrecht, London.

[9] L. Berrojo, I. Gonzalez, F. Corno, M. S. Reorda, G. Squillero, L. Entrena,

and C. Lopez. 2002. New techniques for speeding-up fault-injection

campaigns. In Design, Automation & Test in Europe Conference & Ex-

hibition 2002 (DATE ’02). IEEE Computer Society Press, Washington,

DC, USA, 847ś852. https://doi.org/10.1109/DATE.2002.998398

[10] Hyungmin Cho, S. Mirkhani, Chen-Yong Cher, J.A. Abraham, and S.

Mitra. 2013. Quantitative evaluation of soft error injection techniques

for robust system design. In Proceedings of the 50th annual Design

Automation Conference. 1ś10. https://doi.org/10.1145/2463209.2488859

[11] C. Constantinescu. 2003. Trends and challenges in VLSI circuit relia-

bility. Micro, IEEE 23, 4 (July 2003), 14ś19. https://doi.org/10.1109/

MM.2003.1225959

[12] Björn Döbel, Horst Schirmeier, and Michael Engel. 2013. Investigating

the Limitations of PVF for Realistic Program Vulnerability Assessment.

In Proceedings of the 5th HiPEAC Workshop on Design for Reliability

(DFR ’13). Berlin, Germany.

[13] Mojtaba Ebrahimi, Mohammad Hadi Moshrefpour, Mohammad Saber

Golanbari, and Mehdi B Tahoori. 2016. Fault injection acceleration

by simultaneous injection of non-interacting faults. In Proceedings

of the 53rd Annual Design Automation Conference. ACM, 25. https:

//doi.org/10.1145/2897937.2898023

[14] Mojtaba Ebrahimi, Nour Sayed, Maryam Rashvand, and Mehdi B

Tahoori. 2015. Fault injection acceleration by architectural impor-

tance sampling. In Hardware/Software Codesign and System Synthe-

sis (CODES+ ISSS), 2015 International Conference on. IEEE, 212ś219.

https://doi.org/10.1109/CODESISSS.2015.7331384

[15] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. 2016.

ePVF: An Enhanced Program Vulnerability Factor Methodology for

Cross-Layer Resilience Analysis. In 2016 46th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN). 168ś179.

https://doi.org/10.1109/DSN.2016.24

[16] Johannes Grinschgl, Armin Krieg, Christian Steger, Reinhold Weiss,

Holger Bock, and Josef Haid. 2012. Efficient fault emulation using

automatic pre-injection memory access analysis. In SOC Conference

(SOCC), 2012 IEEE International. IEEE, 277ś282. https://doi.org/10.

1109/SOCC.2012.6398361

[17] Ulf Gunneflo, Johan Karlsson, and Jan Torin. 1989. Evaluation of

Error Detection Schemes Using Fault Injection by Heavy-ion Radiation.

In Proceedings of the 19th International Symposium on Fault-Tolerant

Computing (FTCS-19). IEEE Computer Society Press, 340ś347. https:

//doi.org/10.1109/FTCS.1989.105590

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown. 2001. MiBench: A free, commercially representative

embedded benchmark suite. In Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization. WWC-4 (Cat.

No.01EX538). 3ś14. https://doi.org/10.1109/WWC.2001.990739

[19] Jens Guthoff and Volkmar Sieh. 1995. Combining software-

implemented and simulation-based fault injection into a single fault

injection method. In Proceedings of the 25rd International Symposium

on Fault-Tolerant Computing (FTCS-25). IEEE Computer Society Press,

196ś206. https://doi.org/10.1109/FTCS.1995.466978

[20] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep

Ramachandran. 2012. Relyzer: Exploiting Application-Level Fault

Equivalence to Analyze Application Resiliency to Transient Faults. In

Proceedings of the 17th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’12). ACM

Press, New York, NY, USA. https://doi.org/10.1145/2150976.2150990

[21] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep

Ramachandran. 2012. Relyzer: Exploiting application-level fault equiv-

alence to analyze application resiliency to transient faults. In ACM

SIGPLAN Notices, Vol. 47. ACM, 123ś134. https://doi.org/10.1145/

2189750.2150990

[22] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep

Ramachandran. 2013. Relyzer: Application resiliency analyzer for

transient faults. IEEE Micro 33, 3 (2013), 58ś66. https://doi.org/10.

1109/MM.2013.30

[23] Martin Hiller, Arshad Jhumka, and Neeraj Suri. 2002. PROPANE: An

Environment for Examining the Propagation of Errors in Software.

In Proceedings of the 2002 ACM SIGSOFT International Symposium on

Software Testing and Analysis (Roma, Italy) (ISSTA ’02). ACM, New

York, NY, USA, 81ś85. https://doi.org/10.1145/566172.566184

[24] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. 1997.

Fault Injection Techniques and Tools. IEEE Computer 30, 4 (April

1997), 75ś82. https://doi.org/10.1109/2.585157

[25] IEC 61508-3. 1998. IEC 61508-3: - Functional safety of electrical/elec-

tronic/programmable electronic safety-related systems ś Part 3: Software

requirements. International Electrotechnical Commission, Geneva,

Switzerland.

[26] ISO 26262-6. 2018. ISO 26262-6:2018: Road vehicles ś Functional safety ś

Part 6: Product development at the software level. International Organi-

zation for Standardization, Geneva, Switzerland.

[27] ISO 26262-9. 2018. ISO 26262-9:2018: Road vehicles ś Functional safety

ś Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-

oriented analyses. International Organization for Standardization,

Geneva, Switzerland.

[28] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. 2009. Statistical

Fault Injection: Quantified Error and Confidence. In Proceedings of the

Conference on Design, Automation and Test in Europe (Nice, France)

(DATE ’09). European Design and Automation Association, 3001 Leu-

ven, Belgium, Belgium, 502ś506. https://doi.org/10.1109/DATE.2009.

5090716

[29] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai. 2018.

Modeling Soft-Error Propagation in Programs. In 2018 48th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). 27ś38. https://doi.org/10.1109/DSN.2018.00016

[30] Jianli Li and Qingping Tan. 2013. SmartInjector: Exploiting Intel-

ligent Fault Injection for SDC Rate Analysis. In Proceedings of the

International Conference on Defect and Fault Tolerance in VLSI and Nan-

otechnology Systems(DFT ’13). IEEE Computer Society Press, 236ś242.

https://doi.org/10.1109/DFT.2013.6653612

[31] Qining Lu, M. Farahani, Jiesheng Wei, A. Thomas, and K. Pattabi-

raman. 2015. LLFI: An Intermediate Code-Level Fault Injection

Tool for Hardware Faults. In Software Quality, Reliability and Se-

curity (QRS), 2015 IEEE International Conference on. 11ś16. https:

//doi.org/10.1109/QRS.2015.13

[32] Henrique Madeira, Mário Rela, Francisco Moreira, and João Gabriel

Silva. 1994. RIFLE: A general purpose pin-level fault injector. In Pro-

ceedings of the 1st European Dependable Computing Conference (EDCC

’94), Klaus Echtle, Dieter Hammer, and David Powell (Eds.). Springer-

Verlag, 197ś216. https://doi.org/10.1007/3-540-58426-9_132

[33] Shubu Mukherjee. 2008. Architecture Design for Soft Errors. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[34] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. 2018. Fault site

pruning for practical reliability analysis of GPGPU applications. In 2018

108

https://doi.org/10.1007/11408901_19
https://doi.org/10.1007/11408901_19
https://doi.org/10.1007/s10836-017-5643-3
https://doi.org/10.1007/s10836-017-5643-3
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.1109/MM.2003.1225959
https://doi.org/10.1109/MM.2003.1225959
https://doi.org/10.1145/2897937.2898023
https://doi.org/10.1145/2897937.2898023
https://doi.org/10.1109/CODESISSS.2015.7331384
https://doi.org/10.1109/DSN.2016.24
https://doi.org/10.1109/SOCC.2012.6398361
https://doi.org/10.1109/SOCC.2012.6398361
https://doi.org/10.1109/FTCS.1989.105590
https://doi.org/10.1109/FTCS.1989.105590
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/FTCS.1995.466978
https://doi.org/10.1145/2150976.2150990
https://doi.org/10.1145/2189750.2150990
https://doi.org/10.1145/2189750.2150990
https://doi.org/10.1109/MM.2013.30
https://doi.org/10.1109/MM.2013.30
https://doi.org/10.1145/566172.566184
https://doi.org/10.1109/2.585157
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DSN.2018.00016
https://doi.org/10.1109/DFT.2013.6653612
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1007/3-540-58426-9_132

Data-Flow-Sensitive Fault-Space Pruning for the Injection of Transient Hardware Faults LCTES ’21, June 22, 2021, Virtual, Canada

51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). IEEE, 749ś761. https://doi.org/10.1109/MICRO.2018.00066

[35] Oskar Pusz, Daniel Kiechle, Christian Dietrich, and Daniel Lohmann.

2019. Program-StructureśGuided Approximation of Large Fault Spaces.

In 2019 24th Pacific Rim International Symposium on Dependable Com-

puting (PRDC’19). IEEE Computer Society Press, Washington, DC, USA.

https://doi.org/10.1109/PRDC47002.2019.00044

[36] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda.

2008. Statistical Fault Injection. In 2008 IEEE International Conference

on Dependable Systems and Networks With FTCS and DCC (DSN). 122ś

127. https://doi.org/10.1109/DSN.2008.4630080

[37] Behrooz Sangchoolie, Roger Johansson, and Johan Karlsson. 2017.

Light-Weight Techniques for Improving the Controllability and Effi-

ciency of ISA-Level Fault Injection Tools. In Dependable Computing

(PRDC), 2017 IEEE 22nd Pacific Rim International Symposium on. IEEE,

68ś77. https://doi.org/10.1109/PRDC.2017.18

[38] Thiago Santini, Christoph Borchert, Christian Dietrich, Horst

Schirmeier, Martin Hoffmann, Olaf Spinczyk, Daniel Lohmann,

Flávio Rech Wagner, and Paolo Rech. 2017. Effectiveness of Software-

Based Hardening for Radiation-Induced Soft Errors in Real-Time Oper-

ating Systems. In Proceedings of the 2017 Conference on Architecture of

Computing Systems (ARCS ’17). Springer-Verlag, Heidelberg, Germany.

https://doi.org/10.1007/978-3-319-54999-6_1

[39] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. 2014. Rapid

Fault-Space Exploration by Evolutionary Pruning. In International

Conference on Computer Safety, Reliability, and Security, Andrea Bon-

davalli and Felicita Di Giandomenico (Eds.). Springer International

Publishing, Cham, 17ś32.

[40] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. 2015. Avoid-

ing Pitfalls in Fault-Injection Based Comparison of Program Suscepti-

bility to Soft Errors. In Proceedings of the 45th International Conference

on Dependable Systems and Networks (DSN ’15). IEEE Computer Society

Press, Washington, DC, USA, 12 pages. https://doi.org/10.1109/DSN.

2015.44

[41] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz,

Daniel Lohmann, and Olaf Spinczyk. 2015. FAIL*: An Open and

Versatile Fault-Injection Framework for the Assessment of Software-

Implemented Hardware Fault Tolerance. In Proceedings of the 11th

European Dependable Computing Conference (EDCC ’15) (Paris, France),

Pierre Sens (Ed.). 245ś255. https://doi.org/10.1109/EDCC.2015.28

[42] Bernard Schmidt, Carlos Villarraga, Thomas Fehmel, Jörg Bormann,

Markus Wedler, Minh Nguyen, Dominik Stoffel, and Wolfgang Kunz.

2013. A New Formal Verification Approach for Hardware-Dependent

Embedded System Software. IPSJ Transactions on System LSI Design

Methodology 6, 0 (2013), 135ś145. https://doi.org/10.2197/ipsjtsldm.6.

135

[43] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug

Burger, and Lorenzo Alvisi. 2002. Modeling the Effect of Technology

Trends on the Soft Error Rate of Combinational Logic. In Proceedings of

the 32nd International Conference on Dependable Systems and Networks

(DSN ’02). IEEE Computer Society Press, Washington, DC, USA, 389ś

398. https://doi.org/10.1109/DSN.2002.1028924

[44] D Todd Smith, Barry W Johnson, Joseph A Profeta, and Daniele G

Bozzolo. 1995. A method to determine equivalent fault classes for

permanent and transient faults. In Reliability and Maintainability Sym-

posium, 1995. Proceedings., Annual. IEEE, 418ś424. https://doi.org/10.

1109/RAMS.1995.513278

[45] V. Sridharan and D. R. Kaeli. 2009. Eliminating microarchitectural

dependency from Architectural Vulnerability. In 2009 IEEE 15th In-

ternational Symposium on High Performance Computer Architecture.

117ś128. https://doi.org/10.1109/HPCA.2009.4798243

[46] R. Venkatagiri, K. Ahmed, A. Mahmoud, S. Misailovic, D. Marinov,

C. W. Fletcher, and S. V. Adve. 2019. gem5-Approxilyzer: An Open-

Source Tool for Application-Level Soft Error Analysis. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). 214ś221. https://doi.org/10.1109/DSN.2019.00033

[47] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. 2016. Approx-

ilyzer: Towards a systematic framework for instruction-level approx-

imate computing and its application to hardware resiliency. In 2016

49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). 1ś14. https://doi.org/10.1109/MICRO.2016.7783745

109

https://doi.org/10.1109/MICRO.2018.00066
https://doi.org/10.1109/PRDC47002.2019.00044
https://doi.org/10.1109/DSN.2008.4630080
https://doi.org/10.1109/PRDC.2017.18
https://doi.org/10.1007/978-3-319-54999-6_1
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.2197/ipsjtsldm.6.135
https://doi.org/10.2197/ipsjtsldm.6.135
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/HPCA.2009.4798243
https://doi.org/10.1109/DSN.2019.00033
https://doi.org/10.1109/MICRO.2016.7783745

	Abstract
	1 Introduction
	2 Fault and Fault-Injection Model
	3 Data-Flow-Sensitive Fault-Space Pruning
	3.1 Construction of the Data-Flow Graph
	3.2 Instruction-Local Fault Equivalences
	3.3 Global Propagation of Fault Equivalences
	3.4 Fault-Injection Masking and Planning

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Scenario
	4.3 Benchmark Details
	4.4 Validation
	4.5 Overheads
	4.6 Reduction of Pilot Injections

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

