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“Toyota claimed the 2005 Camry's main CPU had error
i detecting and correcting RAM. It didn’t.”

Source: Investigation Report, EDN Network, 28 Oct 2013
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The Fault Space

Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.
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The Fault Space

m Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.

// initial r@=5, ril=11
11117171711717117111171117777
// shift-left by 1

r@ := SHL r0, 1 //r0=10
// bit-wise XOR with 7
rl := XOR r1, 7 //rl=12
// bit-wise AND

rl := AND r0, rl1 //rl=8
// move result to r0@ ‘ ‘ ‘ ‘

0 := MOV rl //r0=8
;/ result irn ro ' SHL XOR AND MOV
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m Plan and inject!
= Record a fault-free execution of the program-under-test.
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B Plan and inject!
= Record a fault-free execution of the program-under-test.
= |nject every memory location in each processor cycle.
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B Plan and inject!
= Record a fault-free execution of the program-under-test.
= |nject every memory location in each processor cycle.
= Wait.... (40 injections)
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Fault Space Pruning

m  Def-Use Pruning
= Observation: Faults between read/write events have equivalent behavior
= Faults only become active on a read; a write makes it benign.
= Select one fault-injection pilot for each equivalence interval

read fault write
event equivalence event faylt pilot
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SHL XOR AND MOV
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m  Def-Use Pruning
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SHL XOR AND MOV

m Significantly reduces number of injections (40 — 24), but...

= Equivalences are only formed horizontally, not vertically.
= Some instructions mask errors or only propagate them.
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In a nutshell: Data-flow-Sensitive Pruning

Basic principle
As long as an single-bit error does not escalate to a multi-bit error or becomes visible,
we can extend the equivalence set.
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Basic principle
As long as an single-bit error does not escalate to a multi-bit error or becomes visible,
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SHL XOR AND MOV

m  Golden run is one path through the program

= Knowledge: instructions, register values, instruction semantic
— We can calculate masking and propagation behavior.
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Step 1: Build a data-flow graph

final value
value
r0 |oe101 > SHL 1010 1010 Fleee

1| 1011 F>{ XOR }>{ 1100 }>{ AND |+ 1000 1000

instruction 0111 [ immediate

Il

0 1 2 3 4

m Directed graph of operations (blue) and operands (yellow)

= All values and operations are known from the golden run
= Artificial e-nodes model the influence of read events
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Step 1: Build a data-flow graph

[l 4 Hannover

final value

value

r0 |e101 > SHL 1010 - 1010 MOVF
1| 1011 ]—»W AND 1000
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t
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m Directed graph of operations (blue) and operands (yellow)

= All values and operations are known from the golden run
= Artificial e-nodes model the influence of read events

Choosing read or final value nodes for injection leads to Def-Use pilots

op DFPrune - Data-flow-Sensitive Pruning



109:4 | Hannovei

Step 2: Form local fault equivalences

source
0101 0000 |— oo

read mask

local
equivalence
set (o)

SHL 1

e

value

Error propagation of a single instruction
= Assumption: Exactly one input bit is faulty
= Combine instruction semantic and operand values
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Step 3: Propagate equivalences globally

op

a

b‘c‘d‘ro
[ 1010 | | 1100 |

injection
symbols
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= One Fl symbol per operand bit

- All occurrences are equivalent
- Goal: Propagate symbols



Step 3: Propagate equivalences globally
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= Propagation Phase

DEnn - readers = 0 — mark benign
1000 - readers = 1 — propagate back
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Evaluation: MiBench and Microbenchmarks

#Faults [108]  Def-Use #Inj. [10*]  DFPrune #Inj. [10*] = A Inj. [%]

mi/BC 70.33 222.40 181.43 -18.42
mi/BFD 1894.82 331.38 295.95 -10.69
mi/BFE 1880.82 326.93 292.97 -10.39
mi/QSORT 1623.90 270.58 234.31 -13.40
mi/RDD 3506.17 397.60 345.37 -13.13
mi/RDE 3457.59 397.99 351.90 -11.58
mi/SHA 242.63 252.79 219.74 -13.07
w/FIB 1.15 8.87 7.56 -14.78
w/LSUM 0.02 0.26 0.26 0.00
w/MIXED 0.03 0.45 0.40 -11.83
u/QSort 0.18 1.27 1.22 -4.36

w/QSortlter 1.20 423 3.88 -8.18
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m Def-Use Pruning is one-dimensional

= Equivalences are only formed along the time axis
= Instruction can mask errors benign or propagate them

m  DFPrune: Data-Flow-Sensitive Fault Space Pruning

= Faults are equivalent as long as the error does not escape!
= Propagate FI Symbols on the Data-Flow Graph
= [nstruction-local Fault Equivalences

m  DFPrune reduces the number of required injections
= Between 10 and 18 percent reduction for MiBench
= Reductions across all failure classes
= At least as good as Def-Use Pruning
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