l) { § Leibniz
{ 0; Z Universitdt
tog: 4 | Hannover

Data-Flow-Sensitive Fault-Space Pruning
for the Injection of Transient Hardware Faults

Oskar Pusz, Christian Dietrich, Daniel Lohmann

June 22, 2021

it || Leibniz

Motivation

109:4 || Hannover

*

Airplane [

* * %

Error Rate
Boeing E-3 (1990ies)

IS
(Y,01/¢) orey Jouz

" ' ' ' ' ; ' 10
1992 1994 1997 1999 2002 2005 2008 2011

op DFPrune - Motivation 2-10

. . ¢ 0] Leibniz
Motivation Qe |t

* . *x . - o . . - -
Alrplane [
Error Rate m
Boeing E-3 (1990ies) =
=]
ps)
2
]
>
-3 5
=
10 =
>
5=
10
-7
] 1 10

1992 1994 1997 1999 2002 2005 2008 2011

“Toyota claimed the 2005 Camry's main CPU had error
i detecting and correcting RAM. It didn’t.”

Source: Investigation Report, EDN Network, 28 Oct 2013

op DFPrune - Motivation 2-10

The Fault Space

Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.

op DFPrune - Motivation

3-10

The Fault Space

m Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.

// initial r@=5, ril=11
11117171711717117111171117777
// shift-left by 1

r@ := SHL r0, 1 //r0=10
// bit-wise XOR with 7
rl := XOR r1, 7 //rl=12
// bit-wise AND

rl := AND r0, rl1 //rl=8
// move result to r0@ ‘ ‘ ‘ ‘

0 := MOV rl //r0=8
;/ result irn ro ' SHL XOR AND MOV

_‘
o

=/ 1
= i
~
< 1 1
=

—
[y

DFPrune - Motivation 3-10

The Fault Space

m Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.

// initial r@=5, ril=11
11117171711717117111171117777
// shift-left by 1

r@ := SHL r0, 1 //r0=10
// bit-wise XOR with 7
rl := XOR r1, 7 //rl=12
// bit-wise AND

rl := AND r0, rl1 //rl=8
// move result to r0@ ‘ ‘ ‘

ro := MOV rl //ro=8 SHL XOR AND MOV

// result in ro

_‘
o

=/ 1
= i
~
< 1 1
=

—
[y

m Plan and inject!
= Record a fault-free execution of the program-under-test.

DFPrune - Motivation 3-10

The Fault Space

m Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.

// initial r@=5, ril=11
11117171711717117111171117777
// shift-left by 1

r@ := SHL r0, 1 //r0=10
// bit-wise XOR with 7
rl := XOR r1, 7 //rl=12
// bit-wise AND

rl := AND r0, rl1 //rl=8
// move result to r0@ ‘ ‘ ‘

ro := MOV rl //ro=8 SHL XOR AND MOV

// result in ro

_‘
o

odiL LU
= 1 m
R
LU
oLl

—
[y

B Plan and inject!
= Record a fault-free execution of the program-under-test.
= |nject every memory location in each processor cycle.

DFPrune - Motivation 3-10

The Fault Space

m Fault injection campaign for a given program (execution)
= FM: Uniformly-distributed soft errors in registers and memory
= Goal: Quantify the failure-behavior of a single program execution.

// initial r@=5, ril=11
11117171711717117111171117777
// shift-left by 1

r@ := SHL r0, 1 //r0=10
// bit-wise XOR with 7
rl := XOR r1, 7 //rl=12
// bit-wise AND

rl := AND r0, rl1 //rl=8
// move result to r0@ ‘ ‘ ‘

ro := MOV rl //ro=8 SHL XOR AND MOV

// result in ro

_‘
o

odiL LU
= 1 m
R
LU
oLl

—
[y

B Plan and inject!
= Record a fault-free execution of the program-under-test.
= |nject every memory location in each processor cycle.
= Wait.... (40 injections)

DFPrune - Motivation 3-10

Fault Space Pruning

m Def-Use Pruning
= Observation: Faults between read/write events have equivalent behavior
= Faults only become active on a read; a write makes it benign.
= Select one fault-injection pilot for each equivalence interval

read fault write
event equivalence event faylt pilot

rOﬁE%IﬁE
1SS § 8§ 8
o T1 257

SHL XOR AND MOV

op DFPrune - Def-Use Fault Space Pruning 4-10

Fault Space Pruning

m Def-Use Pruning
= Observation: Faults between read/write events have equivalent behavior
= Faults only become active on a read; a write makes it benign.
= Select one fault-injection pilot for each equivalence interval

read fault write
event equivalence event faylt pilot

rOﬁE%IﬁE
1SS § 8§ 8
o T1 257

SHL XOR AND MOV

m Significantly reduces number of injections (40 — 24), but...

= Equivalences are only formed horizontally, not vertically.
= Some instructions mask errors or only propagate them.

op DFPrune - Def-Use Fault Space Pruning 4-10

In a nutshell: Data-flow-Sensitive Pruning

Basic principle
As long as an single-bit error does not escalate to a multi-bit error or becomes visible,
we can extend the equivalence set.

op DFPrune - Data-flow-Sensitive Pruning 5-10

In a nutshell: Data-flow-Sensitive Pruning

Basic principle
As long as an single-bit error does not escalate to a multi-bit error or becomes visible,
we can extend the equivalence set.

0 111 1 1
1 0 0 0 0
r0 0 1 1 1 0
1 0 0 0 0
1 (1] (1] 1
(1 L0 0 1] o 0 |
1 1 0 0 1 0 |
1 1 0 0 [0]
0 1 2 3 4

\ | |

SHL XOR AND MOV

m Golden run is one path through the program

= Knowledge: instructions, register values, instruction semantic
— We can calculate masking and propagation behavior.

op DFPrune - Data-flow-Sensitive Pruning 5-10

Step 1: Build a data-flow graph

final value
value
r0 |oe101 > SHL 1010 1010 Fleee

1| 1011 F>{ XOR }>{ 1100 }>{ AND |+ 1000 1000

instruction 0111 [immediate

Il

0 1 2 3 4

m Directed graph of operations (blue) and operands (yellow)

= All values and operations are known from the golden run
= Artificial e-nodes model the influence of read events

op DFPrune - Data-flow-Sensitive Pruning 6-10

Step 1: Build a data-flow graph

[l 4 Hannover

final value

value

r0 |e101 > SHL 1010 - 1010 MOVF
1| 1011]—»W AND 1000

Tnstructlon 0]_]_]_ —— immediate

t
0 1 2 3

m Directed graph of operations (blue) and operands (yellow)

= All values and operations are known from the golden run
= Artificial e-nodes model the influence of read events

Choosing read or final value nodes for injection leads to Def-Use pilots

op DFPrune - Data-flow-Sensitive Pruning

109:4 | Hannovei

Step 2: Form local fault equivalences

source
0101 0000 |— oo

read mask

local
equivalence
set (o)

SHL 1

e

value

Error propagation of a single instruction
= Assumption: Exactly one input bit is faulty
= Combine instruction semantic and operand values

op DFPrune - Data-flow-Sensitive Pruning

Step 3: Propagate equivalences globally

op

a

b‘c‘d‘ro
[1010 | | 1100 |

injection
symbols

DFPrune - Data-flow-Sensitive Pruning

= One Fl symbol per operand bit

- All occurrences are equivalent
- Goal: Propagate symbols

Step 3: Propagate equivalences globally

EEEE © e
[1010 | | 1100 |
— = One Fl symbol per operand bit
P I % R U B & .
e M - All occurrences are equivalent
2 - Goal: Propagate symbols
<
[-Te]-1¢]

= Propagation Phase

DEnn - readers = 0 — mark benign
1000 - readers = 1 — propagate back
- readers > 1 — do nothing
B O I X | x| x| x
al| By |9 al|B|v]|9

op DFPrune - Data-flow-Sensitive Pruning 8-10

Step 3: Propagate equivalences globally

| OO O D
| 1010 | | 1100 |
~— = One Fl symbol per operand bit
B A I R I I .
S o E e - All occurrences are equivalent
=) - Goal: Propagate symbols
< masked
[[e[~T¢] faul
= Propagation Phase
L] - readers = 0 — mark benign
1000 - readers = 1 — propagate back
- readers > 1 — do nothing
O I I X | x| x| x
alB|~]|s alB v

- Operation can mask faults
oo - One injection per symbol

pilot

injection \{q rls |t

>
gH%Lﬁ g H_’LJTL‘ = Mask and Plan
a|B |6 a|B |8
0 0

op DFPrune - Data-flow-Sensitive Pruning 8-10

Evaluation: MiBench and Microbenchmarks

#Faults [108] Def-Use #Inj. [10*] DFPrune #Inj. [10*] = A Inj. [%]

mi/BC 70.33 222.40 181.43 -18.42
mi/BFD 1894.82 331.38 295.95 -10.69
mi/BFE 1880.82 326.93 292.97 -10.39
mi/QSORT 1623.90 270.58 234.31 -13.40
mi/RDD 3506.17 397.60 345.37 -13.13
mi/RDE 3457.59 397.99 351.90 -11.58
mi/SHA 242.63 252.79 219.74 -13.07
w/FIB 1.15 8.87 7.56 -14.78
w/LSUM 0.02 0.26 0.26 0.00
w/MIXED 0.03 0.45 0.40 -11.83
u/QSort 0.18 1.27 1.22 -4.36

w/QSortlter 1.20 423 3.88 -8.18

op DFPrune - Evaluation 9-10

£ 0| eioniz
Summary S e

m Def-Use Pruning is one-dimensional

= Equivalences are only formed along the time axis
= Instruction can mask errors benign or propagate them

m DFPrune: Data-Flow-Sensitive Fault Space Pruning

= Faults are equivalent as long as the error does not escape!
= Propagate FI Symbols on the Data-Flow Graph
= [nstruction-local Fault Equivalences

m DFPrune reduces the number of required injections
= Between 10 and 18 percent reduction for MiBench
= Reductions across all failure classes
= At least as good as Def-Use Pruning

op DFPrune - Summary 10-10

	Motivation
	Motivation
	Motivation
	The Fault Space
	The Fault Space
	The Fault Space
	The Fault Space
	The Fault Space

	Def-Use Fault Space Pruning
	Fault Space Pruning
	Fault Space Pruning

	Data-flow–Sensitive Pruning
	In a nutshell: Data-flow-Sensitive Pruning
	In a nutshell: Data-flow-Sensitive Pruning
	Step 1: Build a data-flow graph
	Step 1: Build a data-flow graph
	Step 2: Form local fault equivalences
	Step 3: Propagate equivalences globally
	Step 3: Propagate equivalences globally
	Step 3: Propagate equivalences globally

	Evaluation
	Evaluation: MiBench and Microbenchmarks

	Summary
	Summary

