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Abstract—To study the stability of a nominal cyclic steady state
in power electronic converters, it is necessary to obtain a lineariza-
tion around the periodic orbit. In many past studies, this was
achieved by explicitly deriving the Poincaré map that describes
the evolution of the state from one clock instant to the next and
then locally linearizing the map at the fixed point. However, in
many converters, the map cannot be derived in closed form, and
therefore this approach cannot directly be applied. Alternatively,
the orbital stability can be worked out by studying the evolution
of perturbations about a nominal periodic orbit, and some studies
along this line have also been reported. In this paper, we show
that Filippov’s method—which has commonly been applied to
mechanical switching systems—can be used fruitfully in power
electronic circuits to achieve the same end by describing the
behavior of the system during the switchings. By combining this
and the Floquet theory, it is possible to describe the stability of
power electronic converters. We demonstrate the method using
the example of a voltage-mode-controlled buck converter oper-
ating in continuous conduction mode. We find that the stability
of a converter is strongly dependent upon the so-called saltation
matrix—the state transition matrix relating the state just after the
switching to that just before. We show that the Filippov approach,
especially the structure of the saltation matrix, offers some addi-
tional insights on issues related to the stability of the orbit, like
the recent observation that coupling with spurious signals coming
from the environment causes intermittent subharmonic windows.
Based on this approach, we also propose a new controller that
can significantly extend the parameter range for nominal period-1
operation.

Index Terms—Bifurcation, buck converter, differential inclu-
sions, discontinuous systems, Filippov systems, power electronics.

1. INTRODUCTION

OWER electronic circuits are switching dynamical sys-
P tems characterized by discrete switching events that make
the system toggle between two or more sets of differential equa-
tions. Because of this switching nature, the study of the sta-
bility of power electronic circuits requires special techniques.
First, one has to obtain the stability of a periodic orbit rather
than that of an equilibrium point for which most tools in con-
trol theory are developed. Second, the periodic orbit contains
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passage through more than one subsystem. One obviously has
to locate the periodic orbit before the problem of its stability
can be addressed. Traditionally, power electronics practitioners
use the technique of averaging [1], [2] for obtaining some in-
formation about the stability and dynamic behavior of power
electronic converters. However, it has been shown that, while
the averaging method can capture the instabilities that occur
on slow time scales, it effectively acts as a low-pass filter and
ignores all phenomena that take place at clock frequency [3],
[4]. It is known that the fast-scale instabilities that may develop
in the voltage and current waveforms at clock frequency result
in subharmonic and chaotic behavior [5]-[7]. It is therefore a
matter of great importance to be able to analyze and predict such
instabilities.

The method of sampled-data modeling was developed in the
early 1980s and was systematically put forward by Verghese
et al. in [8] and [9]. In the early 1990s, taking a clue from the
method of Poincaré section used in the study of nonlinear dy-
namics, Deane and Hamill [10] put forward the equivalent con-
cept of the iterated map as a model of power converters (for
details, see [3] and [11]). In this method, the states of the con-
verter are sampled in synchronism with the clock (called stro-
boscopic sampling) to obtain the discrete-time map in the form
Tpy1 = f(x,). The iteration of the map represents the evolu-
tion of the state in discrete time, and the fixed point of the map
represents the periodic orbit in continuous time. Once the non-
linear map is obtained, one can locally linearize it at the fixed
point, and the eigenvalues of the Jacobian matrix determine the
stability of the fixed point to small perturbations.

This method has been successful in analyzing the stability of
periodic orbits especially in those systems where linearization
of the map can be obtained in closed form. For example, in
[12] and [13], the expressions for the nonlinear map in cur-
rent-mode-controlled converters were obtained—whose local
linearization at the fixed point reflected the stability of the
orbit. However, in many other control schemes—notably in the
common voltage-mode-controlled converters—the map cannot
be obtained in closed form because of the transcendental form
of the equations involved. In such systems, though it is possible
to obtain the map numerically and thus it is possible to a obtain
bifurcation diagram by iterating the map, studying the stability
of specific periodic orbits poses a problem. Methods have been
developed to study the stability of such systems, as outlined in
Section II.

In an unconnected line of development occurring in the
erstwhile Soviet Union, scientists like Aizerman, Gantmakher,
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and Filippov [14], [15] developed a mathematical formalism
applicable to systems with a discontinuous right-hand side.
The method was subsequently applied to mechanical systems
undergoing stick-slip vibrations or impacting motion [16], [17],
with very fruitful results. Since power electronic circuits also
come under the general class of systems with discontinuous
right-hand side, the natural question is: can Filippov’s theory
provide any new insight into analyzing the stability of power
electronic circuits? In this paper, we probe this question. We
apply Filippov’s method of differential inclusions to an ex-
ample power electronic circuit—the voltage-mode-controlled
dc—dc buck converter—and develop a method to obtain the
linearization around a periodic orbit. This is obtained as the fun-
damental solution matrix over a complete cycle (the so-called
monodromy matrix), which is composed of the state transition
matrices for the pieces of the orbit that lie in the individual
subsystems, and the “saltation matrix”—the transition matrix
that connects the perturbation just before a switching to that
just after. The approach thus provides an alternative method of
obtaining the Jacobian of the Poincaré map when the nonlinear
map cannot be explicitly derived. In that sense, the Filippov
approach achieves the same result as that obtained by some of
the existing approaches outlined in Section II. However, the
Filippov’s method is more straightforward and, as we show
in this paper, offers some additional insights into the behavior
of the system. It may be noted that, though there have been
reports of the application of Filippov’s method in control theory
literature [18]—[20], this paper contains the first application of
this approach to power electronic circuits.

Using the example of a voltage-mode-controlled buck
converter, we demonstrate how the monodromy matrix can be
calculated for power electronic systems composed of linear
subsystems. The eigenvalues of the monodromy matrix directly
indicate the stability of the orbit to small perturbations. We
show that this approach explains why a slight change of some
of the system parameters may induce fast-scale instability even
though the duty ratio changes only by an insignificant extent.
We also illustrate how the method can be used in the design
of power electronic converters, by identifying the parameter
space region for nominal period-1 operation. We then provide
numerical as well as experimental evidence to validate the
theoretical results.

The power of the method developed in this paper is further
illustrated by providing analytical explanation of two recent
observations—that coupling with spurious sinusoidal signal
causes the appearance of intermittent chaotic and subharmonic
windows [21] and that a sinusoidally varying parametric per-
turbation can control the fast-scale instability [22]. Based on
the above, we propose an improvement of the control scheme
through the consideration of an optimum eigenvalue location
combined with a supervising controller.

II. STABILITY ANALYSIS OF PERIODIC ORBITS

Here, we briefly review existing methods of stability analysis
of limit cycles in power electronic circuits. Since most of the an-
alytical tools used for this study stem from similar methods used
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for smooth systems, we first discuss such systems as a stepping
stone for the analysis that will follow.

A. Smooth Systems

A system is said to be smooth if its mathematical model can
be described by a set of differential equations

dz(t)
dt

where f is differentiable everywhere in a given domain and p
is a system parameter. The stability analysis of a periodic orbit
in such a system is based on the idea that, if a small perturba-
tion is added and the solution converges back to the orbit, then
the orbit is stable. There are three general approaches where
this concept is used: 1) the trajectory sensitivity analysis; 2) the
Poincaré map; and 3) the Floquet theory. All of these methods
describe the stability of a limit cycle and hence there are many
similarities between all three. In all cases, one needs to consider
three factors: a local approximation, a solution of a matrix dif-
ferential equation, and the use of a stability criterion.

1) Trajectory Sensitivity Approach: The method of trajectory
sensitivity can generally be applied to any orbit which may not
necessary be closed. The main concept here is to investigate how
the solution (or trajectory) under study behaves in response to
small changes in the initial conditions or other parameters [23].

Assuming a general nonautonomous system

T = f(.’l;,t),

the solution, according to the fundamental theorem of calculus,
must satisfy

= f(z.1,p) ey

il:(to) =X (2)

t
(P(t7t07IO) =0+ / f(‘P(T, t07$0)77—)d7—- (3)
Jto

By taking the partial derivative with respect to the initial con-
dition, we obtain

ot
8¢(t7 t07$0) :I+ / A(T7$0)8‘P(T‘/ tO‘/ZO)dT (4)
8.’170 Jto 8370
where
8f(§0(t7 lo, $0>7 t)
Al(t, = : . 5
( /EO) 8¢(t7t07$0) ©)
By differentiating (4) with respect to time, we obtain
d ago(t.to..’ﬂ()) 8<p(t.t0.:1:0)
— (X2 ) — A(t. RSt
at ( oo (t20) =5 ©®)

The solution of the matrix differential equation (6) is called the
sensitivity function [23] or trajectory sensitivity [24]. The sen-
sitivity of the flow to initial condition can be obtained by the
Taylor series expansion [24]

Oe(t, to, To)

Ap(t,to, o) = o

Ap(to, to, o). (7N

2) Poincaré Map Approach: Though a much older technique,
this is effectively a specific case of the trajectory sensitivity ap-
proach for periodic systems. In the Poincaré map approach, the
continuous orbit is represented by a discrete map. In the case of
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a nonautonomous system, the state is observed every T's, where
T is the period of the forcing function or external clock. If we
assume that ¢ = £ is an observation instant, then the sampled
data model is a nonlinear function that will map zo to z;,+7 as

to+T
QD(T + t07t07$0) =xo + / f(‘P(ﬂ t07$0)7 T)dT' (8)

to

The stability of this map can be deduced by taking the linear
approximation (the Jacobian matrix) at its fixed point. Since the
fixed point is =z, the linearized map is given by (4), where t =
to + T, i.e., the Jacobian matrix is the same as the trajectory
sensitivity for t = to 4+ T'. Similarly, (6) has to be solved to
analyze the stability. The behavior of the perturbations around
the fixed point is given by (7), again fort = to + 7.

3) Floquet Theory: With the above two methods, one studies
how the perturbed trajectory behaves and the stability is then
deduced by checking if the perturbations will increase or de-
crease. Another possible approach is to study the perturbations
directly, i.e., if z,(t) = (¢, to, zo) is the original periodic orbit
and z;(t) is the perturbed trajectory, then the perturbation is
Az(t) = z5(t) — z,(t). By using conventional linearization
methods (Taylor series) around the periodic orbit z,(t), it can
easily be shown that the perturbation Az(t) can be modeled by
a homogeneous linear time-varying model [17]

dAz(t)  Of(=,t)

% - s wes, Az(t) = A(t,z,)Az(t). ()

Unfortunately, the eigenvalues of the state matrix cannot be used
to determine the stability as it is time varying. This problem may
be overcome by using the fundamental solution matrix, which
is given by

¢(t to, Aﬂ)o) = [‘Pl <t7 to, Azo), Q02<t7 lo, Azo)? . ] (10)
where @;(t,to, Axg) are linear independent solutions of the
system with the property that any other solution can be written
as a linear combination of @;(t,to, Azg). The state transition
matrix is the fundamental solution matrix satisfying the con-
dition @(to, tg, Azg) = I. The state transition matrix can be
defined for any homogeneous system, and, in the case where
the state matrix is time-invariant, it can easily be calculated by
using the matrix exponential ®(t,to) = e”(*~*) However,
since A(t,x,) is time varying, no closed-form expression
exists for the state transition matrix, and we must solve the
matrix differential equation

d@(t, to, A.’L'())

o = A(t,z,)B(t, to, Ay).

1D
If the solution of (11) (i.e., the state transition matrix) is eval-
vated for ¢ = T + tp, then the resulting matrix is called the
monodromy matrix. One basic property of the monodromy ma-
trix [17] is that
Az(kT) = *(T + to, to, Azo) Ao (12)
This implies that, if the absolute value of the eigenvalues (also
called Floquet multipliers) of the monodromy matrix are all less
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than 1, then the perturbation Az will converge to zero and thus
the system is stable.

Comparing (6) and (11), it is interesting to note that the mon-
odromy matrix is effectively the trajectory sensitivity at ¢ =
to + T, which in turn is the Jacobian of the Poincaré map [24],
[25]. Thus, all three approaches finally yield the same result.

B. Nonsmooth Systems

A system is said to be nonsmooth or piecewise smooth if it is
described by equations of the form

fi(z,t,p), forxz e Ry
) fa(z,t,p), forz € Ry
&= f(z,t,p) =1 .

fulz,t,p), forze R,

where R;, R, etc., are different regions of the state space, sep-
arated by (n — 1)-dimensional surfaces given by algebraic equa-
tions of the form I',, (z) = 0, called “switching manifolds.” Ap-
plication of the above methods to nonsmooth systems demands
some special treatment, because the original and perturbed so-
lutions may not undergo switching at the same time. Thus, in
the neighborhood of a switching event, the original periodic so-
lution and the perturbed trajectory are not given by the same
vector field.

1) Trajectory Sensitivity: Hiskens and Pai [26] addressed the
problem of defining (5) in such systems with reference to a gen-
eral discrete-algebraic-differential (DAD) model. Here, we will
briefly describe this method when there is one switching per
cycle, as it is closely related to the method proposed by Filippov.
The DAD model can be given by

z(t) = f(=,y)
s(z,y) =0
9 (z,9)=0,  s(z,y) <0
9t (z,y) =0,  s(z,y)>0
2" =D(z,y) (13)

where f defines the vector field, s is a scalar equation that de-
scribes the switching surface, g~ is a scalar equation that is sat-
isfied before the switching, g% is a scalar equation that is sat-
isfied after the switching, x’s are the dynamical states of the
system (e.g., inductor current and capacitor voltage), y’s are
other algebraic variables (like supply and reference voltages),
and D is a vector function that describes how the state will jump
just after the switching. Hiskens et al. used this model to find the
required jump map. Very briefly, just before the switching, the
two conditions that must be satisfied are

(14)
where £~ and y~ are the state and algebraic variables imme-

diately before the switching. Furthermore, by using the chain
rule, the derivative of the state vector just before the switching

is given by
L+ Oz dr
or dxo

dz(t7) <0_:1: (15)

da)() - 8:50

t=7—
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where 77 is the instant just before the switching. Also

dz
dt |, -

T

=flz .,y )=f". (16)
By using a Taylor series on s and g just before the switching,
we obtain

spdx™ 4+ s,dy” =0

9, dz™ +g,dy” =0 (17)

where s,, ¢., sy, and g, are partial derivatives with respect to
z and y, respectively. By combining (15)—(17), we can find an
expression for dr/dzy which will describe how the switching
time changes with small changes in initial conditions. This can
then be used again in (15) to define how the solution will alter
by small changes in initial conditions. A similar approach can
be applied for the solution after the trajectory. D can then be
used to relate these two and hence define the jump matrix that
describes the relation between dz(77)/dxo and dz(71)/d=zy.
If there is no discontinuity (i.e., z~ = 1), by using the linear
approximation given in (7) for both sides of the switching, the
map reduces to a simple form similar to the saltation matrix [14]
and part of the Jacobian of the Poincaré map [27], [28].

2) Poincaré Map: For power electronic circuits, the sam-
pled-data model developed by Verghese et al. (see [8] for an ac-
count of its history) and the equivalent Poincaré map approach
proposed by Deane and Hamill [10] essentially samples the state
variables discretely at the clock instants if the system is nonau-
tonomous (like dc—dc converters under voltage or current mode
control) or at the points of intersection of the trajectory with
a Poincaré surface in case of autonomous systems (like dc—dc
converters under hysteresis control).

The sampled-data model is obtained as follows. In this expo-
sition, we assume the system to be nonautonomous, with stro-
boscopic sampling in synchronism with the clock of period T'. It
is a reasonable assumption in dc—dc converters that the subsys-
tems are linear time-invariant (LTI), and the evolution in each
subsystem is defined by a differential equation of the form

dz(t
d2t) _ A .z(t) + Biu(t)
dt
for s = 1,2,.... Assuming operation in the nominal period-1

steady state, in which there is only one switching in a clock cycle
occurring at the time instant d7" where d is the duty ratio, we can
derive the following system equations.

Before the first switching in a clock cycle, the state evolves
as

ar
z(dT) = 21947 £(0) +/0 eAUT=TB, 4 (7)dr
=&(dT,0)z(0) + I;(d).

After the switching and until the end of the clock cycle, the state
evolves as

#(T) =M= Da(ar) + [ :
JdT
—&,(T, dT)a(dT) + T(d).

A2 T=1Byu(r)dr

Assuming that there is no discontinuity in the state, one can take
the final state before a switching instant to be equal to the initial
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state after the switching. This gives the sampled-data model of
the system

z(T) = f (o, d)
=@y(T',dT) {@1(dT’,0)x(0) + Ly (d) } + Lx(d).(18)
For a periodic orbit, x(T') = x(0), this gives
z(0) = [I — (T, dT)®(dT,0)] "

x [@:(T, dT)1i(d) + Ix(d)].  (19)
The switching events occur when the algebraic equation
h(z(0),d) =0 (20)

is satisfied. Substituting (19) into this equation, we have an
equation involving only one unknown: the duty ratio d. This
can be solved easily using any numerical routine. This proce-
dure yields the location of the periodic orbit.

In order to study the stability of the limit cycle, we need to
obtain the linearization of the sampled data model given by (18).
Differentiating this with respect to z(0) and using the chain rule,
we obtain

0z(T)  Of(xo,d)
oz(0)  0x(0) od

Of(zo,d) 9d
0z(0)

21

which effectively is a special case of (4). Note that the duty ratio
d is a function of (0).
By a similar procedure, the switching condition (20) yields
oh . Oh 0d
oz(0) ~ 9d 0x(0)

where h = h(z(0),d). By rearranging the last equation, we
have

sey =~ (5) et

Substituting this into (21), we get

0x(T) _ df(zo,d)  Of(mo,d) (ah)—l Oh

oz(0) — 0x(0) ad ad) oz(0)

This gives the expression for the Jacobian matrix, which can
then be evaluated depending on the specific converter topology.
For example, Fang and Abed [3], [27], [28] showed that, for a
voltage-mode-controlled converter, this yields the form given by
the equation shown at the bottom of the next page. A different
approach was used in [29] where an auxiliary state vector was
used to simplify the analysis of the aforementioned Jacobian
matrix for a resonant buck converter.

3) Floquet Theory: In order to use the Floquet theory in
switching systems, it is necessary to take into account the
change in the vector field at a switching event. This is the main
contribution of this paper and will therefore be presented in the
some detail in Sections III-VIIIL.

Before that, however, we would like to mention another
method developed at the University of Tokushima, Japan [30],
which locates the fixed point of the Poincaré map by the
Newton—Raphson method, and in the process of convergence,
obtains the relevant partial derivatives from which the Jacobian
of the Poincaré map can be derived. It thus obtains the fixed

(22)



1088

J)
J(x)

S

Fig. 1. Discontinuous system of Filippov type.

point and its Jacobian by the same numerical procedure. The
technique is particularly useful in systems where the subsys-
tems are nonlinear.

III. OUTLINE OF FILIPPOV’S METHOD

Filippov showed that, in systems with a discontinuous right-
hand side, there can be ambiguity in the definition of solutions.
To illustrate, consider the simple one-dimensional (1-D) system

(=) =3, ifz(t)<0
#(t) = folx(t) =1, ifa(t) =0 (23)
fe(z(t) = -1, ifx(t) >0
shown in Fig. 1. If 2(0) # 0, it has the solution
£ = 3t+Cp, ifz(t) <0
=<t 40y ifat) >0

which reaches x = 0 in finite time and stays there forever. This
implies that z = 0 and & = 0 but, according to (23) (when
x = 0), £ = 1 # 0. Therefore, (23) cannot have a solution in
the classical sense as (1) does.

To avoid this problem, Filippov suggested that fo(x(¢)) will
not be a single valued function but a set valued function (as
shown in Fig. 2) whose limits are the values of f(xz(t)) before
and after the switching

fo(a(t)) = [min(fy(2), f-(2)), max(f(z), - (2))]
={¢f @)+ A -q)f+(@)} Vqe[0]]

which is the closed convex set containing f_(x(t))
and  fi(z(t)), often denoted as fo(z(t)) =
co{f-(z(¢)), f+(x(t))}. Hence, (23) can be written
F- (1), ifa(t) < 0
i(t) € F(a(t) = { wotf_(o(t), f1(a(8)}, ifalt) =0
f+(f17(t)), lfx(t) >(g4)
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160
w1,

X

! 7 (x)

Fig. 2. Set valued function.

The extension of (23) into (24) is known as Filippov’s convex
method and the solution of (24) is referred to as Filippov solu-
tion [17]. The existence of a Filippov solution is guaranteed if
F is upper semi-continuous (the extension of continuity into set
valued functions). Uniqueness of a Filippov solution for every
initial condition can be guaranteed if the orbit spends almost
zero time on the switching manifold, i.e., if there is a transversal
intersection of the orbit with the switching manifold.

In studying the stability of periodic orbits, one has to con-
tinuously evaluate the Jacobian that appears in (9) which de-
scribes the evolution of the perturbations. As seen earlier, at the
switching this breaks down as the perturbed solution will reach
the switching after (or before) the original periodic orbit. The
Filippov approach considers small perturbations to the initial
condition, and studies how the perturbations evolve as the con-
tinuous-time trajectory traverses the complete clock period 7'.
As in the trajectory sensitivity approach, we need a map that
will relate the perturbation vectors before and after a switching,
i.e., from a point where both the periodic orbit and the perturbed
orbit have not crossed the switching manifold to a point where
both have crossed. It has to be noted that the concept of using
maps to relate the perturbations before and after the switching
has also been applied in discontinuous mechanical systems [31],
[32]. This map S, referred to as the saltation matrix [17], is
given by

Az(tf) = SAz(ty). (25)

Suppose an orbit is passing from subsystem-1 given by the
vector field f_(z(t)) to subsystem-2 given by the vector field
f4(x(t)) at a switching manifold ¥ defined by the algebraic
equation h(z(t),t) = 0. It has been shown [15], [17] that, when
there is a transversal intersection, the saltation matrix is given
by

(F- - f+)"T

S=T+
'n.Tf_i_-i-g—}Z

(26)

|t=tx

JAs(T ) <1 _ (A1~ Ag)z(dT) + (By ~ Byl o1> AT

[1 0](A,z(dT

)+ Biu) — %

t=dT
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where tx, is the time at which the orbit crosses the manifold,
and m is a vector normal to the switching surface. The vector
field evaluated on one side of the switching manifold, i.e.,
limgyes, (f_(2(¢)), is abbreviated as f_, and that in the other
side, i.e., limg 4, (f, (2(t)), is abbreviated as f,. The form
of the saltation matrix is derived using a local approximation
of the perturbed and original solutions, and the scalar function
that defines the switching manifold. In that sense the procedure
is similar to that in the trajectory sensitivity approach using the
DAD model, but now the scalar function of algebraic variables
(g) is included in the scalar function h that defines the location
the switching manifold.

Suppose a periodic orbit starts at p in subsystem-1, in-
tersects the switching manifold at ¢y and goes over to sub-
system-2, and finally the periodic orbit closes at ¢ = T'. Then,
b(to+T,to,x(to)), is the monodromy matrix for the piecewise
system. Once the transition matrices in each subsystem and the
saltation matrix corresponding to the switching are obtained,
one can compose the monodromy matrix as

D(to + T, to, x(t0))

=@ (to+ T,ts+,z(ts+)) - S - P(ts-,to, z(to)) (27)
where 5 is the time instant just before crossing the switching
manifold and tx+ is that just after crossing it. If each sub-
system is linear time invariant, the state transition matrix for
the travel through each system can be obtained using the matrix
exponential.

Note that the form of the monodromy matrix is sufficiently
general. If the orbit contains passage through more number of
subsystems with a number of crossings (as, for example, in a
high-period orbit), one just has to compose the monodromy ma-
trix out of the state transition matrices for the passage through
each subsystem, and the saltation matrices related to the cross-
ings. This will greatly simplify the analysis as each crossing can
be treated separately. Furthermore, the Filippov approach can be
used to study systems that exhibit sliding modes [17], and hence
it can be applied to discontinuous conduction modes also.

The monodromy matrix essentially represents the linearized
system integrated around a periodic orbit, and hence its eigen-
values represent the Floquet multipliers. If they lie within the
unit circle, the orbit is stable. The Filippov method thus gives the
same result as the other methods outlined in Section II, though
by a different route. Note that for the nominal period-1 opera-
tion of the buck converter, Fang and Abed [27], [28] derived the
same form by differentiating the Poincaré map (see the expres-
sion at the end of Section II).

IV. BUCK CONVERTER AND ITS MATHEMATICAL MODEL

The voltage-mode-controlled buck converter circuit shown in
Fig. 3 is a piecewise affine system described by

di(t) ”_T”(t) S is conducting
= v(t) . . (28)
dt -2, Sisblocking
do(t) _i(t) = "

&~ C 29
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Fig. 3. Voltage-mode-controlled buck dc—dc converter.
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Fig. 4. Nominal period-1 operation of the buck converter. (a) Control and ramp
signals. (b) Output voltage. (c) Output current. The parameter values are V;,, =
24V, Ve = 113V, L = 20mH, R = 22 Q,C = 47 uF, A = 84,
T = 1/2500 s, and the ramp signal varies from 3.8 t0 8.2 V.

It is obvious from (28) and (29) that there is a discontinuity in
the right-hand side when the main switching element S passes
from conduction to blocking mode and vice versa.

Generally, there is some closed-loop scheme to control the
switching so that the output voltage is kept constant. In this
paper, we consider the voltage-mode control in which the output
voltage is compared with a reference voltage to generate a con-
trol voltage signal veon = A(v(t) — Vier), Where A is the gain
of the feedback loop.! The error voltage is then compared with a
periodic sawtooth signal v, to generate the switching signal
as follows:

if Veon < Vramp(t), S is turned on;
if Veon > Vramp(t), S is turned off.

Under normal conditions, the output of the converter will be
a dc voltage with a periodic ripple, with a mean value close to
the desired voltage and a period that is equal to the period of the
PWM ramp signal (referred to as period-1 waveform), as shown
in Fig. 4. In Fig. 5, the same orbit is shown in the v — ¢ state
space, with nine points on the orbit marked. The beginning of the
ramp period coincides with the time-point marked 1. As the orbit
progresses in time, the ramp voltage sweeps from left to right,
and, at time point 5, they intersect. The switch turns on, and

Tn many applications, a PI controller is used. However, in this paper, we
consider a proportional controller for two reasons. First, the additional capacitor
in the feedback loop increases the system dimension to three. Our focus here is
to develop a new method for analyzing stability — not to study a particular high-
dimensional system. Second, we have deliberately chosen an example system
that has been studied by others [6], [7], [10], [27] so that the reader can easily
cross-examine the results.
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Fig. 5. Period-1 limit cycle: the nine different time points on that orbit and the
location of the time-varying switching surface at these instants. After the ninth
point, the surface goes back to 1, repeating the periodic cycle.

remains in that state till the end of the ramp period (time point
9). The orbit is periodic if the state at time point 9 coincides with
that at time point 1. It has been shown that as a parameter (say,
the input voltage) is varied, the orbit may lose stablity and high-
periodic or chaotic orbits may occur [6], [7], [10]. Our concern
here is to determine the stability of this orbit.

V. APPLICATION OF THE FILIPPOV APPROACH TO

THE BUCK CONVERTER

By defining 21(¢t) = v(t) and z2(t) =
may be written as

i(t), (28) and (29)

i= Asz + B'll, A(‘Tl(t) I/Vrof) < Uramp(t) (30)
) Az, A(z1(t) = Viet) > Vramp(t).
where
—1 1 0
A5:{11§ C} Bu:[l}Vin.

z 0 T

The switching hypersurface (h) is given by
h(z(t),t) = 21(t) — Viet — ”fa‘%@ =0, A#£0.31)
Svramp( ) VL + (VU - VL) (%HlOdl) . (32)

The two-dimensional state space is divided into three parts

P_UYXUP, =R? (33)
where
_ ={z € R?: h(z(t),t) < 0}
Py ={z € R? : h(z(t),t) > 0}
Y ={z € R?: h(z(t),t) = 0}.

Equation (30) can be written as an upper semi-continuous
Filippov inclusion

f_(=z(1)), ifz,(t) € P_
T € F(z(t) = Co{f (z(1), Fo(z()}, ifz,(t) €X
f4(=(t)), ifz,(t) € Py

(34)
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where
z2(t) _ zi(t)
£ o) = | fnds |
z2(t) f z1(t)
fia0) = | L0 |
L

At the two sides of the switching hypersurface f_(z(t)) #
f4(x(t)) and, therefore, the system has discontinuous vector
field. The convex hull is defined as

col{ f_(z(1)), F(=(1))}
z2(t)  z1(t)
_ C RC
- [—{‘E;x—fl(t) _-rl(t)}‘|
L ’ L
z2(t) _ za(t)
C "RC
[(l—q) ml(t) qwlét):| Vqe[o,1].

The normal to the hypersurface is

Q

Oh(Z(t),t) 1
n=VMﬂmw=[£E$0] h]. (35)
Oz (t)

Now, if we consider the period-1 orbit as shown in Figs. 4
and 5, the solution intersects the switching manifold transver-
sally and the orbit spends infinitely small time on the switching
manifold. Therefore, Filippov’s method of obtaining the salta-
tion matrix and the monodromy matrix can be applied.2

The components of the saltation matrix (26) are obtained as

za(tn) _ z1(ts)

_ C RC
za(ty) _ wilts)

_ C RC
tl%?zlh( (t))—{ S ]

where tx, is the switching instant.

Thus
0
tim 7 (a(6) T £ o0 = [ ]
. r | 0 O
<tlﬁnf (z ())—tlgtrzlh(-'ﬂ(t))" = {VT 0}
 ma(ty) — 202
o' lim £, (a(t) = ——

Since we are considering a period-1 orbit, it suffices to consider
t varying from 0 to 7" in (32), which gives

TVL+(V —‘fL)t
oh(a(t),r) O (1) = Vier = TGN
ot o ot
Vo —-Vi
AT

20n this point some caution has to be exercised when considering specific
periodic orbits, because di Bernardo et al. [33] have shown that in this system
there can be orbits that slide along the switching surface. To use the concept of
the saltation matrix to such orbits, care must be taken for the correct definition of
the vector field after the switching. The case of discontinuous conduction mode
falls in this category, and that analysis will be presented in a later publication.
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Hence, (26) is calculated as

1 0
s 3 | (36)
= L .
12“2);11“2) Cvyovy
C AT

Now, we need the state transition matrices for the two sub-
systems. The state transition matrix during the first time in-
terval (i.e., when the switch is blocking) is given by @4 (ts,0) =
e®<t= The state transition matrix for the second interval is given
by @o(T,ts) = efs(T=ts) a5 the subsystems are linear time
invariant. Knowing S, it is thus possible to calculate the mon-
odromy matrix @(to + T, to, zo) using the composition (27). At
this point, it has to be noted that there is one more switching
att = T at the end of the clock cycle, which will need another
saltation matrix. It happens to be the identity matrix, since at this
point A is discontinuous and hence dh/d¢ = oo. Furthermore,
at this point, there is a forced switching, i.e., both the original
and the perturbed orbits are forced to cross the switching mani-
fold at the same time, and hence there is no need for a saltation
matrix to describe the switching at¢t = T.

Finally, we need to substitute the numerical values of the state
vector at the switching instant. Because of the transcendental
form of the equations involved, the switching instant within the
periodic cycle cannot be obtained explicitly. Following [8], it
can however be obtained semi-analytically as follows.

Let the duty ratio be d = to,/T = (T — ts)/T. For our
convenience, we define the ratio d’ = 1 — d = (T — ton)/T,
&, (d'T) = &,(d'T,0), and @2(T) = Po(T, d'T). The value of
the state vector at ¢t = tx is

2(d'T) = &,(d'T)z(0). (37)

The state vector when ¢t = T is given by

s (T=7) [‘?n } dr.

T
z(T) = x(0) = @o(T)x(d'T) + / Yin
(38)

JaT
By eliminating z(d'T) from (38) with (37), we get

2(0) = @5 (T)®, (d'T)z(0)

T 0
+ / e (T=7) [ - } dr
Jd'T

= [I— eAST]_l X / s (T=7) [‘9 } dr. (39)
Jd'T L

o

N

From the hypersurface, we have

Vi + (VU - VL)dl

z1(d'T) = Vier + "

and from (37) we have

w1 (d'T)=[1 0] Tx(0). (40)
Hence , Vi + (Viy — Vi) d'
[10]e®"Tx(0) = Vier — 1 —0. (41

After substituting £(0) from (39), (41) can be solved numer-
ically with the Newton—Raphson method to obtain the value of
d’ for the periodic orbit.
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TABLE 1
SALTATION AND MONODROMY MATRICES FOR VARIOUS INPUT VOLTAGES

Vin, V d Saltation matrix Monodromy matrix Floquet mulipliers
—1.6832 3.712

14 0.1559 ! 0 6832 3.7123 —0.6265 £ 0.5354j
—-0.4072 1 —0.3780 0.4301

20 0.4024 ! 0 —1.0020 08115 —0.6919 4 0.44775
—0.4262 1 —0.3655 —0.3818

1 —0.823 .0131

24 0.4993 0 0.8238 0.013 —0.8211 £ 0.0708;
—0.4639 1 —0.3825 —0.8184

25 0.5187 1 0 —0.7919 —0.1323 —0.6214
—0.4744 1 —0.3878 —0.9225 —1.0929

VI. STABILITY ANALYSIS OF THE BUCK CONVERTER

For Vi, = 24 V and Vi = 11.3 V, the Newton—Raphson
solution obtained d’ = 0.4993. Then, from (39) and (40), we
get

12.0222
0.4861

=(0) = { 0.6065
The saltation matrix is calculated as

10
5= [—0.4639 1]'

The state matrix (which is the same before and after the jump
for the buck converter) is given by

#(d'T) = [12.0139} .

(42)

AL - [967.12 21276.6} .

—50 0

The state transition matrices for the two pieces of the orbit are

o oy aar | 0.8058  3.8366
P(dT,0) =07 = {—0.0090 0.9802
n Az | 08052 3.8468
ST, dT) =™ = [—0.0090 0.9800

respectively. Hence, the monodromy matrix is

—0.8238

—0.3825 “3)

S(T.0.2(0)) = [ 0.0131 } .

—0.8184

The eigenvalues of (43) are —0.8211 + 0.0708j, implying
that at the above parameter values the system is stable. This
is in agreement with the experimental and numerical observa-
tions of the system behavior, reported in Section VII, as well
as with those reported in earlier studies of the same system [7].
To further confirm the results obtained with the new method of
analysis, the Floquet multipliers (or the eigenvalues of the mon-
odromy matrix) were calculated for values of the input voltage
Vin ranging from 14 to 25 V. Table I shows the calculated values
of the saltation matrix, the monodromy matrix, and its Floquet
multipliers. The locus of these eigenvalues is shown in Fig. 6. It
shows that eigenvalues first became real for a specific parameter
value, and then one of the eigenvalues went out of the unit circle
through the negative real line, marking the onset of instability
through a period-doubling bifurcation.

It is interesting to point out that the change in the value of
d' for V;, varied from 24 V to 25 V is approximately —0.0195,
which will only slightly change the matrices @2(T"), @1 (d'T)
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Fig. 7. Region of stability of the period-1 orbit in the V;,, — R parameter space.
The contour is obtained using the condition that the lower eigenvalue of the
monodromy matrix is equal to —1.

and yet the system becomes unstable. The answer to this sur-
prising circuit behavior lies in the corresponding change of the
saltation matrix, given by

0 0
0.0105 0

which causes an eigenvalue of the monodromy matrix to go out
of the unit circle.

This provides a simple way for the circuit designer to choose
the parameters. Given certain specifications of the input and
output voltages and power throughput, the designer would first
roughly set a range of parameters in the conventional way, based
on the averaged model to get the desired slow time scale stability
and transient performance. But this will not guarantee that the
system will be stable on a fast time scale when variable param-
eters like input voltage and load resistance fluctuate. In order to
ensure that, it will be necessary to calculate the range of the vari-
able parameters like Vj,, and R for which the period-1 orbit will
remain stable. A representative parameter space diagram, with
other parameters fixed at values given in the caption of Fig. 4,
is shown in Fig. 7. The designer will have to ensure that the
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Fig. 8. Experimental waveforms for the capacitor voltage and inductor current
(a) for Vi, = 20 V and (b) for V;, = 25 V.

external parameters remain within the shaded region of the pa-
rameter space.

VII. EXPERIMENTAL RESULTS

To further validate these results, experimental tests were car-
ried out. Results are presented in Fig. 8 which show that an in-
stability does occur in the period-1 orbit before Vi, = 25V,
which results in the birth of the period-2 orbit. The results are
in total agreement with the theoretical predictions presented in
Fig. 6 and Table 1.

One particular strength of the method developed in this paper
is that the solution of (41) does not distinguish between a stable
orbit and an unstable orbit. Therefore, unstable periodic orbits
can be detected and their Floquet exponents can be calculated.
An example of this is presented in Fig. 9, where the unstable pe-
riod-1 orbit coexisting with the stable period-2 orbit for Vj,, =
25 V is shown. It is known that such unstable periodic orbits,
though invisible as far as asymptotic behavior is concerned, can
influence the bifurcation sequence through border collision bi-
furcation or interior crisis.

VIII. FURTHER APPLICATIONS

Here, we will apply the methodology developed in this paper
to explain some empirical observations reported recently, and
to propose a new controller that delays the bifurcation and can
allow the nominal period-1 orbit to continue for a larger param-
eter range.
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Fig. 9. Stable and unstable periodic orbits of the buck converter for Vi, =
25 V.

A. Explanation of Intermittent Subharmonic Windows

There have been some recent reports [21], based on empir-
ical observations from simulation as well as experiments, that
the system exhibits some peculiar intermittent subharmonic be-
havior when the reference signal is coupled with a small-am-
plitude time-varying signal. Such spurious additive signal may
represent coupling with the environment, and so it is a matter of
great importance to understand why they occur.

Let us first consider sinusoidal additive signal, so that Vet
takes the form Vies(1 + asinwgt), where ws may be different
from w = 27 /7. It has been shown [21] that, in that case, in-
termittent subharmonic windows appear. If we assume w; = w,
the length of the specific subharmonic window is extended to in-
finity, and so it becomes a steady-state behavior. Then, we use
the eigenvalues of the monodromy matrix to predict the change
of stability properties.

Assuming ws; = w, the scalar equation h(z(t),t) = 0 that
describes the hypersurface is

TV + (VU — VL)t -0
AT o

21~ Viet — Viera sin wt — te (0,7).

(44)

In this case, (41) takes the form

[1 0] eAd'T < [[—ehsT]1 xde,T ehs(T=7) |:y9 } dT)
L

_ VL-l-(VU—VL)dI
A

The duty cycles and the corresponding values of the state
vector at t = 0 and ¢t = d'T (for the period 1 cycle) are shown
in Table II.

Studying the results presented in Table I, it can be seen that
the duty cycle and hence the vector fields at ¢ = 0 and t = d'T
remain almost unchanged. Furthermore, h(z(d'T),d'T) does
not change much since the value of Viera sin(wd'T) is almost
zero. This could lead to the wrong conclusion that the additive
signal makes no change in the stability status, which contradicts
the results reported in [21]. The underlying situation becomes

— Vref — erefa Sin(WdIT) =0. (45)
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TABLE II
VALUES OF d’ AND THE STATE VECTOR FOR
Vin = 24 V AND VARIOUS VALUES OF a
a d’ x(0) x(d'T)
T T
0 | 04993 [12.0222 0.6065] [12.0139 0.4861]
T T
0.0001 | 0.4993 [12.0222 0.6065] [12.0139 0.4861]
T T
0.0002 | 0.4993 [12.0222 0.6065] [12.0139 0.4861]
T T
0.0003 | 0.4993 [12.0222 0.6065] [12.0139 0.4861]
TABLE TII
EIGENVALUES OF THE MONODROMY MATRIX FOR INCREASING VALUES OF «
a Eigenvalues
0 —0.8211 + 0.0708;
T
0.0001 [—0.9468 —0.7174]
T
0.0002 [—1.0216 —0.6648]
T
0.0003 [—1.0804 —0.6286]

clear only when we obtain the eigenvalues of the monodromy
matrix, as given in Table III. It shows that for the amplitude
of the additive signal as low as a = 0.0002, the monodromy
matrix has an eigenvalue outside the unit circle and hence the
period-1 orbit is unstable (a stable period-2 orbit is born out of
a flip bifurcation).

To understand why a flip bifurcation takes place for that value,
while the duty cycle remains constant, it is necessary to study
the saltation matrix. We reproduce the expression here

_ oy (imyg (f(2(1))) = limyge, (f(2(2))))n"

S=1+ ; 5% .
nl limge, (f(2(2))) + 5t (2(0), 1) li=ts

The only component that changed with the addition of

Vierasin(wt) is the last term in the denominator, since the duty
cycle remained practically unchanged. This term is defined as

oh Vo -V
3¢ @), 1) = —Vieraw coswt — %

(46)

which is obviously different from that without the addi-
tive signal. Add to this the observation that the value of
Vierasin(wd'T) is very small, which implies that the value
of —Vieraw cos(wt) will be large at ¢ = ty. Therefore, there
will be a large influence on the value of 0h/dt(x(t),ts) and
therefore on the saltation matrix. This greatly influences the
monodromy matrix as it can be seen in Table III, and renders
the orbit unstable.

B. Development of a Control Strategy

Based on the observation in [21], a chaos control scheme has
been recently proposed in [22]. With the approach proposed in
this paper, we are now in a position to understand why this chaos
controlling scheme works.

Since a positive value of a pushes one eigenvalue of the mon-
odromy matrix towards —1, a negative value of a (i.e., a phase
shift of 180°) is expected to have a reverse effect. Hence, if
we have an uncoupled buck converter which exhibits a period
doubling at a specific parameter value, a small time varying
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Fig. 10. Bifurcation diagram of the system.

signal added to V¢ will force the period-1 limit cycle to be-
come stable once again. This is feasible since the period dou-
bling did not destroy the period-1 orbit but simply changed its
stability properties.

Our approach has more to offer than just explanation of
empirical observations. We can now “optimally” choose the
strength of the additive sine wave. One strategy may be to keep
the magnitude of the eigenvalues exactly the same as that for
the stable periodic orbit obtained for low values of Vj,. It can
be seen in Fig. 6 that, for low values of Vi, the eigenvalues
lie on a circle of radius 0.8241. To obtain the value of a, we
used a Newton—Raphson method to place the eigenvalues of
the monodromy matrix on that circle by solving the equation

leig(@(T, 0, z(0)))| — 0.8242 = 0.

The results of this algorithm for various values of V},, are shown
in Fig. 11. Based on these values, we created a third-order poly-
nomial expression

a=—-22x10"V2 +1.5x1074V2 —3.7x 1073V}, +3.372

that matches the graph of Fig. 11 over a large range of the input
voltage.

By using this equation, we propose an improvement of the
chaos controlling scheme that appears in [22]. We create a su-
pervising controller whose task is to change the value of a, and
then another controller adds the signal a V¢ sin wt to the refer-
ence input value (see Fig. 12).

The output voltage response to a step change in input voltage
(24-30 V) is shown in Fig. 13. Without the supervising con-
troller, it would have resulted in a period-2 subharmonic oscil-
latory mode, as can be seen in the bifurcation diagram given
in Fig. 10. Note that, following the transient, the system briefly
goes into period-2 mode, but is quickly corrected by the super-
vising controller to reestablish the period-1 operation. We have
found that this controller is robust to load resistance changes
also. Further research is underway to avoid the offline calcula-
tion of the values of a by using artificial intelligence methods
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Fig. 13. Voltage response to a step change in input voltage from 24 to 30 V,
shown along with the stroboscopic sampling points.

like adaptive critical control. It has to be noted that the sinu-
soidal signal used here has zero phase at the clock instant, which
works quite well if the duty cycle is close to 50%. In a general
case we will choose the zero crossing of the imposed sinusoid
to coincide approximately with the switching instant, which can
be done if an approximate value of the duty ratio is known. This
will ensure that the switching instant (and hence the duty ratio)
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is not affected by the sinusoidal signal, but the derivative of the
switching manifold with respect to time will be maximum in
magnitude at the switching instant.

IX. CONCLUSION

Following Filippov’s approach, we have developed a pow-
erful technique to determine the stability of periodic limit cycles
in power electronic circuits. The method is quite suitable for sta-
bility analysis of the vast majority of power electronic systems
whose Poincaré map cannot be determined in closed form.

In this method, the fundamental solution matrix over a com-
plete cycle—called the monodromy matrix—is determined by
using the state transition matrices for the segments of the orbit
lying in the individual subsystems, and the transition matrix
across the switching boundaries—called the saltation matrix.
We have illustrated the method by applying it to the voltage
mode controlled buck converter, yielding valuable insights into
issues related to the stability of the nominal period-1 orbit. The
saltation matrix concept can also be fruitfully used to model
the evolution of perturbations in case of situations like thyristor
switch off and diode switch on, where the system dimension
changes [3] across the switching manifold. We have shown that
the saltation matrix is principally responsible in the determina-
tion of the system’s stability. By this method, one can calculate
the range of the variable parameters like the input voltage and
load resistance for which the period-1 orbit will be stable.

We have then used this approach to explain the recent obser-
vation that spurious sinusoidal additive signals cause intermit-
tent subharmonic behavior in such converters. Finally, we have
proposed a supervising controller that can extend the param-
eter range over which the period-1 operation of the converter
remains stable.
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