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Learning a Scoring Function

Problem

Learn a function
f : X → Y

from partial information on f .

Data: Know f on a (very small) subset Ω ⊆ X .

Model: Know that f belongs to some class of functions F(X ,Y ).

Classifying: Classify objects into some number of classes.

Classifier f : emails→ {spam, ham}.
f (x) > 0⇒ x is ham, f (x) < 0⇒ x is spam.

Ranking: Rank objects in some order.

Scoring function f : X → R.
f (x1) ≥ f (x2)⇒ x1 � x2.
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Ranking and Rank Aggregation

Static Ranking: One voter, many alternatives [Gleich, Langville].

E.g. ranking of webpages: voter = WWW, alternatives
= webpages.
Number of in-links, PageRank, HITS.

Rank Aggregation: Many voters, many alternatives.

E.g. ranking of movies: voters = viewers, alternatives =
movies.
Supervised learning: [Agarwal, Crammer, Kondor,
Mackey, Rudin, Singer, Vayatis, Zhang].
Unsupervised learning: [Hochbaum, Small, Saaty],
HodgeRank and SchattenRank: this talk.
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Old and New Problems with Rank Aggregation

Old Problems
I Condorcet’s paradox: majority vote intransitive a � b � c � a.

[Condorcet, 1785]
I Arrow’s & Sen’s impossibility: any sufficiently sophisticated

preference aggregation must exhibit intransitivity. [Arrow, 50], [Sen, 70]
I McKelvey’s & Saari’s chaos: almost every possible ordering can be

realized by a clever choice of the order in which decisions are taken.
[McKelvey, 79], [Saari, 89]

I Kemeny optimal is NP-hard: even with just 4 voters.
[Dwork-Kumar-Naor-Sivakumar, 01]

I Empirical studies: lack of majority consensus common in group
decision making.

New Problems
I Incomplete data: typically about 1%.
I Imbalanced data: power-law, heavy-tail distributed votes.
I Cardinal data: given in terms of scores or stochastic choices.
I Voters’ bias: extreme scores, no low scores, no high scores.
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Pairwise Ranking as a Solution

Example (Netflix Customer-Product Rating)

480189-by-17770 customer-product rating matrix A.

incomplete: 98.82% of values missing.

imbalanced: number of ratings on movies varies from 10 to 220,000.

Incompleteness: pairwise comparison matrix X almost complete!
0.22% of the values are missing.

Intransitivity: define model based on minimizing this as objective.

Cardinal: use this to our advantage; linear regression instead of order
statistics.

Complexity: numerical linear algebra instead of combinatorial
optimization.

Imbalance: use this to choose an inner product/metric.

Bias: pairwise comparisons alleviate this.
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What We Seek

Ordinal: Intransitivity, a � b � c � a.

Cardinal: Inconsistency, Xab + Xbc + Xca 6= 0.

Want global ranking of the alternatives if a reasonable one exists.

Want certificate of reliability to quantify validity of global ranking.

If no meaningful global ranking, analyze nature of inconsistencies.

A basic tenet of data analysis is this: If you’ve found some
structure, take it out, and look at what’s left. Thus to look at
second order statistics it is natural to subtract away the observed
first order structure. This leads to a natural decomposition of
the original data into orthogonal pieces.

Persi Diaconis, 1987 Wald Memorial Lectures
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Orthogonal Pieces of Ranking

Hodge decomposition:

aggregate pairwise ranking =

consistent ⊕ locally inconsistent ⊕ globally inconsistent

Consistent component gives global ranking.

Total size of inconsistent components gives certificate of reliability.

Local and global inconsistent components can do more than just
certifying the global ranking.
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Analyzing Inconsistencies

Locally inconsistent rankings should be acceptable.
I Inconsistencies in items ranked closed together but not in items ranked

far apart.
I Ordering of 4th, 5th, 6th ranked items cannot be trusted but ordering

of 4th, 50th, 600th ranked items can.
I E.g. no consensus for hamburgers, hot dogs, pizzas, and no consensus

for caviar, foie gras, truffle, but clear preference for latter group.

Globally inconsistent rankings ought to be rare.

Theorem (Kahle, 07)

Erdős-Rényi G (n, p), n alternatives, comparisons occur with probability p,
clique complex χG almost always have zero 1-homology, unless

1

n2
� p � 1

n
.
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Basic Model

Ranking data live on pairwise comparison graph G = (V ,E ); V :
set of alternatives, E : pairs of alternatives to be compared.

Optimize over model class M

min
X∈M

∑
α,i ,j

wα
ij (Xij − Y α

ij )2.

Y α
ij measures preference of i over j of voter α. Y α skew-symmetric.

wα
ij metric; 1 if α made comparison for {i , j}, 0 otherwise.

Kemeny optimization:

MK = {X ∈ Rn×n | Xij = sign(sj − si ), s : V → R}.

Relaxed version:

MG = {X ∈ Rn×n | Xij = sj − si , s : V → R}.

Rank-constrained least squares with skew-symmetric matrix variables.
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Rank Aggregation

Previous problem may be reformulated

min
X∈MG

‖X − Ȳ ‖2
F ,w = min

X∈MG

[∑
{i ,j}∈E

wij(Xij − Ȳij)
2
]

where

wij =
∑

αwα
ij and Ȳij =

∑
α wα

ij Y α
ij

/ ∑
α wα

ij .

Why not just aggregate over scores directly? Mean score is a first
order statistics and is inadequate because

I most voters would rate just a very small portion of the alternatives,
I different alternatives may have different voters, mean scores affected by

individual rating scales.

Use higher order statistics.
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Formation of Pairwise Ranking

Linear Model: average score difference between i and j over all who have
rated both,

Yij =

∑
k(Xkj − Xki )

#{k | Xki ,Xkj exist}
.

Log-linear Model: logarithmic average score ratio of positive scores,

Yij =

∑
k(log Xkj − log Xki )

#{k | Xki ,Xkj exist}
.

Linear Probability Model: probability j preferred to i in excess of purely
random choice,

Yij = Pr{k | Xkj > Xki} −
1

2
.

Bradley-Terry Model: logarithmic odd ratio (logit),

Yij = log
Pr{k | Xkj > Xki}
Pr{k | Xkj < Xki}

.
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Functions on Graph

G = (V ,E ) undirected graph. V vertices, E ∈
(V

2

)
edges, T ∈

(V
3

)
triangles/3-cliques. {i , j , k} ∈ T iff {i , j}, {j , k}, {k , i} ∈ E .

Function on vertices: s : V → R
Edge flows: X : V × V → R, X (i , j) = 0 if {i , j} 6∈ E ,

X (i , j) = −X (j , i) for all i , j .

Triangular flows: Φ : V ×V ×V → R, Φ(i , j , k) = 0 if {i , j , k} 6∈ T ,

Φ(i , j , k) = Φ(j , k , i) = Φ(k , i , j)

= −Φ(j , i , k) = −Φ(i , k , j) = −Φ(k , j , i) for all i , j , k .

Physics: s,X ,Φ potential, alternating vector/tensor field.

Topology: s,X ,Φ 0-, 1-, 2-cochain.

Ranking: s scores/utility, X pairwise rankings, Φ triplewise rankings
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Operators

Graph gradient: grad : L2(V )→ L2(E ),

(grad s)(i , j) = sj − si .

Graph curl: curl : L2(E )→ L2(T ),

(curl X )(i , j , k) = Xij + Xjk + Xki .

Graph divergence: div : L2(E )→ L2(V ),

(div X )(i) =
∑

j
wijXij .

Graph Laplacian: ∆0 : L2(V )→ L2(V ),

∆0 = div ◦ grad .

Graph Helmholtzian: ∆1 : L2(E )→ L2(E ),

∆1 = curl∗ ◦ curl− grad ◦ div .

L.-H. Lim (Chicago) HodgeRank August 18, 2010 13 / 24



Some Properties

im(grad): pairwise rankings that are gradient of score functions, i.e.
consistent or integrable.

ker(div): div X (i) measures the inflow-outflow sum at i ; div X (i) = 0
implies alternative i is preference-neutral in all pairwise comparisons;
i.e. inconsistent rankings of the form a � b � c � · · · � a.

ker(curl): pairwise rankings with zero flow-sum along any triangle.

ker(∆1) = ker(curl) ∩ ker(div): globally inconsistent or harmonic
rankings; no inconsistencies due to small loops of length 3, i.e.
a � b � c � a, but inconsistencies along larger loops of lengths > 3.

im(curl∗): locally inconsistent rankings; non-zero curls along triangles.

div ◦ grad is vertex Laplacian, curl ◦ curl∗ is edge Laplacian.
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Boundary of a Boundary is Empty

Algebraic topology in a slogan: (co)boundary of (co)boundary is null.

Global
grad−−→ Pairwise

curl−−→ Triplewise

and so

Global
grad∗(=:− div)←−−−−−−−−− Pairwise

curl∗←−−− Triplewise.

We have
curl ◦ grad = 0, div ◦ curl∗ = 0.

This implies

global rankings are transitive/consistent,

no need to consider rankings beyond triplewise.
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Helmholtz/Hodge Decomposition

Vector calculus: vector field F resolvable into irrotational (curl-free),
solenoidal (divergence-free), harmonic parts, F = −∇ϕ+∇× A + H
where ϕ scalar potential, A vector potential.

Linear algebra: every skew-symmetric matrix X can be written as
sum of three skew-symmetric matrices X = X1 + X2 + X3 where
X1 = se> − es>, X2(i , j) + X2(j , k) + X2(k, i) = 0.

Graph theory: orthogonal decomposition of network flows into
acyclic and cyclic components.

Theorem (Helmholtz decomposition)

G = (V ,E ) undirected, unweighted graph. ∆1 its Helmholtzian. The
space of edge flows admits orthogonal decomposition

L2(E ) = im(grad)⊕ ker(∆1)⊕ im(curl∗).

Furthermore, ker(∆1) = ker(curl) ∩ ker(div).

L.-H. Lim (Chicago) HodgeRank August 18, 2010 16 / 24



Cartoon Version

Global Structure of Preferences Helmholtz Decomposition

Helmholtz decomposition (a cartoon)

Globally consistent Globally inconsistent

Locally consistent Locally inconsistent

Gradient flow Harmonic flow Curl flow

15 / 41

Figure: Courtesy of Pablo Parrilo
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Rank Aggregation Revisited

Recall our formulation

min
X∈MG

‖X − Ȳ ‖2
2,w = min

X∈MG

[∑
{i ,j}∈E

wij(Xij − Ȳij)
2
]
.

The exact case is:

Problem (Integrability of Vector Fields)

Does there exist a global ranking function, s : V → R, such that

Xij = sj − si =: (grad s)(i , j)?

Answer: There are non-integrable vector fields, i.e.

V = {F : R3\X → R3 | ∇×F = 0}; W = {F = ∇g}; dim(V /W ) > 0.
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Hodge Decomposition of Pairwise Ranking

Hodge decomposition of edge flows:

L2(E ) = im(grad)⊕ ker(∆1)⊕ im(curl∗).

Hodge decomposition of pairwise ranking matrix

aggregate pairwise ranking =

consistent ⊕ globally inconsistent ⊕ locally inconsistent

Resolving consistent component (global ranking + certificate): O(n2)
linear regression problem.

Resolving the other two components (harmonic + locally
inconsistent): O(n6) linear regression problem.
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HodgeRank

Global ranking given by solution to

min
s∈C0
‖ grad s − Ȳ ‖2,w .

Minimum norm solution is

s∗ = −∆†0 div Ȳ

Divergence is

(div Ȳ )(i) =
∑

j s.t. {i ,j}∈E
wij Ȳij ,

Graph Laplacian is

[∆0]ij =


∑

i wii if j = i ,

−wij if j is such that {i , j} ∈ E ,

0 otherwise.
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More on HodgeRank

If G is complete graph, s∗ is Borda count:

s∗i = −1

n
div(Ȳ )(i) = −1

n

∑
j

Ȳij .

So s∗ is generalization of Borda count to incomplete data (not every
voter has rated every alternative).

Certificate of reliability R∗ = Ȳ − grad s∗ is divergence-free, i.e.
div R∗ = 0.

Further orthogonal decomposition into local and global inconsistencies

R∗ = projim(curl∗) Ȳ + projker(∆1) Ȳ

Explicitly,

projim(curl∗) = curl† curl and projker(∆1) = I −∆†1∆1.
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Harmonic Rankings?

B

1 2

1

1

1

1

1

2

C

D

EF

A

Figure: Locally consistent but
globally inconsistent harmonic
ranking.

Figure: Harmonic ranking from a truncated
Netflix movie-movie network
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College Ranking

Kendall τ -distance

RAE’01 in-degree out-degree HITS authority HITS hub PageRank Hodge (k = 1) Hodge (k = 2) Hodge (k = 4)

RAE’01 0 0.0994 0.1166 0.0961 0.1115 0.0969 0.1358 0.0975 0.0971
in-degree 0.0994 0 0.0652 0.0142 0.0627 0.0068 0.0711 0.0074 0.0065

out-degree 0.1166 0.0652 0 0.0672 0.0148 0.0647 0.1183 0.0639 0.0647
HITS authority 0.0961 0.0142 0.0672 0 0.0627 0.0119 0.0736 0.0133 0.0120

HITS hub 0.1115 0.0627 0.0148 0.0627 0 0.0615 0.1121 0.0607 0.0615
PageRank 0.0969 0.0068 0.0647 0.0119 0.0615 0 0.0710 0.0029 0.0005

Hodge (k = 1) 0.1358 0.0711 0.1183 0.0736 0.1121 0.0710 0 0.0692 0.0709
Hodge (k = 2) 0.0975 0.0074 0.0639 0.0133 0.0607 0.0029 0.0692 0 0.0025
Hodge (k = 3) 0.0971 0.0065 0.0647 0.0120 0.0615 0.0005 0.0709 0.0025 0

Table: Kendall τ -distance between different global rankings. Note that HITS
authority gives the nearest global ranking to the research score RAE’01, while
Hodge decompositions for k ≥ 2 give closer results to PageRank which is the
second closest to the RAE’01.
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Pointers

X. Jiang, L.-H. Lim, Y. Yao, Y. Ye, “Statistical ranking and
combinatorial Hodge theory,” Math. Program., Special Issue on
Optimization in Machine Learning, to appear.

HodgeRank inspired:
I L. Bartholdi, T. Schick, N. Smale, S. Smale, A.W. Baker, “Hodge

theory on metric spaces,” preprint, (2009).
I O. Candogan, I. Menache, A. Ozdaglar, P. Parrilo, “Flows and

decompositions of games: Harmonic and potential games,” preprint,
(2010).

I D. Gleich, L.-H. Lim, “Rank aggregation via nuclear norm
minimization,” preprint, (2010).
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