
5601 Notes: The Subsampling Bootstrap

Charles J. Geyer

July 11, 2013

1 Web Pages

This handout accompanies the web pages

http://www.stat.umn.edu/geyer/5601/examp/subboot.html

http://www.stat.umn.edu/geyer/5601/examp/subtoot.html

2 History

The term“bootstrap”was coined by Efron (1979). He described both the
nonparametric and parametric bootstrap. In particular, his nonparametric
bootstrap is the procedure of resampling with replacement from the original
sample at the same sample size, which is by far the most commonly used
bootstrap procedure.

It wasn’t long before people experimented with resampling at different
sample sizes. But the key discovery in that area came later. Politis and
Romano (1994) described resampling without replacement from the original
sample at smaller than the original sample size.

This is different enough from Efron’s idea that in their book (Politis,
Romano, and Wolf, 1999) they don’t call it “bootstrap” but just plain “sub-
sampling”.

Whatever you call it, here’s why it is such an important innovation.

• Politis and Romano’s subsampling bootstrap takes samples without
replacement of size b from the original sample of size n, generally with
b � n (read “b much less than n”). Such samples are themselves
samples of size b from the true unknown distribution F of the original
sample.

1

• Efron’s nonparametric bootstrap takes samples with replacement of
size n from the original sample of size n (both sample sizes the same).
Such samples are samples of size n from the empirical distribution F̂n
associated with the original sample.

Each of these procedures does the Wrong Thing.

• The Right Thing is samples of the right size n from the right distribu-
tion F .

• The Politis and Romano thing is samples of the wrong size b� n from
the right distribution F .

• The Efron thing is samples of the right size n from the wrong distri-
bution F̂n.

Both Wrong Things are wrong. We would like to do the Right Thing
but we can’t. (More precisely, we have exactly one such sample, the original
data, and can’t get more. Scientists may get more data, but that’s of no
interest to us statisticians.)

So which Wrong Thing do we want to do? Both have pluses and minuses.
The Efron procedure is older, more widely used, and familiar to more people.
It is also easier to use, at least in simple situations. But the Politis and
Romano procedure has the great virtue of working in situations where the
Efron bootstrap fails. The two main classes of such situations are presented
in the following sections.

3 Stationary Time Series

A time series is a sequence X1, X2, . . ., Xn of possibly dependent random
variables.

A times series is stationary if every consecutive block

Xi+1, Xi+2, . . . , Xi+b (1)

of length b has the same (marginal) distribution. Roughly speaking, what
actually happens changes over time, but the probability distribution of what
happens does not change over time.

The ordinary (Efron) nonparametric bootstrap doesn’t work for time
series or any other form of dependent data. If the data are not IID then
it makes no sense whatsoever to obtain IID bootstrap samples from F̂n (or
any other distribution for that matter).

2

The (Politis and Romano) subsampling bootstrap does work for station-
ary time series. Under the stationarity assumption the n− b−1 consecutive
blocks (1) of length b are identically distributed. Hence the estimators cor-
responding to such blocks

θ∗bi = s(Xi+1, Xi+2, . . . Xi+b)

are identically distributed (not IID just ID, since they are dependent) and
analogous (in the “bootstrap world”) to

θ̂n = s(X1, X2, . . . Xn)

(in the “real world”). The only problem we have to deal with is that

se(θ̂n) ≈ c√
n

for some positive constant c (assuming our estimator obeys the “square root
law”) whereas

se(θ∗b) ≈
c√
b

for the same positive constant c (but different denominator). Thus we need
to scale

se(θ̂n) ≈ se(θ∗b) ·
√
b

n

to get from se(θ∗b), which we can estimate by subsampling (as the standard

deviation of the n− b+ 1 quantities θ∗bi), to se(θ̂n), which is the quantity we

need to make a confidence interval for θ̂n and which we otherwise have no
way to estimate.

4 IID Situations

4.1 Extreme Values

Suppose X1, X2, . . ., Xn are IID Uniform(0, θ) random variables. Since
the larger the sample the more the largest values crowd up against θ, the
natural estimator of θ is the maximum data value

θ̂n = X(n) = max(X1, X2, . . . , Xn).

This is in fact the maximum likelihood estimate.
The main statistical interest in this estimator is that it is a counterexam-

ple to both the “square root law” and the “usual asymptotics” of maximum
likelihood.

3

• The “rate” is n rather than
√
n.

• The asymptotic distribution is not normal.

More precisely,

n(θ − θ̂n)
D−→ Exponential(1/θ) (2)

But to use the subsampling bootstrap, we need only know that the actual
rate is n. We do not need to know the actual asymptotic distribution.

Actually, we do not even need to know the rate. By looking at the
distribution of θ∗b for different subsample sizes b we can get an estimate of
the rate (described in Section 6 below). But for now we’ll assume we know
the rate.

4.2 Other IID Situations

More generally, suppose X1, X2, . . ., Xn are IID from some distribution
and we are interested in a parameter estimate

θ̂n = s(X1, X2, . . . , Xn).

And we assume that there is an asymptotic distribution at some “rate”

τn(θ̂n − θ)
D−→ Something, (3)

where “Something” denotes any distribution whatsoever. Here τn can be
any known sequence. Usually we have τn =

√
n, in which case we say the

estimator obeys the “square root law.” But in the preceding section we saw
an estimator for which we needed τn = n. And on the homework we will see
an estimator for which we will need τn = n1/3.

Under the IID assumption, the
(
n
b

)
ways to choose a subsample of size

b without replacement from X1, X2, . . ., Xn are all identically distributed
and the estimators

θ∗b = s(X∗1 , X
∗
2 , . . . , X

∗
b)

are analogous (in the “bootstrap world”) to

θ̂n = s(X1, X2, . . . , Xn)

(in the “real world”). The only problem is that the distribution of θ∗b − θ
differs from that of θ̂n − θ by a factor of τb/τn. Hence, as we saw above, we
need to rescale our standard errors by this factor. Or, as we will see below,
we need to rescale any procedure we do.

4

5 Confidence Intervals

The fundamental idea of the subsampling bootstrap that some asymp-
totics (3) hold. It does not matter what the “Something” is (the asymptotic
distribution of estimator) and it does not matter what the τn is (the rate).
As long as we have asymptotics at all, the subsampling bootstrap works.

Then, trivially,

τb(θ̂b − θ)
D−→ Something, (4)

converges to the same “Something,” because whether we index by n or b is
merely a matter of notation. Usually, we write (4) as

τb(θ
∗
b − θ)

D−→ Something (5)

to distinguish the estimator θ̂n for the full data and the estimator θ∗b for a

subsample, but it is the key feature of the subsampling bootstrap that θ̂b
and θ∗b are equal in distribution (because the subsampling is done without
replacement as discussed in Sections 2 and 4).

The basic assumptions of the subsampling bootstrap are

b→∞
b

n
→ 0

τb →∞
τb
τn
→ 0

(6)

where n is the sample size and b the subsample size.
Under these assumptions

τb(θ̂n − θ)
D−→ 0 (7)

just because we would need to multiply by τn rather than τb to get a nonzero
limit and τb/τn goes to zero.

Subtracting (7) from (5) gives

τb(θ
∗
b − θ̂n)

D−→ Something, (8)

where “Something” denotes the same distribution as in (3).
To summarize where we have gotten, the subsampling bootstrap is based

on the assumptions (6) and the convergence in distribution (3). It then

5

follows from asymptotic theory that (8) describes the same asymptotics as
(3).

It does not matter what the limiting distribution is because we approxi-
mate it using the subsampling bootstrap. Suppose the limiting distribution,
the “Something” in (3) has distribution function F . We don’t know the
functional form of F but we can approximate it by the empirical distribu-
tion function F ∗b of the left hand side of (8) using bootstrap subsampling to
simulate θ∗b .

We know that for large n

F−1(α/2) < τn(θ̂n − θ) < F−1(1− α/2) (9)

occurs with probability approximately 1− α. That’s what the convergence
in distribution statement (3) means when F is the distribution function of
the “Something” on the right hand side. F−1(α/2) is the α/2 quantile of
this distribution and F−1(1 − α/2) is the 1 − α/2 quantile. Thus if Y is a
random variable having this distribution and the distribution is continuous,
the probability that

F−1(α/2) < Y < F−1(1− α/2) (10)

is 1 − α. Since we are assuming Y and τn(θ̂n − θ) have approximately the
same distribution for large n, (9) has approximately the same probability as
(10).

Of course, we don’t know F , but F ∗b converges to F , so for large b and
n, we have

F ∗b
−1(α/2) < τn(θ̂n − θ) < F ∗b

−1(1− α/2) (11)

with probability close to 1− α. Rearranging (11) to put θ in the middle by
itself gives

θ̂n − τ−1n F ∗b
−1(1− α/2) < θ < θ̂n − τ−1n F ∗b

−1(α/2) (12)

which is the way subsampling bootstrap confidence intervals are done.
In practice, we don’t explicitly calculate empirical CDFs and invert them.

We use the R quantile function to directly calculate quantiles. Assuming
we already have calculated the estimator theta.hat for the original data
having sample size n and a vector theta.star of estimators for bootstrap
subsamples of size b and have previously defined a function tau that calcu-
lates the “rate” and a significance level alpha, the following three R state-
ments calculate the confidence interval.

z.star <- tau(b) * (theta.star - theta.hat)

crit.val <- quantile(z.star, probs = c(1 - alpha / 2, alpha / 2))

theta.hat - crit.val / tau(n)

6

5.1 A Time Series Example

Here we redo the time series example from the web pages. First the
statements

> library(bootstrap)

> y <- lutenhorm[, 4]

> n <- length(y)

> foo <- function(w) {

+ z <- w - mean(w)

+ m <- length(w)

+ out <- lm(z[-1] ~ z[-m] + 0)

+ as.numeric(coefficients(out))

+ }

> beta.hat <- foo(y)

> beta.hat

[1] 0.5857651

create a time series y and an estimator of the AR(1) coefficient calculated
by the function foo.

Since this is a time series, we calculate subsampling bootstrap estimates
by

> b <- 8

> nboot <- n - b + 1

> beta.star <- double(nboot)

> for (i in 1:nboot) {

+ y.star <- y[seq(i, i + b - 1)]

+ beta.star[i] <- foo(y.star)

+ }

Figure 1 shows the histogram of beta.star with the position of beta.hat
shown (as usual by a vertical dotted line). It is made by the code

> hist(beta.star)

> abline(v = beta.hat, lty = 2)

We can see from the figure that the distribution of β∗ is badly biased and
hence (assuming a close analogy between the“bootstrap world”and the“real
world”) so is the distribution of β̂.

7

Histogram of beta.star

beta.star

F
re

qu
en

cy

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Figure 1: Histogram of β∗ with position of β̂ shown by dashed line.

8

Histogram of z.star

z.star

F
re

qu
en

cy

−3 −2 −1 0 1

0
2

4
6

8
10

12

Figure 2: Histogram of z∗ given by (13)

Actually, we aren’t much interested in this particular histogram. We
really want to look at the distribution of

z =
√
n(β̂ − β)

which is approximated by

z∗ =
√
b(β∗ − β̂) (13)

Figure 2 shows this histogram, which is made by the code

> z.star <- sqrt(b) * (beta.star - beta.hat)

> hist(z.star)

We use quantiles of the distribution shown by Figure 2 to calculate crit-
ical values. For a 95% confidence interval, this goes as follows

9

> conf.level <- 0.95

> alpha <- 1 - conf.level

> crit.val <- quantile(z.star,

+ probs = c(1 - alpha / 2, alpha / 2))

> beta.hat - crit.val / sqrt(n)

97.5% 2.5%

0.4719918 0.8641141

6 Estimating the Rate

We aren’t always lucky enough to know the rate of convergence τb. But
even if we don’t, we can estimate the rate from looking at the distribution
of θ∗b for different subsample sizes b. The method described here is that of
Chapter 8 of Politis, et al. (1999).

Suppose τn = nβ for some constant β. This is the usual case. It includes
the “square root law” (β = 1/2) found in the usual asymptotics and most
other examples of interest. Under this supposition, what we need to do is
estimate the unknown constant β.

To do this we take subsamples at different sizes. For each sample size b we
look at the distribution of θ∗b − θ̂n. For each such distribution we determine
several quantiles. Let G∗b

−1(t) denote the t-th quantile of the distribution of

θ∗b − θ̂n. Then
G∗b
−1(t) ≈ b−βF−1(t) (14)

where F is the CDF of the asymptotic distribution of nβ(θ̂n − θ). A proof
of this is rather technical (Politis, et al., 1999, Chapter 8), but we will give
a “proof by picture” in the example.

We want to use (14) for different b and t to estimate β. It would help if we
take logs, but there is a problem that G∗b

−1(t) need not be positive, it being
the quantile of a distribution centered at zero. Thus we take differences.
When s < t

G∗b
−1(t)−G∗b

−1(s) ≈ b−β
[
F−1(t)− F−1(s)

]
(15)

will be positive, and we can take logs

log
[
G∗b
−1(t)−G∗b

−1(s)
]
≈ −β log(b) + log

[
F−1(t)− F−1(s)

]
(16)

and this suggests estimating β by linear regression.

10

Choose several sample sizes bj and several pairs of quantiles si < ti.
Politis, et al. (1999, Chapter 8) suggest choosing si < 0.5 < ti, but this is
not essential. Then define

yij = log
[
G∗bj
−1(ti)−G∗bj

−1(si)
]
,

which are calculated as differences of sample quantiles of the distribution of
θ∗bj − θ̂n, and define

ci = log
[
F−1(ti)− F−1(si)

]
which cannot be calculated because we do not know F but this will not
matter. Now average over the index i (over pairs of quantiles). Let ȳj be
the average of the yij , and let c̄ be the average of the ci. Then

ȳj ≈ −β log(bj) + c̄

and Politis, et al. (1999) recommend regressing ȳj on log(bj) to estimate β.
We don’t need a regression routine, because this is simple linear regres-

sion, so

β̂ = −cov{ȳ, log(b)}
var{log(b)}

does the job.

6.1 An IID Example

The data for the example on the web page can be loaded into R by

> X <- read.table(url("http://www.stat.umn.edu/geyer/5601/mydata/big-unif.txt"),

+ header = TRUE)

> names(X)

[1] "x"

> attach(X)

(this is essentially what Rweb does when loading a file from a dataset URL).
The data are IID Uniform(0, θ) and have “rate” τn = n, but we pretend

for the purposes of this example that we don’t know this. The estimator of
interest is calculated by the max function.

> theta.hat <- max(x)

> theta.hat

11

[1] 2.717583

The following code (quite tricky, explained below) calculated several
bootstrap subsamples with different subsample sizes b

> nboot <- 2e4 - 1

> b <- c(40, 60, 90, 135)

> b <- sort(b)

> theta.star <- matrix(NA, nboot, length(b))

> for (i in 1:nboot) {

+ x.star <- x

+ for (j in length(b):1) {

+ x.star <- sample(x.star, b[j], replace = FALSE)

+ theta.star[i, j] <- max(x.star)

+ }

+ }

Here b is a vector of subsample sizes (we need at least two) chosen with
no very scientific theory. They should all be large compared to 1 and small
compared to n, which in this case is

> length(x)

[1] 10000

Thus very roughly, all of the b’s should be about
√

10000 = 100. Also, since
we intend to regress log(ȳ) on log(b), we choose the log(b) equally spaced,
which means the b themselves increase by a constant factor, here 1.5 (that
is 60 is 1.5× 40 and 90 is 1.5× 60 and so forth). This type of spacing isn’t
necessary, but makes the plots below look nicer.

This code uses a minor innovation of our own (not from Politis and
Romano) which is to use the principle of common random numbers from
Monte Carlo theory. This says that when comparing random (simulated)
objects (here the subsamples for different b) it always helps to use the same
random numbers as much as possible. We do this by reusing the basic Politis
and Romano idea: a subsample of size b without replacement from a sample
of size n does not change the distribution. It is just like directly taking a
sample of size b from the population.

Thus we first take our largest subsample, here of size 135, and then
(here’s where the principle of common random numbers comes in) take our
next largest subsample, here of size 90, from the subsample of size 135 (rather

12

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●●
●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●●●●●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●●

●
●

●

●●●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●●●
●

●

●●

●

●●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●●
●

●

●●

●

●

●
●

●
●

●
●●●

●

●

●

●

●●●

●●●

●●●

●
●
●
●

●

●●

●
●
●
●

●
●
●
●
●●

●

●
●●
●

●

●

●●

●●●

●

●●

●

●●
●●

●
●
●

●
●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●
●●
●●

●
●●

●

●●
●

●
●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●●
●●
●
●
●
●●●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●●
●●
●

●

●●●●

●

●

●

●

●
●

●

●●
●
●●
●

●

●●

●

●●

●●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●
●
●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●
●

●●

●

●
●●

●●●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●●●

●●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●●

●

●

●
●●●●
●

●

●●

●

●●

●
●

●

●
●
●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●
●
●

●

●
●●●

●

●

●
●

●
●

●

●●
●●
●●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●●
●
●
●●
●

●●

●●

●
●
●●

●

●
●●●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●
●

●

●●

●
●

●

●
●●

●●
●●
●
●

●

●●
●

●

●

●
●
●

●

●

●

●

●
●

●●●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●
●
●
●
●●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●

●

●●
●

●

●
●●

●
●
●●

●

●

●

●
●●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●●

●●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●●

●
●

●
●

●

●
●
●
●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●●●
●

●

●
●
●●

●

●
●

●

●

●

●
●●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●●

●
●●

●

●
●
●
●

●

●

●

●

●

●●●●

●
●

●

●
●

●●

●

●

●

●●

●

●
●
●

●

●
●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●●
●
●

●●

●
●

●

●
●
●●
●

●

●

●
●●
●
●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●●
●

●
●

●

●

●

●

●●●●
●
●●●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●
●

●

●●●●
●●
●
●

●
●
●●

●

●

●

●●

●

●

●●

●●●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●●
●●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●
●
●

●●

●●●

●

●●

●

●

●●

●

●●

●
●
●●

●

●

●●

●

●●
●

●

●●

●

●

●

●●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●●●●
●

●

●
●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●

●

●
●

●
●●●

●●

●

●●●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●●
●●●
●
●
●

●

●●
●

●

●

●

●
●
●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●●●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●●●

●●●●
●

●

●

●

●

●
●

●

●

●●●●●●
●

●

●●●
●
●

●

●

●●

●
●

●

●

●
●

●
●
●

●

●
●

●
●

●

●
●●
●
●●

●

●

●●●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●●
●

●

●

●

●
●●●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●●●

●
●

●
●●
●

●

●

●

●

●
●
●

●
●
●
●
●

●

●

●

●
●
●
●●
●
●

●

●
●

●

●●

●

●

●
●
●

●

●

●●

●

●●●●
●

●

●

●

●

●
●
●

●

●

●
●●

●●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●

●
●

●●
●

●

●

●

●●

●
●
●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●●
●

●

●
●

●

●●

●

●●●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●
●●●
●●
●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●
●
●

●

●

●
●
●

●
●
●
●

●

●

●

●
●

●
●●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●
●
●
●
●●●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●●
●

●●●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●
●
●●
●
●

●

●
●

●

●●●●

●
●●

●
●
●●
●●
●

●
●

●

●●●

●

●

●
●
●

●
●
●

●●
●●●
●●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●
●
●

●●

●

●

●

●

●●
●
●●

●

●

●●●

●

●

●●
●
●
●

●
●●

●●

●●
●●
●
●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●
●
●
●
●●●

●
●

●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●
●
●
●

●

●
●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●
●●

●

●
●●
●
●
●
●

●●●

●

●
●
●
●●
●
●●●
●

●

●●
●
●●

●
●●

●●●●

●

●

●

●
●

●

●
●
●●

●

●●

●

●
●●●

●●

●
●

●●●

●
●

●●
●●

●
●

●
●
●
●●

●

●●

●
●●

●

●
●
●
●●
●

●
●●●
●●

●

●●

●

●

●

●●
●

●

●
●
●●

●

●●●
●

●

●●●

●●●
●
●

●●●

●

●

●

●

●●

●●

●●

●
●

●

●
●●

●

●

●
●●●●●
●
●●

●●

●
●
●●

●
●●●
●●●
●

●

●

●

●●

●●

●

●●●
●●●

●

●●

●●

●

●

●
●
●●

●

●

●

●

●

●
●●
●

●

●●
●
●
●●

●●

●●

●

●●●
●●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●●●

●

●

●
●
●

●

●

●●
●
●
●
●●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●
●
●

●

●●
●
●
●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●
●

●

●●●

●

●●●

●

●●
●●
●
●
●
●
●
●●●●
●
●
●●●●
●
●

●

●

●

●
●

●

●
●●
●

●●●●

●●
●●●●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●●

●●

●
●
●●●

●

●

●●
●

●
●
●
●●●●
●
●●●

●

●
●●
●

●
●
●

●

●●
●

●

●

●

●
●●●●●●●
●

●

●
●

●

●

●

●

●●
●

●

●

●●●

●

●●

●

●

●●
●●

●
●

●

●

●

●●

●
●●
●●●●●●
●●
●
●

●

●●

●

●
●●

●

●
●

●

●●

●

●●
●
●
●

●

●●●
●

●●
●
●●

●

●●

●

●

●

●●

●●

●

●

●
●
●

●

●

●
●●
●●
●

●●

●●
●●
●

●

●

●●

●

●●●

●

●
●●
●
●●

●

●

●

●
●

●
●

●●
●

●

●
●●
●

●●●

●
●
●
●●
●

●

40 60 90 135

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

subsample size

θ̂ b
−

θ̂ n

Figure 3: Parallel Boxplots of θ∗b − θ̂n.

from the original sample of size 1000). This makes the two subsamples of
different sizes positively correlated and improves everything else we do. The
smaller subsamples of size 60 and 40 are done analogously.

The estimates for each sample are stored in an nboot by length(b)

matrix theta.star.
Figure 3 shows parallel boxplots of θ∗b − θ̂n for the different sample sizes.

It is made by the code

> zlist <- theta.star - theta.hat

> zlist <- as.data.frame(zlist)

> names(zlist) <- b

> boxplot(zlist, xlab = "subsample size",

+ ylab = expression(hat(theta)[b] - hat(theta)[n]))

From Figure 3 we see several things.

13

• The spread of the θ∗b − θ̂n values decreases as b increases.

• The θ∗b − θ̂n values are all negative.

But this figure doesn’t tell us directly anything about the rate.
The rate estimation method of Politis and Romano requires us to calcu-

late some differences of quantiles of these distributions. We estimate them
by differences of order statistics.

> qlist <- list()

> k <- (nboot + 1) * seq(0.05, 0.45, 0.05)

> l <- (nboot + 1) * seq(0.55, 0.95, 0.05)

> k

[1] 1000 2000 3000 4000 5000 6000 7000 8000 9000

> l

[1] 11000 12000 13000 14000 15000 16000 17000 18000 19000

> for (i in 1:length(b)) {

+ z.star <- zlist[[i]]

+ sz.star <- sort(z.star, partial = c(k, l))

+ qlist[[i]] <- sz.star[l] - sz.star[k]

+ }

Figure 4 shows a “stripchart” of the logs of these quantities for the dif-
ferent sample sizes. It is made by the code

> names(qlist) <- b

> lqlist <- lapply(qlist, log)

> stripchart(lqlist, xlab = "subsample size",

+ ylab = "log(high quantile - low quantile)",

+ vertical = TRUE)

From Figure 4 we see several things.

• The four “stripcharts” are about equally spread (on this log scale).

• If we think of these points as a scatter plot, a simple linear regression
doesn’t look too bad.

14

40 60 90 135

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0

subsample size

lo
g(

hi
gh

 q
ua

nt
ile

 −
 lo

w
 q

ua
nt

ile
)

Figure 4: Stripchart of Subsample Quantiles.

15

Of course, these points are not typical regression data (not a straight
line plus IID errors). We are only using linear regression as tool to put a
straight line on this plot.

Our estimate of β is minus the slope of this “regression line” and is
calculated by

> y <- sapply(lqlist, mean)

> beta <- cov(- y, log(b)) / var(log(b))

> beta

[1] 0.8822342

and, just out of curiosity, we also calculate the intercept

> inter <- mean(y) + beta * mean(log(b))

and add the “regression line” to the plot giving Figure 5. It is made by the
code

> plot(log(rep(b, each = length(k))), unlist(lqlist),

+ xlab = "log(subsample size)", ylab = "log(high quantile - low quantile)")

> abline(inter, - beta)

From Figure 5 we can see how the method works.
It’s certainly not the one and only way to get a rate estimate. And the

rate estimate isn’t all that good, 0.8822 when we know from theory that the
correct rate is exactly 1.

Now, finally, we are ready for a confidence interval calculation, which
proceeds exactly like the preceding example, except we use “rate” τn = nβ

where β is the estimate just obtained.

> conf.level <- 0.95

> alpha <- 1 - conf.level

> m <- 3

> b <- b[m]

> b

[1] 90

> theta.star <- theta.star[, m]

> z.star <- b^beta * (theta.star - theta.hat)

> crit.val <- sort(z.star)[(nboot + 1) * alpha]

> theta.hat - c(0, crit.val) / n^beta

16

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

3.8 4.0 4.2 4.4 4.6 4.8

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0

log(subsample size)

lo
g(

hi
gh

 q
ua

nt
ile

 −
 lo

w
 q

ua
nt

ile
)

Figure 5: Stripchart of Subsample Quantiles with “Regression Line.”

17

[1] 2.717583 2.868946

Note this is a one-sided confidence interval, because in this particular
example we know that θ̂ < θ with probability one. In general, we want a
two-sided interval, which we leave to the web page.

Also a little tricky, we have not obtained a new bootstrap of θ∗ but rather
used one we already had, the one with b = 90, with is theta.star[, 3]

the way we stored them.

References

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals
of Statistics, 7, 1–26.

Politis, D. N.; Romano, J. P. (1994). Large sample confidence regions based
on subsamples under minimal assumptions. Annals of Statistics, 22, 2031–
2050.

Politis, D. N.; Romano, J. P., and Wolf, M. (1999). Subsampling. Springer
Verlag.

18

