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Response Surface Methodology

@ Methodology selected for finding the best machine
settings (factor levels) that optimize multiple part quality
characteristics (responses)

@ The usually unknown relationship between a response (y)
and the affecting factors (x's) is modeled with
polynomials, for example, a second-order model

k k
y=PF+ Y Bimi+ > Bazi+ > Y Biymix;+e
=il — h2s

@ The polynomial model can be a reasonable approximation
of the true functional relationship (Montgomery and
Runger, 2006)

v
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Response Surface Methodology (continuation)

(O
e Experimental design permits the collection of data for

the response variable at different levels of the
independent variables

@ Least squares method permits the estimation of the
parameters, [ 's, in the approximating polynomials

e Linear/non-linear optimization techniques permits the
finding of an optimum point (z}, z3,...,x}) and an
optimal response value (y*)
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Experimental Design - Part Geometry

@ All cuts were made on stainless steel sheet metal of 0.25 inch

thickness
m External cuove Internal curve
1)@ \

Straight line
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Experimental Design - Factors and Levels

Factor Name Low | Medium High Units
A Current 40 60 80 Amps
B Pressure 60 75 90 Psi
C Cut Speed 10 55 100 Ipm
D Torch height 0.1 0.2 0.3 Inch
E Tool type = A B C
F Slower on curve 0 2 4
G Cut direction | Vertical Horizontal

(G-0) (G-1)

*1 In experiment with missing values level names were (E_1, E_2, E_3)

*1 In experiment with imputed values names names were (E-0, E_1, E_2)
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Experimental Design - Responses

@ A total of 15 response variables

Surface |Flatness| Accum. Part Bevel | Start Point
Roughness Underneath|Geometry | Angle Quality
3) (1) (3) (2) (4) (2)
Int. curve Int. curve X Int. curve|lnternal edge
Ext. curve Ext. curve y Ext. curve|External edge
Str. line Str. line Left Line
Right line
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Experimental Design

e Taguchi orthogonal array L-18 (18 rows and 8 columns)
e Each row represents an experimental run
e One factor at two levels and four to seven factors at three levels
e Economic alternative to a full factorial experiment (1458 runs if
one replicate or 2916 if two-replicates)
@ Design augmented with 71 additional runs to estimate two factor
interactions (end with no aliases for two-factor interactions)
e Final number of runs is 89
@ Objective is to fit valid models for each response (y;) as a
function of the critical factors (some of the x's). For example, a
fitted second-order model

k k
j=po+ Z Biw; + Z Biix? + Z Z Bijir;
=1 i=1 i<j
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Optimization using Desirability Functions -

Derringer and Suich (1980)

@ There are 3 types of desirability functions. Response must hit
the target (T), response is to be minimized or response is to be
maximized

Below the lower bound the weight = 0.1
response desirability is zero;
at the target it is one; above
the upper bound it is zero.

weight=0.1

weight=10

lower bound T upper bound
target
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Desirability Function - Target is Best

¢ ~

. (H22) Li<Yi@) <7
di(Yi(®)) = 9 0y vt .
(H25%)  Li<Yi@) <7
\O Y;(.Z') > U;

@ The desirability function "target is best” transforms the
response values to values between 0 and 1, zero if below a
lower bound (L) or one if above an upper bound (U)

@ The shape of the desirability function is determined by the
values of the weight parameters s and ¢ (function exponents)

@ Settings for independent variables or factors affect the
predicted response and the desirability function values

<
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Optimizing the Overall Desirability

maximize

subject to

Low < x < High

@ This is a non-linear deterministic optimization model with objective function to
maximize the overall desirability. Weights w; represent the importance given to
response y;

@ <z is the vector of model decision variables corresponding to the non-categorical
experimental factors (current, pressure, cut speed, torch height, and slower on
curves)

@ Constraints in the model say that decision variables z's must to take values within
the experimented region (Low-High). Categorical factors tool type and cut
direction are fixed to each one of their 6 possible levels. Thus, six different
optimization models need to be solved in this study

V.
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Research Motivation

@ 43 experimental conditions had missed responses (36 had all
responses missing and other 7 had some responses missing)

@ Analysis of the experiment done through general linear
regression model (GLM) ignoring the missing responses

?
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Multiple Imputation (MI)
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Method proposed by Rubin (1987). It is a simulation-based
approach for analyzing incomplete data (Manchenko, 2010)
Each missing value is replaced with a random sample of
simulated values that represent the uncertainty about the right
value (Rubin, 1987)

User specifies the size of the random sample (number of
imputations to add)

Includes 3 steps: imputing, conducting analysis with each
complete set of data, and analyzing aggregate results
Variances of the parameter estimates are estimated more
accurately than in single-imputation reducing the type | error
In contrast to single-imputation, M| permits to estimate the

impact of missing information on parameter estimation
(McKnight, et al., 2007)



MI in STATA 11 - Multiple Imputation Control

Panel

@ The MI control panel can be accessed from the main menu under the Statistics option

8 MI -- Multiple-Imputation Control Panel (=]

Inpute

i gt t leas on ired variale befre nputaion. Choose Selup'lo 1

Setp
Inpute
mpor

Manage

Eatinate

Tt
Staus. Sl = Notset

@ Some relevant steps needed are, registering the variables that will be imputed (. mi
register imputed), looking at the summary of missing data (.mi misstable summarize),
looking at the data statistics (.mi describe), looking at some patterns for missing

information (.mi misstable patterns), deciding on the format to save the imputations (for
example .mi set mlong)
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Impute Options in STATA 11

Impute

Choose an impute method and press 'Go".

Univariate

--> Linear regression for continuous variable

--> Predictive mean matching for continuous vanable

--> Logistic regression for binary variable

--> Ordered logistic regression for ordinal vanable

--> Multinomial logistic regression for nominal variable
Multivariate

> Sequential imputation using a monotone-missing pattemn
-> Multivariate normal regression
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Impute Command - Example

. mi impute pmm newFlatness = Current Pressure Cut_speed Torch_height Slowoncurv
> es E_0 E_1 G_0, noconstant add(5)

univariate imputation Imputations = 5

predictive mean matching added = 5

Imputed: m=1 through m=5 updated = 0
ohservations per m

variable complete  dincomplete  imputed total

newrFlatness 53 36 36 89

(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)

@ In this example, the number of imputations for each missing value, m, is 5 and the
imputation method selected was predictive mean matching (pmm)
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Impute Options - Predictive Mean Matching

(pmm)

@ Preferred to linear regression when the normality of the
underlying model is suspect

@ Introduced by Little (1988) based on Rubin (1986)

@ Prediction of linear regression is used as a distance measure to
form the set of nearest neighbors or donors for the imputation

@ Randomly draws a value from the set of nearest neighbors to
impute the missing value

e By drawing from the observed data ppm preserves the original
distribution of the observed values

@ Estimates of the model parameters are simulated from their joint
posterior distribution
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Estimate Command - Example - Output 1

. mi estimate : regress newrlatness Cut_speed E_0

Multiple-imputation estimates Imputations - 5
Linear regression Number of obs = B89
Average RVI = 0.4335

complete OF = B6

DF adjustment: small sample DF: min = 20.04
avg = 34.43

max = 50.17

Model F test: Equal FMI F( 2, 22.0) = 4.65
within wCE type: oLs Prob > F = 0.0207
newFlatness Coef. std. Err. t P>t [95% conf. Interwval]
Cut_speed —. 0000614 . 0000325 -1.89 0.067 -. 0001275 4.62e-06
E_OQ . 0060596 - 0027282 2.22 0.038 . 0003694 0117498

—<ons 0273574 . 0022366 12.23 0.000 . 0228654 - 0318495

@ The first time the command mi estimate was invoked, a regression (regress) for
newFlatness as dependent variable and all the possible terms in a second order
polynomial model on the factors (current, pressure, cut speed torch height, slow on
curve, tool type and cut direction) was performed. Quadratic terms and second order
interactions were included except those involving categorical variables

@ By performing iteratively the command mi estimate, we eliminated from the model the
non-significant factors one at a time until obtaining a
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Estimate Command - Example - Output 2

. mi estimate, vartable nocitable

Multiple-imputation estimates

Imputations 5
variance information

Imputation wariance rRelative
within  Between Total RVI FMI efficiency
Cut_speed 8.0e-10 2.1e-10 1.1e-09 .317904 .262372 .950142
E_O 4.8e-06 2.2e-06 7.4e-06 .549906 .391906 .927316
_cons 4.2e-06 6.4e-07 5. Oe-06 -1812032 -163194 - 568393

Note: FMIS are based on Rubin's large-sample degrees of freedom.

ef ficiency =

i
T

T +2/(df +3)
A ))

r+

” _G+m

7

df = (m-1)(1+

1

B

mi
G+ DB

RVI = Relative variance increase due to non-response
FMI = Fraction of missing information

The smaller the RVI and FMI values the better
RVI can be greater than 1

Relative efficiency value, the closer to 1 the better
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Deterministic Optimization Model

@ The multi-response non-linear optimization model was laid out
in Excel

@ Risk Solver Platform (RSP) software from Frontline Systems was
used for the optimization step.

@ The optimization technique used by RSP to solve the non-linear
non-smooth optimization problem is genetic algorithms (GA)

@ Solve times were less than 1 minute 43 seconds in all runs and
the mean was 55.74 seconds
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Excel - Risk Solver Platform Deterministic

Optimization Model
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Experiment Experiment
Factor no imputation with Ml
Current 80 80
Pressure 90 90
Cut Speed 55 65
Torch height 0.3 0.3
Slower on Curves 0.4 0
Tool Type Third tool Second tool
Cut direction Horizontal Horizontal
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Conclusions and Further Research

° proved to be effective to analyze the plasma
cutting experiment with missing values
e After MI, it was discovered that a setting with
do not negatively affect response variables and overall
desirability
@ MI reports on the variability of the estimates of the regression
coefficients. This variability may be included in a
that Risk Solver Platform
(RSP) can solve
e The stochastic optimization model objective function is now to
minimize the under the same
constraints as in the deterministic optimization model
e ('s in the regression models are now
. Desirability's will depend on
responses which will be a function of the factors (x's) and the
realizations for the 3's
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Steps in Stochastic SimulationOptimization Model

Optimization Engine
-Runs a Genetic Algorithm (GA)
Number of iterations or generations
counter set to 1 |
-Generates multiple chromosomes /
or solution values /

for factors (current, pressure, etc.) //

Step 2 - Simulation Engine
-For each particular solution or chromosome muluple \
or trials of are

generated and the associated objectlve function
value is computed. After simulating all trials an

expected value for overall desirability is estimate
N

=
tep 3. Optimization Engine
-Solutions are ranked
- GA Population is modified as
per GA rules
- Best solution so far is
updated, if necessary
" Optimization Engine N
-Outputs optimal values (or \\ > Number of
[ best solution so far) for the | P /A’e‘“: ‘°':] Harations &
| factors (current. pressure, etc) f«-Yes— [T 2
| overallterations and the | Nl [iceassdiand e
\ corresponding expected {Whe"/ backtoStep2 |
\_ desirabiity E(D) / N 2 |
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