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Introduction

These complements are made available on-line to supplement the book making
use of extensions toS-PLUS in user-contributed library sections.

The general convention is that material here should be thought of as following
the material in the chapter in the book, so that new sections are numbered follow-
ing the last section of the chapter, and figures and equations here are numbered
following on from those in the book.

All the libraries mentioned are available forUNIX and forWindows. Com-
piled versions forWindows are available from

http://www.stats.ox.ac.uk/pub/MASS4/Winlibs

Most of theUNIX sources are available at

http://lib.stat.cmu.edu/S/

and more specific information is given for the exceptions where these are intro-
duced. In most cases some modifications are needed for use with6.x: try the
migration tools.
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Chapter 5

Univariate Statistics

5.2 Generating random data

Details of the pseudo-random number generator

Some users will want to understand the internals of the pseudo-random number
generator. Background knowledge on pseudo-random number generators is given
by Ripley (1987, Chapter 2).

S-PLUS pseudo-random number generator

We describe the generator that was current at the time of writing and which had
been in use for many years (with a slight change withS-PLUS 3.2 in 1994); it is
of course not guaranteed to remain unchanged. This based on George Marsaglia’s
“Super-Duper” package from about 1973. The generator produces a 32-bit inte-
ger whose top 31 bits are divided by231 to produce a real number in[0, 1). The
32-bit integer is produced by a bitwise exclusive-or of two 32-bit integers pro-
duced by separate generators. TheC code for theS random number generator is
(effectively)

unsigned int congrval, tausval; # assume 32-bit
static double xuni()
{

unsigned int n, lambda = 69069, res;
do {
congrval = congrval * lambda;
tausval ^= tausval >> 15;
tausval ^= tausval << 17;
n = tausval ^ congrval;
res = (n>>1) & 017777777777;

} while(res == 0);
return (res / 2147483648.);

}

The integercongrval follows the congruential generator

Xi+1 = 69069Xi mod 232
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5.2 Generating random data 2

as unsigned integer overflows are (silently) reduced modulo232; that is, the over-
flowing bits are discarded. As this is a multiplicative generator (no additive con-
stant), its period is230 and the bottom bit must always be odd (including for the
seed).

The integertausval follows a 32-bit Tausworthe generator (of period 4 292
868 097< 232 − 1 ):

bi = bi−p xorbi−(p−q), p = 32, q = 15

This follows from a slight modification of Algorithm 2.1 ofRipley (1987, p. 28).
(In fact, the period quoted is true only for the vast majority of starting values; for
the remaining 2 099 198 non-zero initial values there are shorter cycles.)

For most starting seeds the period of the generator is230 × 4 292 868 097≈
4.6 × 1018, that is quite sufficient for calculations that can be done in a reason-
able time inS. The current values ofcongrval and tausval are encoded in
the vector.Random.seed , a vector of 12 integers in the range0, . . . , 63. If x
represents.Random.seed , we have

congrval =
6∑
i=1

xi 26(i−1) and tausval =
6∑
i=1

xi+6 26(i−1)

R pseudo-random number generators

R offers a choice of pseudo-random number generators, and also of ways to gen-
erate from the normal distribution. Furthermore, user-written code can be sub-
stituted for both the uniform and normal generators:?RNG and ?Random.user
give details.

The current default pseudo-random number generator is the multicarry gener-
ator proposed byMarsaglia(1997). This has two 32-bit integers as the “seed”. In
C code a single update isU [0, 1) is generated by

int I1, I2; # assume 32-bit
static double xuni()
{

/* 0177777(octal) is the bottom 16 bits*/
I1 = 36969 * (I1 & 0177777) + (I1 >> 16);
I2 = 18000 * (I2 & 0177777) + (I2 >> 16);
return ((I1 << 16)^(I2 & 0177777)) *

2.328306437080797e-10;
}

Marsaglia’s original posting said

I have often been asked to suggest random number generators for use
in C. Many good ones are available through the net, but they often re-
quire complicated code and various ways to use or initialize through
calls to subroutines. The following suggestion has these properties:

• Seems to pass all tests of randomness put to it.
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• Has much much longer period,> 260 , than most system gen-
erators,< 232 , and versions can be combined to get periods
> 290, 2120 , etc.

• Exploits the feature ofC that provides segments of in-line code
through #define statements. Thus random integers or reals
can be put directly into expressions, avoiding the cost of calls
to subroutines.

• Uses what I view as the most promising new method for random
number generation: multiply-with-carry.

Marsaglia & Zaman(1994) is a useful background reference.
Supplied alternatives are

1. The sum modulo 1 of three short-period conguential generators ofWichmann & Hill
(1982). This was the original default inR, but is now deprecated.

2. A version of Marsaglia’s “Super-Duper” generator, which unlike the
S-PLUS version does not skip zeroes.

3. The ‘Mersenne-Twister’ ofMatsumoto & Nishimura(1998), a GFSR with
period 219937 − 1 .

4. A GFSR fromKnuth (1997) using lagged Fibonacci sequences with sub-
traction. That is, the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230



Chapter 6

Linear Statistical Models

6.5 Robust and resistant regression

Median polish

Consider a two-way layout. The additive model is

ŷij = µ+ αi + βj , α· = β· = 0

The least squares fit corresponds to choosing the parametersµ , αi and βj so
that the row and column sums of the residuals are zero.

Means are not resistant. Suppose we use medians instead. That is, we seek a fit
of the same form, but with median(αi) = median(βj) = 0 and mediani (eij) =
medianj (eij) = 0 . This is no longer a set of linear restrictions, so there may
be many solutions. The median polish algorithm (Mosteller & Tukey, 1977;
Emerson & Hoaglin, 1983) is to augment the table with row and column effects
as

e11 · · · e1c a1
...

. . .
...

...
er1 · · · erc ar
b1 · · · br m

where initially eij = yij , ai = bj = m = 0 . At all times we maintain

yij = m+ ai + bj + eij

In a row sweepfor each row we subtract the median of columns1, . . . , c from
those columns and add it to the last column. For acolumn sweepfor each column
we subtract the median of rows1, . . . , r from those rows and add it to the bottom
row.

Median polish operates by alternating row and column sweeps until the
changes made become small or zero (or the human computer gets tired!). (Often
just two pairs of sweeps are recommended.) The answer may depend on whether
rows or columns are tried first and is very resistant to outliers. Using means rather
medians will give the least-squares decomposition without iteration.

4



6.5 Robust and resistant regression 5

An example

The table below gives specific volume (cc/gm) of rubber at four temperatures
( ◦C ) and six pressures (kg/cm2 above atmo). These data were published by
Wood & Martin(1964, p. 260), and used byMandel(1969) andEmerson & Wong
(1985).

Pressure

Temperature 500 400 300 200 100 0

0 1.0637 1.0678 1.0719 1.0763 1.0807 1.0857
10 1.0697 1.0739 1.0782 1.0828 1.0876 1.0927
20 1.0756 1.0801 1.0846 1.0894 1.0944 1.0998
25 1.0786 1.0830 1.0877 1.0926 1.0977 1.1032

In S-PLUS the defaulttrim = 0.5 option of twoway performs median polish,
and inR there is functionmedpolish in packageeda. We have, after multiply- R

ing by 104 ,

Pressure

Temperature 500 400 300 200 100 0 ai

0 7.0 4.5 1.5 -1.5 -6.5 -9.0 -96.5
10 3.0 1.5 0.5 -0.5 -1.5 -3.0 -32.5
20 -3.0 -1.5 -0.5 0.5 1.5 3.0 32.5
25 -4.5 -4.0 -1.0 1.0 3.0 5.5 64.0

bj -111.0 -67.5 -23.5 23.5 72.5 125.0m = 10837.5

This is interpreted as

yij = m+ ai + bj + eij

and the body of the table contains the residualseij . These have both row medians
and column medians zero. Originally the value for temperature 0, pressure 400
was entered as 1.0768; the only change was to increase the residual to94.5×10−4

which was easily spotted.
Note the pattern of residuals in the table; this suggests a need for transforma-

tion. Note also how linear the row and column effects are in the factor levels.
Emerson & Wong(1985) fit Tukey’s ‘one degree of freedom for non-additivity’
model

yij = m+ ai + bj + eij + kaibj (6.8)

by plotting the residuals againstaibj/m and estimating a power transformation
yλ with λ = 1 − mk estimated as−6.81 . As this is such an awkward power,
they thought it better to retain the model (6.8).
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Brownlee’s stack loss data

We considerBrownlee’s (1965) much-studied stack loss data, given in theS
datasetsstack.x and stack.loss . The data are from the operation of a plant
for the oxidation of ammonia to nitric acid, measured on 21 consecutive days.
There are 3 explanatory variables (air flow to the plant, cooling water inlet tem-
perature, and acid concentration) and the response, 10 times the percentage of
ammonia lost.

> #R: data(stackloss); stack.loss <- stackloss[, 4];
stack.x <- stackloss[, -4]

> summary(lm(stack.loss ~ stack.x), cor = T)
Residuals:

Min 1Q Median 3Q Max
-7.24 -1.71 -0.455 2.36 5.7

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -39.920 11.896 -3.356 0.004
stack.xAir Flow 0.716 0.135 5.307 0.000

stack.xWater Temp 1.295 0.368 3.520 0.003
stack.xAcid Conc. -0.152 0.156 -0.973 0.344

Residual standard error: 3.24 on 17 degrees of freedom

> #R: library(lqs)
> lqs(stack.x, stack.loss, method = "lms", nsamp = "exact")

Coefficients:
(Intercept) Air Flow Water Temp Acid Conc.
-34.2 0.714 0.357 0

Scale estimates 0.551 0.48

> summary(lqs(stack.x, stack.loss, method = "lms",
nsamp = "exact")$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.8929 -0.2500 0.1071 1.0765 1.3929 9.4643

> lqs(stack.x, stack.loss, method = "lts", nsamp = "exact")
Coefficients:
(Intercept) Air Flow Water Temp Acid Conc.
-35.8 0.75 0.333 0

Scale estimates 0.848 0.865
> summary(lqs(stack.x, stack.loss, method = "lts",

nsamp = "exact")$residuals)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.3611 -0.3611 0.3056 0.9762 1.3056 9.3056
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Functionlqs normally uses a random search, but here we can afford an exhaus-
tive search.

Now consider M-estimators:

> stack.rl <- rlm(stack.loss ~ stack.x)
> summary(stack.rl, cor = F)
Residuals:

Min 1Q Median 3Q Max
-8.92 -1.73 0.0617 1.54 6.5

Coefficients:
Value Std. Error t value

(Intercept) -41.027 9.807 -4.183
stack.xAir Flow 0.829 0.111 7.460

stack.xWater Temp 0.926 0.303 3.052
stack.xAcid Conc. -0.128 0.129 -0.992

Residual standard error: 2.44 on 17 degrees of freedom
> round(stack.rl$w, 2)
[1] 1.00 1.00 0.79 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[13] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.37
> summary(rlm(stack.loss ~ stack.x, method = "MM"), cor = F)
Residuals:

Min 1Q Median 3Q Max
-10.5 -1.44 -0.0908 1.03 7.23

Coefficients:
Value Std. Error t value

(Intercept) -41.523 9.307 -4.461
stack.xAir Flow 0.939 0.106 8.898

stack.xWater Temp 0.579 0.288 2.012
stack.xAcid Conc. -0.113 0.122 -0.923

Residual standard error: 1.91 on 17 degrees of freedom

The componentw returned byrlm contains the final weights in (6.6). Although
all methods seem to agree about observation 21, they differ in their view of the
early observations.Atkinson(1985, pp. 129–136, 267–8) discusses this example
in some detail, as well as the analyses performed byDaniel & Wood(1980). They
argue for a logarithmic transformation, dropping acid concentration and fitting
interactions or products of the remaining two regressors. However, the question of
outliers and change of model are linked, since most of the evidence for changing
the model comes from the possible outliers.

Rather than fit a parametric model we examine the points in the air flow –
water temp space, using the robust fitting option ofloess ; see Figure6.9.

x1 <- stack.x[,1]; x2 <- stack.x[,2]
stack.loess <- loess(log(stack.loss) ~ x1*x2, span = 0.5,

family = "symmetric")
stack.plt <- expand.grid(x1=seq(50,80,0.5), x2=seq(17,27,0.2))
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stack.plt$z <- as.vector(predict(stack.loess, stack.plt))
dupls <- c(2,7,8,11)
contourplot(z ~ x1*x2, stack.plt, aspect = 1,

xlab="Air flow", ylab="Water temp",
panel = function(x, y, subscripts, ...){

panel.contourplot(x, y, subscripts, ...)
panel.xyplot(x1, x2)
text(x1[-dupls] + par("cxy")[1] ,

x2[-dupls] + 0.5* par("cxy")[2],
as.character(seq(x1)[-dupls]), cex = 0.7)

})

This shows clearly that the ‘outliers’ are also outlying in this space. (There are
duplicate points; in particular points 1 and 2 are coincident.)
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Figure 6.9: Fitted surface for Brownlee’s stack loss data on log scale usingloess .



Chapter 7

Generalized Linear Models

7.6 Gamma models

The role of dispersion parameterϕ for the Gamma family is rather different. This
is a parametric family which can be fitted by maximum likelihood, including its
shape parameterα . Elsewhere we have taken its density as

log f(y) = α log λ+ (α− 1) log y − λy − log Γ(α)

so the mean isµ = α/λ . If we re-parametrize by(µ, α) we obtain

log f(y) = α(−y/µ − log µ) + α log y + α logα − log y − log Γ(α)

Comparing this with the general form in equation (7.1) (on page 183) we see that
the canonical link isθ = −1/µ and ϕ = 1/α is the dispersion parameter. For
fixed ϕ , fitting by glm gives the maximum likelihood estimates of the parame-
ters in the linear predictor (which do not depend on the fixed value ofϕ ), but ϕ is
estimated from the sum of squares of the pearson residuals, which may (but need
not) approximate the maximum likelihood estimator. Note thatϕ̂ is used to esti-
mate the standard errors for the parameters in the linear predictor, so appreciable
differences in the estimate can have practical significance.

Some authors (notablyMcCullagh & Nelder, 1989, pp. 295–6) have argued
against the maximum likelihood estimator ofϕ . The MLE is the solution to

2n [logα − ψ(α)] = D

whereψ = Γ′/Γ is the digamma function andD is the residual deviance. Then
the customary estimator ofϕ = 1/α is D/(n − p) and the MLE is approxi-
mately1 D̄(6 + D̄)/(6 + 2D̄) where D̄ = D/n . Both the customary estimator
(7.7) on page 186 and the MLE are based on the residual deviance

D = −2
∑
i

[log(yi/µ̂i)− (yi − µ̂i)/µ̂i]

and this is very sensitive to small values ofyi . Another argument is that if the
gamma GLM is being used as a model for distributions with a constant coefficient

1 for large α̂

9



7.6 Gamma models 10

of variation, the MLE is inconsistent for the true coefficient of variation except
at the gamma family. These arguments are equally compelling for the customary
estimate;McCullagh & Nelderprefer the moment estimator

σ̂2 = 1
n−p

∑
[(yi − µ̂i)/µ̂i]2 (7.11)

for the coefficient of variationσ2 which equalsϕ under the gamma model. This
coincides withϕ̃ as quoted bysummary.glm (see (7.8) on page 186).

The functionsglm.shape and glm.dispersion in library MASS com-
pute the MLEs ofα and ϕ respectively from a fitted Gammaglm object.
We illustrate these with an example on clotting times of blood taken from
McCullagh & Nelder(1989, pp. 300–2).

> clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12) )

> clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma)
> summary(clot1, cor = F)
Coefficients:

Value Std. Error t value
(Intercept) -0.016554 0.00092754 -17.848

log(u) 0.015343 0.00041496 36.975

(Dispersion Parameter for Gamma family taken to be 0.00245 )

> clot1$deviance/clot1$df.residual
[1] 0.00239
> gamma.dispersion(clot1)
[1] 0.0018583

> clot2 <- glm(lot2 ~ log(u), data = clotting, family = Gamma)
> summary(clot2, cor = F)
Coefficients:

Value Std. Error t value
(Intercept) -0.023908 0.00132645 -18.024

log(u) 0.023599 0.00057678 40.915

(Dispersion Parameter for Gamma family taken to be 0.00181 )

> clot2$deviance/clot2$df.residual
[1] 0.0018103
> gamma.dispersion(clot2)
[1] 0.0014076

The differences here are enough to affect the standard errors, but the shape pa-
rameter of the gamma distribution is so large that we have effectively a normal
distribution with constant coefficient of variation.

These functions may also be used for aquasi family with variance propor-
tional to mean squared. We illustrate this on thequine dataset. We adjust the



7.6 Gamma models 11

response slightly, as a response of zero would have a zero variance and the quasi-
likelihood would not be properly defined.

> gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,
quasi(link = log, variance = mu^2), data = quine)

> summary(gm, cor=F)
Coefficients: (4 not defined because of singularities)

Value Std. Error t value
(Intercept) 3.06105 0.39152 7.818410

AgeF1 -0.61870 0.52528 -1.177863
AgeF2 -2.31911 0.87546 -2.649018
AgeF3 -0.37623 0.47055 -0.799564

....

(Dispersion Parameter for Quasi-likelihood family taken
to be 0.61315 )

Null Deviance: 190.4 on 145 degrees of freedom
Residual Deviance: 128.36 on 118 degrees of freedom

> gamma.shape(gm, verbose = T)
Initial estimate: 1.0603
Iter. 1 Alpha: 1.23840774338543
Iter. 2 Alpha: 1.27699745778205
Iter. 3 Alpha: 1.27834332265501
Iter. 4 Alpha: 1.27834485787226

Alpha: 1.27834
SE: 0.13452

> summary(gm, dispersion = gamma.dispersion(gm), cor = F)
Coefficients: (4 not defined because of singularities)

Value Std. Error t value
(Intercept) 3.06105 0.44223 6.921890

AgeF1 -0.61870 0.59331 -1.042800
AgeF2 -2.31911 0.98885 -2.345261
AgeF3 -0.37623 0.53149 -0.707880

....

In this example the McCullagh–Nelder preferred estimate is given by

> sum((residuals(gm, type = "response")/fitted(gm))^2)/
gm$df.residual

[1] 0.61347

which is the same2 as the estimate returned bysummary.glm , whereas (7.7)
gives

> gm$deviance/gm$df.residual
[1] 1.0878
> gamma.dispersion(gm)
[1] 0.78226

2 up to the convergence tolerance: setepsilon = 1e-10 in the call glm to get equality to 7
decimal places..
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There will also be differences between deviance tests and the AIC used by
step.glm and likelihood-ratio tests and the exact AIC. Making the necessary
modifications is left as an exercise for the reader.



Chapter 8

Non-linear Models

8.5 Profiles

Measures of local curvature

It is convenient to separate two sources of curvature, that of the solution locus
itself, theintrinsic curvature, and that of the coordinate system within the solution
locus, theparameter-effects curvature. The intrinsic curvature is fixed by the data
and solution locus, but the parameter-effects curvature additionally depends upon
the parametrization.

Summary measures for both kinds ofrelative curvature were proposed by
Beale(1960) and elegantly interpreted byBates & Watts(1980, 1988). (The mea-
sures are relative to the estimated standard error ofy and hence scale free.) The
two measures are denoted bycθ and cι for the parameter-effects and intrinsic
root-mean-square curvatures respectively. IfF is theFp,n−p critical value, Bates
& Watts suggest that a value ofc

√
F > 0.3 should be regarded as indicating un-

acceptably high curvature of either kind. Readers are referred toBates & Watts
(1988) or Seber & Wild(1989, §4.3) for further details.

Calculating curvature measures requires both first and second derivatives of
the solution locus with respect to the parameters at each observation. The second
derivatives must be supplied as ann × p × p array where thei th p × p “face”
provides the symmetric matrix of second partial derivatives∂2ηi(β)/∂βj∂βk .
This may be supplied as ahessian attribute of the value of the model function
along with thegradient . (Unfortunately thenls fitting function can make no
use of anyhessian information.)

The functionrms.curv supplied with our library can be used to calculate and
display cθ

√
F and cι

√
F . The only required argument is annls fitted model

object, provided the model function has bothgradient andhessian attributes.
Consider our weight loss example.

> expn3 <- deriv3(~ b0 + b1*2^(-x/th), c("b0","b1","th"),
function(x, b0, b1, th) {})

> wtloss.he <- nls(Weight ~ expn3(Days, b0, b1, th),
wtloss, start = coef(wtloss.gr))

> rms.curv(wtloss.he)
Parameter effects: c^theta x sqrt(F) = 0.1679

Intrinsic: c^iota x sqrt(F) = 0.0101

13
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Although this result is acceptable, a lower parameter-effects curvature would be
preferable (see Exercise 8.4 for a way to achieve this).

Profile traces

Profiles for non-linear regression models are discussed in Sections 8.4 and 8.5.
To calculate a profile log-likelihood we hold one parameter fixed and maximize
the log-likelihood with respect to all others. If we think of the fixed parameter as
the independent variable, the profile log-likelihood is a function of it, but so too
are the conditional maximum likelihood estimates of all other parameters. These
conditional MLEs as a function of the fixed parameter we call theprofile traces.

The generic functionprofile generates profile objects from non-linear
model objects by varying each parameter up and down from its maximum likeli-
hood value until a suitable cutoff value for the log-likelihood below the maximum
is reached on either side. The profile object contains both the profile likelihoods
and the traces for each parameter.

The standardS-PLUS library containsprofile methods fornls and ms
objects andplot methods for the objects that shows a particular view of the
profile likelihood. The quantity actually plotted is the non-lineart -statistic,τ (θ) ,
defined in equation (8.5) on page 220.1

In MASS 2 there is a simpleprofile method forglm objects as well as (we
claim) a betterplot method for the objects produced, as well as apairs method
for displaying the profile traces.

We will illustrate the tools available for investigating profiles and profile traces
using a familiar example: the Stormer data and its non-linear regression model
introduced on page 222. The non-linear regression model is written as

T =
β1v

w − β2
+ ε

Note that this can also be written in the form

T =
1

γ1z1 + γ1z2
+ ε

where, say,γ1 = 1/β1 , z1 = w/v , γ2 = 1/β2 and z2 = −1/v . So the
model may also be fitted as a generalized linear model, as noted in Exercise 8.3.
It is interesting to see how much this non-linear transformation of the parameters
affects the parameter effects curvature.

First consider fitting the model as a non-linear regression and displaying both
views of the profile object.

> library(MASS, first = T)
> storm.nls <- nls(Time ~ b1*Viscosity/(Wt - b2), stormer,

start = c(b1=28, b2=2.2), trace = T)
1443.01 : 28 2.2

1 Note that this is not a true profile likelihood unless the variance is known.
2 From some as yet unpublished (but widely used) work of D. M. Bates and WNV.
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Figure 8.13: Profile and pairs-profile plots for the Stormer data example fitted as a non-
linear regression model.

825.052 : 29.4012 2.21929
825.051 : 29.4013 2.21827
> storm.nls.pro <- profile(storm.nls)
> plot(storm.nls.pro)
> pairs(storm.nls.pro)

The results inS-PLUS3 are shown in Figure8.13. The straight lines in the first
display reassure us that the profile likelihood is very nearly quadratic in those
directions so the large-sample approximations are probably safe. With the pairs-
profile plots note that again the straightness of the lines indicate no serious bi-
variate departure from normality of the estimates but the narrow angle between
them suggests a very high correlation between the estimates, which is certainly
the case.

Another interpretation of the profile traces displayed in the pairs-profile plot
can be obtained by looking at Figure 8.3 on page 224. The profile traces are the
lines that would join up the points where the contours have horizontal and vertical

3 R displaysnls profiles as the unsigned trace.
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Figure 8.14: Profile and pairs-profile plots for the Stormer data example with the model
fitted as a GLM.

tangents respectively, and the fine ‘hairs’ cutting the lines in the pairs plot are an
indication of those tangents. In this way the pairs-profile plot gives a hint of how
the bivariate region might look, though only through what would be called the
conjugate axes of the elliptical contours (if they were indeed exactly elliptical).

The software also has methods forglm objects, and after fitting the model
as a GLM the procedure is essentially identical. We will turn on the trace when
calculating profiles, though, as it shows the discrete steps taken by the algorithm
and the way in which the log-likelihood falls below its global maximum value as
it does so. (The details are omitted here.)

> storm.glm <- glm(Time ~ I(Wt/Viscosity) + I(-1/Viscosity) - 1,
quasi(link=inverse), stormer, trace = T)

....
> storm.glm.pro <- profile(storm.glm, trace = T)

....
> plot(storm.glm.pro)
> pairs(storm.glm.pro)

The results are shown in Figure8.14. The non-lineart -statistics plots are again
quite straight indicating that even though this is a highly non-linear transformation
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of the original parameters, for these, too, the assumption of marginal normality
of the estimates is probably quite reasonable, leading to symmetric confidence
intervals.

Not surprisingly the pairs plot shows us the high correlation between these
functions of the original parameters as well, though the sign has changed. Again
the lines are quite straight indicating no serious departure from bivariate normality
of the estimates, but only in so far as this kind of diagram can indicate.

Curvature questions can be important for GLMs, as we pointed out on
page 198, so theglm method ofprofile can be a useful exploratory tool.



Chapter 13

Survival Analysis

13.1 Estimators of survival curves

In the text we concentrated on wholly non-parametric estimators of the survivor
function S and cumulative hazardH ; the resulting estimators were not smooth,
indeed discontinuous. There are analogues of density estimation for survival data
in which we seek smooth estimates of the survival functionS , the densityf or
(especially) the hazard functionh .

Kernel-based approaches

Kernel-based approaches are described by (Wand & Jones, 1995, §6.2.3, 6.3).
The codemuhaz 1 implements an approach byMueller & Wang (1994). This
does not work at all well for small datasets such asgehan , but we can apply it to
the Australian AIDS datasetAids by

attach(Aids2)
plot(muhaz(death-diag+0.9, status == "D"), n.est.grid = 250)

This is slow and we had to refine the output grid to produce a fairly smooth result.
The result shown in Figure13.13is unconvincing.

Likelihood-based approaches

Censoring is easy to incorporate in maximum-likelihood estimation; the likeli-
hood is given by (13.1) on page 352. One approach to using a smooth estimator
is to fit a very flexible parametric family and show the density / hazard / survivor
function evaluated at the maximum likelihood estimate. This is the approach of
the logspline . Consider thegehan dataset.

library(logspline)
g1 <- gehan[gehan$treat == "control",]
g2 <- gehan[gehan$treat == "6-MP",]
logspline.plot(

logspline.fit(uncensored = g1[g1$cens == 1, "time"],

1 available for UNIX from http://odin.mdacc.tmc.edu/anonftp: also anR package on
CRAn.
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Figure 13.13: Hazard function fitted to theAids dataset bymuhaz .
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Figure 13.14: Smooth survival (left, bylogspline.fit) and hazard (right, bylocfit )
fits to the gehan dataset. The solid line indicates the control group, the dashed line that
receiving 6-MP.

right = g1[g1$cens == 0,"time"], lbound = 0),
what = "s", xlim = c(0,35))

g2.ls <- logspline.fit(uncensored = g2[g2$cens == 1, "time"],
right = g2[g2$cens == 0,"time"],
lbound = 0)

xx <- seq(0, 35, len = 100)
lines(xx, 1 - plogspline(xx, g2.ls), lty = 3)

As there is no function for plotting lines, we have to add the second group by
hand. Small changes allow us to plot the density or hazard function.

Once again there is a local likelihood approach (see, for exampleHjort, 1997)
to hazard estimation, in which the terms are weighted by their proximity tot .
The full log-likelihood is

∑
ti:δi=1

logh(ti)−
∑
i

∫ ti

0

h(u) du
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and we insert weighting terms as before. This is implemented in Loader’s library
locfit : using a locally polynomial (by default quadratic) hazard.

library(locfit)
plot(locfit( ~ time, cens = 1-cens, data = g1, family = "hazard",

alpha = 0.5, xlim = c(0, 1e10)),
xlim = c(0, 25), ylim = c(0, 0.3))

lines(locfit( ~ time, cens = 1-cens, data = g2, family = "hazard",
alpha = 0.5, xlim = c(0, 1e10)), lty = 3)

The xlim = c(0, 1e10) argument sets a lower bound (only) on the support of
the density.

Both there approaches can have difficulties in the right tail of the distribution,
where uncensored observations may be rare. The right tail of a distribution fitted
by logspline.fit necessarily is exponential beyond the last observation. In
HEFT (Hazard Estimation with Flexible Tails;Kooperberget al., 1995). a cubic
spline model is used for the log hazard, but with two additional termsθ1 log t/(t+
c) and θ2 log(t+ c) wherec is the upper quartile for the uncensored data. Then
the space of fitted hazards includes the functions

h(t) = eθ0tθ1(t+ c)θ2−θ1

which includes the Weibull family and the Pareto density

f(t) =
bcb

(t+ c)b+1

for given c . Thus there is some hope that the tail behaviour can be captured
within this parametric family. This is implemented in functionheft.fit in
library HEFT .2 To illustrate this, let us consider the whole of the Australian AIDS
datasetAids2 .

library(heft)
attach(Aids2)
aids.heft <- heft.fit(death - diag + 0.9, status == "D")
heft.summary(aids.heft)
par(mfrow = c(2, 2))
heft.plot(aids.heft, what = "s", ylim = c(0, 1))
heft.plot(aids.heft)

This is rather slow. The sharp rise at 0 of the hazard reflects the small number of
patients diagnosed at death. Note that this is themarginal hazard and its shape
need not be at all similar to the hazard fitted in a (parametric or Cox) proportional
hazards model.

2 Not ported toR nor toS-PLUS 6.0 onWindows.
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Figure 13.15: Survivor curve and hazard fitted toAids by heft.fit .

13.5 Non-parametric models with covariates

There have been a number of approaches to model the effect of covariates on
survival without a parametric model. Perhaps the simplest is a localized version
of the Kaplan-Meier estimator

Ŝ(t |x) =
∏

ti6t,δi=1

[
1− w(xi − x)∑

j∈R(ti)
w(xj − x)

]
which includes observations with weights depending on the proximity of their
covariates tox . This does not smooth the survivor function, but the function
sm.survival in library sm (Bowman & Azzalini, 1997) plots quantiles as a
function of x by smoothing the inverse of the survival curve and computing quar-
tiles of the smoothed fit. Following them, we can plot the median survival time
after transplantation in the Stanford heart transplant dataheart by

library(sm)
attach(heart[heart$transplant == 1,])
sm.survival(age+48, log10(stop - start), event, h = 5, p = 0.50)
detach()

This shows some evidence of a decline with age, which can also be seen in the
Cox analysis.

The local likelhood approach easily generalizes to localizing in covariate
space too: inlocfit this is requested by adding covariate terms to the right-
hand-side of the formula.

library(locfit)
attach(heart[heart$transplant == 1,])
td <- stop - start; Age <- age+48
plot(locfit(~ td + Age, cens = 1-event, scale = 0, alpha = 0.5,

family = "hazard", xlim = list(td=c(0, 1e10)),
flim = list(td=c(0,3 65))),

type = "persp")

Gray(1996, 1994) takes a similar but less formal approach, usingloess to
smooth a discretized version of the problem. This is implemented in his function
hazcov in library hazcov . First the data are grouped on the covariate values,
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Figure 13.16: Median survival time for the Stanford heart transplant data by
sm.survival .
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Figure 13.17: Smooth hazard functions (in days) as a function of age post-transplantation
in the Stanford heart-transplant study.Left: by locfit and right: by hazcov using
local scoring.

using quantiles of the marginal distributions or factor levels. Then time is divided
into intervals and the number of events and total follow-up time computed for
each interval for each covariate combination. In the default method described
in the 1996 paper, the numbers of events and the follow-up totals are separately
smoothed usingloess function, and the hazard estimate formed by taking ratios.
We can try this by

library(hazcov)
heart.hc <- hazcov(Surv(td, event) ~ Age, span = 0.5)
plot(heart.hc)
persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

The loess span was chosen by guesswork. Gray describes an approximate
version ofCp to help select the span which we can use by

heart.50 <- hazcov(Surv(td, event) ~ Age, span = 0.5,
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trace.hat = "exact")
for(alpha in seq(0.1, 1, 0.1))
{

heart.tmp <- hazcov(Surv(td, event) ~ Age, span = alpha,
trace.hat = "exact")

print(c(alpha, wcp(heart.tmp, heart.50)))
}

This indicates a minimum atα = 0.2 , but very little difference over the range
[0.2, 0.5] .

The alternative method (Gray, 1994: ‘local scoring’ invoked byls = T ), the
counts are viewed a independent Poisson variates with mean total follow-up times
hazard, and a local log-linear Poisson GLM is fitted by IWLS, usingloess to
smooth the log-hazard estimates.

heart.hc <- hazcov(Surv(td, event) ~ Age, span = 0.5, ls = T)
plot(heart.hc)
persp.hazcov(Hazard.Rate ~ Time*Age, heart.hc)

Spline approaches

HARE (HAzard Rate Estimation;Kooperberget al., 1995) fits a linear tensor-
spline model for the log hazard function conditional on covariates, that is
log h(t |x) = η(t, x; θ) is a MARS-like function of(t, x) jointly. The fitting
procedure is similar to that forlogspline and lspec : an initial set of knots
is chosen, the log-likelihood is maximized given the knots by a Newton algo-
rithm, and knots and terms are added and deleted in a stepwise fashion. Finally,
the model returned is that amongst those considered that maximizes a penalized
likelihood (by default with penaltylogn times the number of parameters).

It remains to describe just what structures are allowed forη(t, x) . This is a
linear combination of linear spline basis functions and their pairwise products,
that is a linear combination of terms likec, t, (t− c)+, xj , (xj − c)+, txj , (txj −
c)+, xjxk, (xjxk − c)+ where thec are generic constants. The product terms
are restricted to products of simple terms already in the model, and wherever a
non-linear term occurs, that term also occurs with the non-linear term replaced by
a linear term in the same variable. Thus this is just a MARS model in thep + 1
variables restricted to pairwise interactions.

The model for the hazard function will be a proportional hazards model if (and
only if) there are no products betweent and covariate terms. In any case it has a
rather restricted ability to model non-constant hazard functions, and it is recom-
mended to transform time to make the marginal distribution close to exponential
(with constant hazard) before applying HARE.

HARE is implemented in libraryhare 3 by function hare.fit . The paper
contains an analysis of the datasetcancer.vet which we can reproduce by

# VA is constructed on page 374
> attach(VA)

3 Not ported toR nor toS-PLUS 6.0 onWindows.
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Figure 13.18: The marginal distribution of lifetime in thecancer.vet dataset.Left:
Hazard as fitted byheft.fit . Right: Time as transformed by the distribution fitted by
heft.fit and by a fitted Weibull distribution.

> library(HARE)
> options(contrasts = c("contr.treatment", "contr.poly"))
> VAx <- model.matrix( ~ treat+age+Karn+cell+prior, VA)[,-1]
> VA.hare <- hare.fit(stime, status, VAx)
> hare.summary(VA.hare)

....
the present optimal number of dimensions is 9.
penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dim1 dim2 beta SE Wald
Constant -9.83e+00 2.26e+00 -4.35
Co-3 linear 2.50e-01 1.08e-01 2.31
Co-5 linear 2.43e+00 4.72e-01 5.15
Co-4 linear -1.39e+00 6.35e-01 -2.20
Time 1.56e+02 Co-5 linear -1.25e-02 4.50e-03 -2.77
Time 1.56e+02 2.45e-02 5.84e-03 4.20
Co-3 2.00e+01 -2.60e-01 1.08e-01 -2.41
Co-3 linear Co-4 linear 3.87e-02 1.12e-02 3.46
Time 1.56e+02 Co-3 linear -4.33e-04 9.58e-05 -4.52

We found that an exponential model for the residual hazard was adequate, but
Kooperberget al.(1995) explore the marginal distribution by HEFT and conclude
that the time-scale could usefully be transformed. They used

library(HEFT)
VA.heft <- heft.fit(stime, status, leftlog = 0)
heft.plot(VA.heft, what = "h")
nstime <- -log(1 - pheft(stime, VA.heft))

In fact the transformation used is close to that from fitting a Weibull distribution

survreg(Surv(stime, status) ~ 1, data = VA)
....

Coefficients:
(Intercept)
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4.7931

Dispersion (scale) = 1.1736

plot(sort(nstime),
-log(1 - pweibull(sort(stime), 1/1.1736, exp(4.9731))),
type = "l", xlab = "HEFT-transformed",
ylab = "Weibull-transformed")

It does seem undesirable to ignore the highly significant covariate effects in mak-
ing such a transformation; this is illustrated in this example by the change in the
Weibull shape parameter from1.1736 to 0.928 (page 389) on fitting linear terms
in the survival regression model.

Having transformed time, we can re-fit the model.

> VA.hare2 <- hare.fit(nstime, status, VAx)
> hare.summary(VA.hare2)
the present optimal number of dimensions is 10.
penalty(AIC) was the default: BIC=log(samplesize): log(137)=4.92

dim1 dim2 beta SE Wald
Constant -7.06e+00 2.60e+00 -2.72
Co-3 linear 2.72e-01 1.10e-01 2.47
Co-5 linear 5.54e+00 1.15e+00 4.81
Time 2.67e+00 2.24e+00 6.22e-01 3.60
Time 2.67e+00 Co-5 linear -2.00e+00 5.40e-01 -3.70
Time 2.67e+00 Co-3 linear -4.21e-02 9.54e-03 -4.42
Co-4 linear -1.16e+00 6.53e-01 -1.77
Co-3 8.50e+01 -2.73e-01 1.17e-01 -2.33
Co-3 linear Co-4 linear 3.39e-02 1.15e-02 2.94
Co-3 2.00e+01 -2.31e-01 1.08e-01 -2.13

Allowing for the time transformation, the fitted model is quite similar. Covariate
3 is the Karnofsky score, and 4 and 5 are the contrasts of cell type adeno and small
with squamous. It is not desirable to have a variable selection process that is so
dependent on the coding of the factor covariates.

This example was used to illustrate the advantages of HARE / HEFT method-
ology by their authors, but seems rather to show up its limitations. We have
already seen that themarginal transformation of time is quite different from that
suggested for theconditionaldistribution. In our analysis via Cox proportional
hazards models we found support for models with interactions where the main
effects are not significant (such models will never be found by a forward selection
procedure such as used by HARE) and the suspicion of time-dependence of such
interactions (which would need a time cross covariate cross covariate interaction
which HARE excludes).

13.6 Expected survival rates

In medical applications we may want to compare survival rates to those of a stan-
dard population, perhaps to standardize the experience of the population under
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study. As the survival experience of the general population changes with calendar
time, this must be taken into account.

Unfortunately, there are differences between versions in how calendar time
is recorded between the versions of the survival analysis functions: the ver-
sion in S-PLUS uses modified versions of functions from thechron library
whereassurvival5 uses the format of Therneau’s librarydate (obtainable
from statlib ). Both record dates in days since 1 Jan 1960, but with class
"dates" and "date" ) respectively. For theS-PLUS version the easiest way
to specify or print calendar dates is the functiondates ; for datasets such as
aids.dat with numerical day, month and year data the functionjulian may
be useful.

For a cohort study, expected survival is often added to a plot of survivor
curves. The functionsurvexp is usually used with a formula generated by
ratetable . The optional argumenttimes specifies a vector at which to evalu-
ate survival, by default for all follow times. For example, we could add expected
survival for 65-year old US white males to the left plot of Figure 13.9 by

# S: year <- dates("7/1/91")
# R: data(ratetables); year <- as.date("7/1/91")

survexp.uswhite <- survexp.usr[,,"white",]
expect <- survexp(~ ratetable(sex = "male", year = year,

age = 65*365.25),
times = seq(0, 1400, 30),
ratetable = survexp.uswhite)

lines(expect$time, expect$surv, lty = 4)

but as the patients are seriously ill, the comparison is not very useful. As the
inbuilt rate tables are in units of days, all ofyear , age and times must be in
days.

Entry and date times can be specified as vectors, when the average survival
for the cohort is returned. For individual expected survival, we can use the same
form with cohort = F , perhaps evaluated at death time.

Some explanation of the averaging used is needed in the cohort case. We
can use the cumulative hazard functionHi(t) and survivor functionSi(t) of the
exact match (on age and sex) to individuali . There are three possibilities, which
differ in the assumptions on what follow-up would have been.

1. The formula has no response. Then the function returns the average of
Si(t) . This corresponds to assuming complete follow-up.

2. The death times are given as the response. Then theHi(t) are averaged
over the cases at risk at timet to from a cohort cumulative hazard function
and converted to a survivor function.

3. The potential censoring times for each case are given as the response,
and conditional = F , when the weights in the cohort cumulative haz-
ard function are computed asSi(t)I(potentially in study att) . This corre-
sponds to assuming follow-up until the end of the study.
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The first is most useful for forecasting, the other two for comparing with the study
outcome. Thus to compare the survival in Figure 13.9 to matched males of the
same ages we might use

expect <- survexp(stop ~ ratetable(sex = 1, year = year*365.25,
age = (age+48)*365.25), times = seq(0, 1400, 30),
ratetable = survexp.uswhite, data = heart,
subset = diff(c(id, 0)) != 0, cohort = T, conditional = T)

lines(expect$time, expect$surv, lty = 4)

We do need to extract the second record corresponding to transplanted subjects to
get the correct death/censoring time for the cohort matching.

It is possible to use the fit from acoxph model in place of the inbuilt rateta-
bles to compare the present study to an earlier one.

13.7 Tree-structured survival analysis

Survival data are usually continuous, but are characterized by the possibility of
censored observations. There have been various approaches to extending regres-
sion trees to survival data in which the prediction at each leaf is a survival distri-
bution.

The deviance approach needs a common survival distribution with just one
parameter (say the mean) varying between nodes. As the survival distribution
has otherwise to be known completely, we would need to take, for example, a
Weibull distribution with a specificα . Thus this approach has most often been
used with an exponential distribution (it goes back at least toCiampiet al., 1987
and is expounded in detail byDavis & Anderson, 1989).

Another family of approaches has been via impurity indices, which we re-
call measure the decrease in impurity on splitting the node under consideration.
This can be replaced by a‘goodness-of-split’criterion measuring the difference
in survival distribution in the two candidate daughter nodes. In regression trees
the reduction in sum of squares can be seen as a goodness-of-split criterion, but
a more natural candidate might be the unpooled (Welch)t -test between the sam-
ples passed to the two daughters. Given this change of viewpoint we can replace
the t -test by a test which takes censoring into account and is perhaps more ap-
propriate for the typical shape of survival curves. The split selected at a node is
then the candidate split with the most significant test of difference.

Library rpart

Library rpart has two further options selected by itsmethod argument:

"poisson" in which the response is the number of eventsNi in a specified
durationti of observation. Deviance-based criteria are used to splitting and
for pruning, assuming a Poisson-distributed number of events with mean
λtti where the rate depends on the nodet . The response is specified as
either a two-column matrix of(Ni, ti) or just a vector ofNi (in which
case the time intervals are taken to be of unit length for all observations).
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Figure 13.19: Plot by plotcp of the rpart object VA.rp .

"exp" A survival tree in which the response must be a survival object, normally
generated bySurv . This is a variant of the"poisson" method. Sup-
pose that an exponential distribution was appropriate for the survival times.
Then by the duality between views of a Poisson process the observed num-
ber of events (0 or 1) in the duration to censoring or death can be taken to
be Poisson distributed, and the"poisson" method will give the correct
likelihood. In general the exponential distribution is not appropriate, but it
can perhaps be made so by non-linearly transforming time by the cumula-
tive hazard function, and this is done estimating the cumulative hazard from
the data4. This gives a proportional hazards model with the baseline hazard
fixed as the estimated marginal hazard.

We use the VA cancer datasetcancer.vet to illustrate a survival example.

> set.seed(123)
> VA.rp <- rpart(Surv(stime, status) ~ ., data = VA,

minsplit = 10)
> plotcp(VA.rp)
> printcp(VA.rp)

....
Root node error: 158/137 = 1.15

CP nsplit rel error xerror xstd
1 0.1923 0 1.000 1.014 0.1034
2 0.0829 1 0.808 0.830 0.1071

4 Note that this transformation is of themarginaldistribution of survival times, although an ex-
ponential distribution would normally be assumed for the distribution conditional on the covariates.
This is the same criticism as we see for the HARE / HEFT methodology in these complements. RPart
follows LeBlanc & Crowley(1992) in this ‘one-step’ approach.
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3 0.0380 2 0.725 0.766 0.1067
4 0.0319 3 0.687 0.787 0.1102
5 0.0210 5 0.623 0.820 0.1045
6 0.0189 7 0.581 0.848 0.1060
7 0.0164 8 0.562 0.828 0.0982
8 0.0123 9 0.546 0.809 0.0966
9 0.0110 10 0.533 0.825 0.0999

> print(VA.rp, cp = 0.09)
node), split, n, deviance, yval

* denotes terminal node

1) root 137 160 1.0
2) Karn>45 99 81 0.8 *
3) Karn<45 38 46 2.5 *

Hereyval is the relative hazard rate for that node; we have a proportional hazards
model and this is the estimated proportional factor.

In our experience it is common for tree-based methods to find little structure in
cancer prognosis datasets: what structure there is depends on subtle interactions
between covariates.

Library tssa

This approach is outlined bySegal(1988), who considers a family of statis-
tics introduced byTarone & Ware(1977) which includes the log-rank (Mantel-
Haenszel) and Gehan tests and Prentice’s generalization of the Wilcoxon test. His
approach is implemented in thetssa library of Segal and Wager. This uses
tssa as the main function, and generates objects of class"tssa" which inherits
from class"tree" . A member of the family of test statistics is selected by the
argumentchoice . Splitting continues until there aremaxnodes nodes (default
50) or no leaf has as many asminbuc cases (default 30)anda proportion at least
propn (default 15%) of uncensored cases.

We consider the VA lung cancer data. Sincetssa cannot currently handle
multi-level factors, we have to omit the variablecell .

> library(tssa, first = T)
> VA.tssa <-

tssa(stime ~ treat + age + Karn + diag.time + prior,
status, data = VA, minbuc = 10)

> VA.tssa
node), split, (n, failures), km-median, split-statistic

* denotes terminal node, choice is Mantel-Haenzel

1) root (137,128) 76.5 6.67
2) Karn<45 (38,37) 19.5 2.71
4) diag.time<10.5 (28,27) 21.0 2.08
8) age<62.5 (14,13) 18.0 *
9) age>62.5 (14,14) 33.0 *

5) diag.time>10.5 (10,10) 8.0 *
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3) Karn>45 (99,91) 110.5 2.74
6) Karn<82.5 (90,84) 104.0 2.22
12) age<67.5 (74,69) 111.5 1.34
24) prior<1.5 (50,48) 104.0 1.55
48) age<59 (24,23) 110.0 1.22
96) age<46.5 (13,13) 99.0 *
97) age>46.5 (11,10) 127.0 *

49) age>59 (26,25) 95.0 0.91
98) diag.time<3.5 (11,11) 91.0 *
99) diag.time>3.5 (15,14) 98.5 *

25) prior>1.5 (24,21) 139.5 1.10
50) treat<1.5 (14,13) 122.0 *
51) treat>1.5 (10,8) 145.5 *

13) age>67.5 (16,15) 72.0 *
7) Karn>82.5 (9,7) 234.5 *

> summary(VA.tssa)
Survival tree:
tssa(formula = stime ~ treat + age + Karn + diag.time + prior,

delta = status, data = VA, minbuc = 10)
Number of terminal nodes: 11
> tree.screens()
> plot(VA.tssa)
> text(VA.tssa)
> km.tssa(VA.tssa)
> close.screen(all=T)

It can be helpful to examine more than just the mean at each node; the func-
tion km.tssa will plot the Kaplan-Meier estimates of survival curves for the two
daughters of a non-terminal node. Interactive exploration shows that there is very
little difference in survival between nodes at (Figure13.20) or below node 6.

The change from a goodness-of-fit to a goodness-of-split view is not helpful
for pruning a tree.Segal(1988) replaced optimizing a measure of the fit of the
tree (as in cost-complexity pruning) with a stepwise approach.

(i) Grow a very large tree.

(ii) Assign to each non-terminal node the largest split statistic in the subtree
rooted at that node. (This can be done in a single upwards pass on the tree.)

(iii) Obtain a sequence of pruned trees by repeatedly pruning at the remaining
node(s) with the smallest assigned values.

(iv) Select one of these trees, perhaps by plotting the minimum assigned value
against tree size and selecting the tree at an ‘elbow’.

This is implemented inprune.tssa . Like snip.tree (and snip.tssa ), a
value is selected by a first click (on the lower screen), and the tree pruned at that
value on the second click. For our example we can use

tree.screens()
plot(VA.tssa)
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Figure 13.20: Tree fitted bytssa to the cancer.vet dataset. The bottom screen shows
the output fromkm.tssa when node 6 was selected.

prune(VA.tssa)
close.screen(all = T)

The only clear-cut pruning point (Figure13.21) is at a single split. There is a func-
tion post.tssa the equivalent of (and modified from)post.tree for tssa
trees.



13.7 Tree-structured survival analysis 32

|

8 9

5

96 97
98 99

50 51

13

7

1

2

4

3

6

12

24

48 49

25

•••••
••

••

•

Number of Terminal Nodes

S
pl

it-
st

at
is

tic

2 4 6 8 10

1
2

3
4

5
6

4925482412
46

23

1

Figure 13.21: Tree fitted bytssa to the cancer.vet dataset. The bottom screen shows
the prune sequence fromprune.tssa .



Chapter 14

Time Series

14.8 Multiple time series

The second-order time-domain properties of multiple time series were covered in
Section 14.1. The functionar will fit AR models to multiple time series, but
ARIMA fitting is confined to univariate series. LetXt denote a multiple time
series, andεt a correlated sequence of identically distributed random variables.
Then a vector AR(p ) process is of the form

Xt =
p∑
i

AiXt−i + εt

for matricesAi . Further, the components ofεt may be correlated, so we will
assume that this has covariance matrixΣ . Again there is a condition on the
coefficients, that

det[I −
p∑
1

Aiz
i] 6= 0 for all |z| 6 1

The parameters can be estimated by solving the multiple version of the Yule–
Walker equations (Brockwell & Davis, 1991, §11.5), and this is used byar.yw ,
the function called byar . (The other method,ar.burg , also handles multiple
series.)

Spectral analysis for multiple time series

The definitions of the spectral density can easily be extended to a pair of series.
The cross-covariance is expressed by

γij(t) =
1

2π

∫ π

−π
eiωt dFij(ω)

for a finite complex measure on(−π, π] , which will often have a densityfij so
that

γij(t) =
1

2π

∫ π

−π
eiωtfij(ω) dω

33
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and

fij(ω) =
∞∑
−∞

γij(t)e−iωt

Note that sinceγij(t) is not necessarily symmetric, the sign of the frequency be-
comes important, andfij is complex. Conventionally it is written ascij(ω) −
i qij(ω) where c is theco-spectrumand q is thequadrature spectrum. Alterna-
tively we can consider the amplitudeaij(ω) and phaseφij(ω) of fij(ω) . Rather
than use the amplitude directly, it is usual to work with thecoherence

bij(ω) =
aij(ω)√

fii(ω)fjj (ω)

which lies between zero and one.
Thecross-periodogramis

Iij(ω) =

[
n∑
s=1

e−iωsXi(s)
n∑
t=1

eiωtXj(t)

]/
n

and is a complex quantity. It is useless as an estimator of the amplitude spectrum,
since if we define

Ji(ω) =
n∑
s=1

e−iωsXi(s)

then

|Iij(ω)|/
√
Iii(ω)Ijj(ω) = |Ji(ω)Jj(ω)∗|/|Ji(ω)| |Jj(ω)| = 1

but smoothed versions can provide sensible estimators of both the coherence and
phase.

The function spec.pgram will compute the coherence and phase spectra
given a multiple time series. The results are shown in Figure14.25.

spectrum(mdeaths, spans = c(3, 3))
spectrum(fdeaths, spans = c(3, 3))
mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths),

spans = c(3, 3))
plot(mfdeaths.spc$freq, mfdeaths.spc$coh, type = "l",

ylim = c(0, 1), xlab = "squared coherency", ylab = "")
gg <- 2/mfdeaths.spc$df
se <- sqrt(gg/2)
coh <- sqrt(mfdeaths.spc$coh)
lines(mfdeaths.spc$freq, (tanh(atanh(coh) + 1.96*se))^2, lty = 3)
lines(mfdeaths.spc$freq, (pmax(0, tanh(atanh(coh) - 1.96*se)))^2,

lty = 3)
plot(mfdeaths.spc$freq, mfdeaths.spc$phase, type = "l",

ylim = c(-pi, pi), xlab = "phase spectrum", ylab = "")
cl <- asin( pmin( 0.9999, qt(0.95, 2/gg-2)*

sqrt(gg*(coh^{-2} - 1)/(2*(1-gg)) ) ) )
lines(mfdeaths.spc$freq, mfdeaths.spc$phase + cl, lty = 3)
lines(mfdeaths.spc$freq, mfdeaths.spc$phase - cl, lty = 3)
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Figure 14.25: Coherence and phase spectra for the two deaths series, with 95% pointwise
confidence intervals.

These confidence intervals followBloomfield (2000, §9.5). At the frequency of
1/year there is a strong signal common to both series, so the coherence is high
and both coherence and phase are determined very precisely. At high frequencies
there is little information, and the phase cannot be fixed at all precisely.

It is helpful to consider what happens if the series are not aligned:

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, lag(fdeaths, 4)),
spans = c(3, 3))

plot(mfdeaths.spc$freq, mfdeaths.spc$coh, type = "l",
ylim = c(0,1), xlab = "coherency", ylab = "")

gg <- 2/mfdeaths.spc$df
se <- sqrt(gg/2)
coh <- sqrt(mfdeaths.spc$coh)
lines(mfdeaths.spc$freq, (tanh(atanh(coh) + 1.96*se))^2, lty = 3)
lines(mfdeaths.spc$freq, (pmax(0, tanh(atanh(coh) - 1.96*se)))^2,

lty = 3)
phase <- (mfdeaths.spc$phase + pi)%%(2*pi) - pi
plot(mfdeaths.spc$freq, phase, type = "l",

ylim = c(-pi, pi), xlab = "phase spectrum", ylab = "")
cl <- asin( pmin( 0.9999, qt(0.95, 2/gg-2)*

sqrt(gg*(mfdeaths.spc$coh^{-2} - 1)/(2*(1-gg)) ) ) )
lines(mfdeaths.spc$freq, phase + cl, lty = 3)
lines(mfdeaths.spc$freq, phase - cl, lty = 3)



14.9 Other time-series functions 36

coherency

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

phase spectrum

0 1 2 3 4 5 6

-3
-2

-1
0

1
2

3

Figure 14.26: Coherence and phase spectra for the re-aligned deaths series, with 95%
pointwise confidence intervals.

The results are shown in Figure14.26. The phase has an added component of
slope2π ∗ 4 , since ifX2(t) = X1(t − τ ) ,

γ12(t) = γ11(t+ τ ), f11(ω) = f11(ω)e−iτω

For more than two series we can consider all the pairwise coherence and phase
spectra, which are returned byspec.pgram .

14.9 Other time-series functions

S-PLUS andR have a number of time-series functions which are used less fre-
quently and we have not discussed. This section is only cursory.

Many of the other functions implement various aspects of filtering, that is
converting one times series into another while emphasising some features and
de-emphasising others. A linear filter is of the form

Yt =
∑
j

ajXt−j

which is implemented by the functionfilter . The coefficients are supplied,
and it is assumed that they are non-zero only forj > 0 (sides = 1 ) or −m 6
j 6 m (sides = 2 , the default). A linear filter affects the spectrum by

fY (ω) =
∣∣∣∑ ase

−isω
∣∣∣2 fX (ω)

and filters are often described by aspects of the gain function|
∑
ase
−isω| . Ker-

nel smoothers such asksmooth are linear filters when applied to regularly-spaced
time series.

Another way to define a linear filter is recursively (as in exponential smooth-
ing), and this can be done byfilter , using

Yt =
∑̀
s=1

asYt−s
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in which casè initial values must be specified by the argumentinit .
Converting an ARIMA process to the innovations processε is one sort of

recursive filtering, implemented by theS-PLUS function arima.filt .
A large number of smoothing operations such aslowess can be regarded as

filters, but they are non-linear. TheS-PLUS functionsacm.filt , acm.ave and
acm.smo provide filters resistant to outliers.

Complex demodulationis a technique to extract approximately periodic com-
ponents from a time series. It is discussed in detail byBloomfield(2000, Chap-
ter 7) and implemented by theS-PLUS function demod .

Some time series exhibit correlations which never decay exponentially, as they
would for an ARMA process. One way to model these phenomena is fractional
differencing (Brockwell & Davis, 1991, §13.2). Suppose we expand∇d by a
binomial expansion:

∇d =
∞∑
j=0

Γ(j − d)
Γ(j + 1)Γ(−d)

Bj

and use the right-hand side as the definition for non-integerd . This will only
make sense if the series defining∇dXt is mean-square convergent. A fractional
ARIMA process is defined ford ∈ (−0.5, 0.5) by the assumption that∇dXt is
an ARMA(p, q ) process, so

φ(B)∇dX = θ(B)ε, so φ(B)X = θ(B)∇−dε

and we can consider it also as an ARMA(p, q ) process with fractionally integrated
noise. The spectral density is of the form

f(ω) = σs
∣∣∣∣ θ(e−iω )
φ(e−iω)

∣∣∣∣2 × |1− e−iω|−2d

and the behaviour asω−2d at the origin will help identify the presence of frac-
tional differencing.

The functions arima.fracdiff and arima.fracdiff.sim implement
fractionally-differenced ARIMA processes. Essentially the same functions are
fracdiff and fracdiff.sim in theR packagefracdiff on CRAN.



Chapter 15

Spatial Statistics

15.5 Module S+SPATIAL STATS

The theS-PLUS module S+SPATIALSTATS has a comprehensive manual (pub-
lished asKaluzny & Vega, 1997), which we do not aim to duplicate, but rather to
show how our examples in Chapter 15 can be done using S+SPATIAL STATS.

The module S+SPATIAL STATS is attached and made operational by

module(spatial)

which we will assume has been done. Unfortunately the name is the same as our
library (as are some of the function names); modules take priority over libraries.

Kriging

The kriging functions use a slight extension of the model formula language. The
function loc is used to specify the two spatial coordinates of the points, which
are used to find the covariance matrix in kriging. Universal kriging is specified by
adding other terms to form a linear model. Thus we can specify the model used
in the bottom row of Figure 15.5 by

> topo.kr <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,
data = topo, covfun = exp.cov, range = 0.7, sill = 770)

> topo.kr
....

Coefficients:
constant x y x^2 xy y^2

808.3 -12.896 -64.486 62.137 1.6332 6.3442
....

> prsurf <- predict(topo.kr, se.fit = T,
grid = list(x=c(0, 6.5, 50), y=c(0, 6.5, 50)))

> topo.plt1 <- contourplot(fit ~ x*y, data = prsurf, pretty = F,
at = seq(700, 1000, 25), aspect = 1,
panel = function(...){

panel.contourplot(...)
points(topo)

})
> topo.plt2 <- contourplot(se.fit ~ x*y, data = prsurf, pretty = F,

38
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at = c(20, 25), aspect = 1)
> print(topo.plt1, split = c(1,1,2,1), more = T)
> print(topo.plt2, split = c(2,1,2,1))

(The sill value is explained below.) We can of course obtain a least-squares
trend surface by giving a covariance function that drops to zero immediately, for
exampleexp.cov with range = 0 , but there seems no simple way to obtain a
trend surface fitted by GLS. Thepredict method forkrige objects takes either
a newdata argument or agrid argument as used here. Thegrid argument
must be a list with two components with names matching those given toloc
and specifying the minimum, maximum and number of points. (This is passed to
expand.grid to compute a data frame fornewdata .)

Analogues of the fits shown in Figure 15.7 may be obtained by

topo.kr2 <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,
data = topo, covfun = gauss.cov,
range = 1, sill = 600, nugget = 100)

topo.kr3 <- krige(z ~ loc(x, y), data = topo,
covfun = gauss.cov, range = 2, sill = 6500, nugget = 100)

Various functions are provided to fit variograms and correlograms. We start
by fitting a variogram to the original data.

topo.var <- variogram(z ~ loc(x, y), data = topo)
model.variogram(topo.var, gauss.vgram, range = 2,

sill = 6500, nugget = 100)

The functionmodel.variogram plots the variogram object (which may also be
plotted directly) and draws a theoretical variogram. It then prompts the user to
alter the parameters of the variogram to obtain a good fit by eye. It this case
range = 3.5 seems indicated. The parametrization is thatnugget is the incre-
ment at the origin, andsill is the change over the range of increase of the var-
iogram. (In geostatistical circles the sum of ‘nugget’ and ‘sill’ is called the sill.)
Thus thealph of our covariance functions isnugget/(sill + nugget) .

There are functionscorrelogram and covariogram which can be used in
the same way (including withmodel.variogram ).

topo.cov <- covariogram(z ~ loc(x, y), data = topo)
model.variogram(topo.cov, gauss.cov, range = 2,

sill = 4000, nugget = 2000)

We can now explain how we chose the the parameters of the exponential co-
variance in the first plot. An object of class"krige" contains residuals, so we
can use

topo.ls <- krige(z ~ loc(x, y) + x + y + x^2 + x*y + y^2,
data = topo, covfun = exp.cov, range = 0)

topo.res <- residuals(topo.ls)
topo.var <- variogram(topo.res ~ loc(x, y), data = topo)
model.variogram(topo.var, exp.vgram, range = 1, sill = 1000)
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Figure 15.10: Directional variograms for thetopo dataset. The top pair is for the raw
data, the bottom pair of residuals from a quadratic trend surface. The left plots are vertical
variograms, the right plots are horizontal ones. (The strip coverage is misleading, only
showing the positive part of the angular tolerance.)

This suggests a sill of about 800. The kriging predictions do not depend on the
sill, and ourspatial library relies on this to work throughout with correlograms
and to fit the overall scale factor when plotting the standard errors. Knowledge of
our code allowed us to read off the value 770. It would be a good idea to repeat
the forming of the residuals, this time from the GLS trend surface. We can choose
the covariogram for the Gaussian case in the same way.

topo.var <- covariogram(topo.res ~ loc(x, y), data = topo)
model.variogram(topo.var, gauss.cov, range = 1, sill = 210,

nugget = 90)

Spatial anisotropy

The geostatistical functions in S+SPATIAL STATS have considerable support for
studying anisotropy of smooth spatial surfaces, and to correct for geometrical
anisotropy (anisotropy which can be removed by ‘squeezing’ the plot in some
direction). The functionloc has two additional parametersangle andratio to
remove geometrical anisotropy. The functionsvariogram , correlogram and
covariogram all allow multiple plots for pairs of distances in angular sectors.
For example

plot(variogram(z ~ loc(x, y), data = topo, azimuth = c(0, 90),
tol.azimuth = 45), aspect = 0.7, layout = c(2,1))

plot(variogram(topo.res ~ loc(x, y), data = topo,
azimuth = c(0, 90), tol.azimuth = 45),
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aspect = 0.7, layout = c(2,1))

They show vertical and horizontal variograms (for pairs within a tolerance of
±45◦ ) of the raw topo data and then the residuals from the quadratic trend
surface. (As these produceand print Trellis plots, none of the normal ways to
put two plots on one page are possible and Figure15.10is assembled from two
S-PLUS plots.)

Point process functions

Spatial point patterns are objects of class"spp" , with constructor functionspp .
We can convert ourpines.dat to a spp object by

library(spatial) # our library, for next line only.
pines <- data.frame(unclass(ppinit("pines.dat"))[c("x", "y")])
pines <- spp(pines, "x", "y", bbox(c(0,9.6), c(0, 10)), drop = T)
attributes(pines)
$class:
[1] "spp" "data.frame"
$coords:
[1] "x" "y"
$boundary:
$boundary$x:
[1] 0.0 0.0 9.6 9.6
$boundary$y:
[1] 10 0 0 10

An object of class"spp" is a data frame with two attributes,"coords" declares
which columns give the spatial coordinates, and"boundary" which gives the
boundary of a polygon within which the pattern was observed. (This defaults to
the bounding rectangle aligned with the axes, but the use of that is not advisable.)

We can reproduce Figure 15.9 quite closely by

par(pty = "s", mfrow = c(2, 2))
plot(pines, boundary = T)
Lhat(pines, maxdist = 5)
Lenv(pines, 25, process = "binomial", maxdist = 5)
Lhat(pines, maxdist = 1.5)
Lenv(pines, 100, process = "Strauss", maxdist = 1.5,

cpar = 0.2, radius = 0.7)

As this code shows,Lenv can simulate from several point process models: it
does so by calling the functionmake.pattern whose functionality is equivalent
to that of our functionsPsim , SSI and Strauss plus certain Poisson cluster
processes.

There is no way to estimate parameters of point process models in the current
release of S+SPATIAL STATS, but it does have functionsFhat and Ghat to use
nearest neighbourmethods, and functionintensity to estimate the intensity
function of a heterogeneous point process. (This is closely related to bivariate
density estimation.)
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