
Go-HEP: libraries for High Energy Physics analyses in Go
Sebastien Binet1, Bastian Wieck3, David Blyth2, Emmanuel Busato1,
Michaël Ughetto4, and Peter Waller5

1 IN2P3 2 Argonne National Laboratory 3 Georgia Southern University 4 Stockholm University 5
University of LiverpoolDOI: 10.21105/joss.00372

Software
• Review
• Repository
• Archive

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Go-HEP provides tools to interface with CERN’s ROOT (Brun and Rademakers 1997)
software framework and carry analyses or data acquisition from within the Go (Authors,
n.d.) programming language.
Go-HEP exposes libraries to read and write common High Energy Physics (HEP) file
formats (HepMC (Dobbs and Hansen 2000), LHEF (Alwall et al. 2007), SLHA (Skands
and others 2004)) but, at the moment, only read interoperability is achieved with ROOT
file format. Go-HEP also provides tools to carry statistical analyses in the form of 1-
dim and 2-dim histograms, 1-dim and 2-dim scatters and n-tuples. Go-HEP can also
graphically represent these results, leveraging the Gonum (T. G. authors, n.d.) plotting
library.

Motivations

Writing analyses in HEP involves many steps and one needs a few tools to successfully
carry out such an endeavour. But - at minima - one needs to be able to read (and possibly
write) ROOT files to be able to interoperate with the rest of the HEP community or to
insert one’s work into an already existing analysis pipeline.
Go-HEP provides this necessary interoperability layer, in the Go programming language.
This allows physicists to leverage the great concurrency primitives of Go, together with
the surrounding tooling and software engineering ecosystem of Go, to implement physics
analyses.

Packages

In this section, we list the packages that Go-HEP provides together with a short descrip-
tion.

go-hep/rootio

go-hep/rootio provides read access to data stored in ROOT files. rootio is a pure-Go
implementation of the ROOT file format, reimplementing from scratch the decoding and
interpretation of ROOT’s low-level file blocks (TDirectory, TKey, TBuffer and TFile)
together with file metadata, such as TStreamerInfo and TStreamerElement that allow to
serialize and deserialize C++ class’ instances. 1- and 2-dimensional histograms (TH1x and
TH2x) can be extracted from ROOT files using rootio, as well as n-tuple data (TTree).

Binet et al., (2017). Go-HEP: libraries for High Energy Physics analyses in Go. Journal of Open Source Software, 2(17), 372,
doi:10.21105/joss.00372

1

https://doi.org/10.21105/joss.00372
https://github.com/openjournals/joss-reviews/issues/372
https://github.com/go-hep/hep
http://dx.doi.org/10.5281/zenodo.887895
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00372


Go-HEP can also convert ROOT histograms into YODA’s (T. Y. authors, n.d.) or Go-
HEP’s native format.
go-hep/rootio is the gateway to the wealth of data generated, simulated and acquired
by LHC experiments.
Right now, go-hep/rootio can only read ROOT data. Work is in progress to also create
ROOT-compatible data files.

go-hep/fmom

The go-hep/fmom package provides different representations of Lorentz vectors (4-
components vectors that represent the momentum and energy of particles.) go-hep/fmom
currently implements the (px,py,pz,e), (e,eta,phi,m), (inv-pt, cot-theta, phi,
m) and (pt, eta, phi, m) Lorentz vector representations and operations that apply on
these 4-vectors.

go-hep/hbook and go-hep/hbook/ntup

go-hep/hbook provides 1- and 2-dimensional histograms, 1-dim profiles and 2-dim scat-
ters, for the statistical representation of variables. Notably, histograms allow to retrieve
the mean, standard deviation, standard error and the sum of weights of a given variable.
go-hep/hbook/ntup provides a way to create, open and iterate over n-tuple data: rows
of records. ntup can be seen as a database of HEP event data. Indeed, ntup is built on
Go’s database/sql package that allows to interact with various databases via plugins
(SQLite, MySQL, …) go-hep/hbook/ntup/ntupcsv is a convenience package that allows to
load a CSV file in memory and work on it as a database.

go-hep/hepmc, go-hep/hepevt, go-hep/heppdt, go-hep/lhef and go-hep/slha

go-hep/hepmc and go-hep/hepevt are packages used to represent HEP event interactions:
they carry informations about a fundamental event interaction (incoming partons) and
the decay chains, down to the hadronization and stable final particles. hepevt is the
implementation of the old FORTRAN standard, while hepmc is the new C++ representation.
hepmc files are usually the result of a Monte-Carlo generator where the simulation of
physics processes (branching ratios, hadronization, …) has been implemented. Go-HEP
doesn’t currently provide Monte-Carlo generators.
heppdt provides access to the HEP particle data table: a catalog of informations (mass,
width, …) about all particles of the Standard Model (and beyond the Standard Model.)
lhef (Alwall et al. 2007) and slha (Skands and others 2004) are exchange format files
for Monte-Carlo generators.

go-hep/fwk

fwk is a pure-Go, concurrent implementation of a typical HEP control framework. Control
frameworks are used in HEP to collect the acquired data from e.g. the LHC experiments
and channel it through the various reconstruction algorithms. Control frameworks are
the angular stone of HEP experiments, allowing to organize and schedule the algorithms
that identify and reconstruct electrons, muons, etc.. from electronic signals coming from
the detectors.
go-hep/fwk leverages the concurrency primitives of Go to provide an easy to use toolkit,
ready to harness the power of multicore machines. go-hep/fwk parallelizes work at the

Binet et al., (2017). Go-HEP: libraries for High Energy Physics analyses in Go. Journal of Open Source Software, 2(17), 372,
doi:10.21105/joss.00372

2

https://doi.org/10.21105/joss.00372


event level, allowing to work on multiple events at a time. go-hep/fwk also parallelizes
work at the sub-event level, scheduling in parallel algorithms that don’t need inputs from
each other. go-hep/fwk doesn’t provide extra tools to perform parallel work at the sub-
algorithm level, leaving the algorithms’ implementors with all the tools from the Go lan-
guage (e.g. channels, goroutines and sync.Wait or golang.org/x/sync/errgroup.)

go-hep/fads

fads is a Fast Detector Simulation toolkit. It uses fwk to provide a concurrency-friendly
toolkit that performs so-called fast-simulation of detectors, with components for:

• particles’ isolation
• b-tagging, tau-tagging
• calorimetry simulation
• energy scaling and energy smearing
• momentum smearing
• particles propagation in a magnetic field
• jets finding (using go-hep/fastjet)

go-hep/fads is a pure-Go reimplementation of a C++ program called Delphes (Favereau
et al. 2014). go-hep/fastjet is a pure-Go reimplementation of a C++ library called
FastJet (Cacciari, Salam, and Soyez 2012).

go-hep/lcio, go-hep/sio and go-hep/rio

lcio implements read/write access to the binary file format developed for the Linear
Collider community. It is a pure-Go reimplementation of a C++ library of the same
name (T. L. authors, n.d.). sio is the low-level access to this binary file format, lcio
implements the event data model that has been used by the LC community.
go-hep/rio is a fork of lcio to provide 64b indexing and thus support >4Gb files.

go-hep/hplot

hplot is a package providing building blocks for creating plots. It leverages the Gonum
(T. G. authors, n.d.) plotting package to create HEP oriented plots, using go-hep/hbook
data as input. hplot can generate publication quality plots in PNG, SVG, PDF or EPS
formats. hplot also provides a work-in-progress interactive shell with an OpenGL backend
(on Linux or macOS; Windows will use the win32 API) to display plots.

Commands

Go-HEP also provides a few commands that use Go-HEP packages.

cmd/root2npy

The command root2npy uses the go-hep/rootio package to convert n-tuple data stored
in ROOT files into NumPy (Kern, n.d.) array data files. This command does not need
any ROOT installation nor any NumPy installation: everything has been implemented
in pure-Go from first principles. This is useful to quickly convert data and interoperate
with analyses’ pipelines that are mostly python based.

Binet et al., (2017). Go-HEP: libraries for High Energy Physics analyses in Go. Journal of Open Source Software, 2(17), 372,
doi:10.21105/joss.00372

3

https://doi.org/10.21105/joss.00372


cmd/root2yoda

The root2yoda command converts ROOT files containing histogram values into their
YODA equivalent, saved in a YODA ASCII file.

go-hep/rootio/cmd/root-ls and root-srv

The root-ls command allows to quickly inspect and display the content of a ROOT file
from the shell.
The root-srv command launches a local web server that can be used to inspect graphi-
cally ROOT files, displaying histograms and n-tuple data.

References

Alwall, J., A. Ballestrero, P. Bartalini, S. Belov, E. Boos, A. Buckley, J.M. Butterworth,
et al. 2007. “A Standard Format for Les Houches Event Files.” Computer Physics
Communications 176: 300–304. doi:10.1016/j.cpc.2006.11.010.
Authors, The Go. n.d. “The Go Programming Language.” https://golang.org.
authors, The Gonum. n.d. “Gonum: Consistent, Composable and Comprehensible Scien-
tific Code.” https://gonum.org.
authors, The LCIO. n.d. “Linear Collider I/O.” https://github.com/iLCSoft/LCIO.
authors, The YODA. n.d. “YODA: Yet More Objects for Data Analysis.” https://yoda.
hepforge.org.
Brun, R., and F. Rademakers. 1997. “ROOT: An object oriented data analysis frame-
work.” Nucl. Instrum. Meth. A389: 81–86. doi:10.1016/S0168-9002(97)00048-X.
Cacciari, Matteo, Gavin P. Salam, and Gregory Soyez. 2012. “FastJet User Manual.”
Eur. Phys. J. C72: 1896. doi:10.1140/epjc/s10052-012-1896-2.
Dobbs, M, and J B Hansen. 2000. “The HepMC C++ Monte Carlo Event Record
for High Energy Physics,” no. ATL-SOFT-2000-001 (June). CERN. http://cds.cern.ch/
record/684090.
Favereau, J. de, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and
M. Selvaggi. 2014. “DELPHES 3, A modular framework for fast simulation of a generic
collider experiment.” JHEP 02: 057. doi:10.1007/JHEP02(2014)057.
Kern, Robert. n.d. “A Simple File Format for Numpy Arrays.” https://docs.scipy.org/
doc/numpy/neps/npy-format.html.
Skands, Peter Z., and others. 2004. “SUSY Les Houches accord: Interfacing
SUSY spectrum calculators, decay packages, and event generators.” JHEP 07: 036.
doi:10.1088/1126-6708/2004/07/036.

Binet et al., (2017). Go-HEP: libraries for High Energy Physics analyses in Go. Journal of Open Source Software, 2(17), 372,
doi:10.21105/joss.00372

4

https://doi.org/10.1016/j.cpc.2006.11.010
https://golang.org
https://gonum.org
https://github.com/iLCSoft/LCIO
https://yoda.hepforge.org
https://yoda.hepforge.org
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://cds.cern.ch/record/684090
http://cds.cern.ch/record/684090
https://doi.org/10.1007/JHEP02(2014)057
https://docs.scipy.org/doc/numpy/neps/npy-format.html
https://docs.scipy.org/doc/numpy/neps/npy-format.html
https://doi.org/10.1088/1126-6708/2004/07/036
https://doi.org/10.21105/joss.00372

	Summary
	Motivations
	Packages
	go-hep/rootio
	go-hep/fmom
	go-hep/hbook and go-hep/hbook/ntup
	go-hep/hepmc, go-hep/hepevt, go-hep/heppdt, go-hep/lhef and go-hep/slha
	go-hep/fwk
	go-hep/fads
	go-hep/lcio, go-hep/sio and go-hep/rio
	go-hep/hplot

	Commands
	cmd/root2npy
	cmd/root2yoda
	go-hep/rootio/cmd/root-ls and root-srv


	References

