
Mallob: Scalable SAT Solving On Demand With
Decentralized Job Scheduling
Peter Sanders 1 and Dominik Schreiber 1

1 Karlsruhe Institute of Technology, Germany
DOI: 10.21105/joss.04591

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @ARMartinelli
• @massimotorquati

Submitted: 29 June 2022
Published: 09 August 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

In partnership with

JOSS Special Issue for Euro-Par
2022 Artefacts
10.1007/978-3-031-12597-3_8

Summary
Propositional satisfiability (SAT) is the problem of finding a variable assignment for a given
propositional formula (i.e., a composition of Boolean variables using logical operators NOT,
AND, OR) such that the formula evaluates to true, or reporting that no such assignment exists.
The platform Mallob (Malleable Load Balancer, or Massively Parallel Logic Backend) enables
processing SAT jobs in a (massively) parallel and distributed system on demand. Mallob’s
flexible, fair, and decentralized approach to online job scheduling results in scheduling latencies
in the range of milliseconds, near-optimal system utilization, and high resource efficiency.

Statement of need
Despite SAT being a notoriously difficult problem (S. A. Cook, 1971), practically efficient
SAT solving approaches have empowered a wide range of real-world applications for SAT
such as software verification (Kleine-Büning et al., 2019), circuit design (Goldberg et al.,
2001), cryptography (Massacci & Marraro, 2000), automated planning (Schreiber, 2021a), and
theorem proving (Heule et al., 2016). With respect to modern computing paradigms such as
cloud computing and high-performance computing (HPC), the limited scalability of established
parallel and distributed SAT solvers has become a pressing issue (Hamadi & Wintersteiger,
2012). Moreover, since processing times of SAT jobs are unknown in advance, conventional
HPC scheduling approaches applied to such jobs can lead to prohibitively large scheduling
latencies and to suboptimal utilization of computational resources. Instead, we suggest making
use of so-called malleable scheduling. A parallel computing task is called malleable if the
amount of computational resources allotted (i.e., the number of cores or machines) can be
adjusted during its execution (Feitelson, 1997). Malleability is a powerful paradigm in the
field of job scheduling and load balancing as it allows scheduling incoming jobs rapidly and
continuously rebalancing the present tasks according to their priority and other properties.

We believe that a cloud service that combines a scalable SAT solving engine with malleable
job scheduling can significantly improve many SAT-related academic and industrial workflows
in terms of productivity and (resource-)efficiency. Moreover, our decentralized scheduling
approach is applicable to further applications beyond SAT where processing times are unknown
in advance and a modest amount of data is transferred between the workers.

System overview
Mallob is a C++ application designed for parallel and distributed systems between 16 and
10000 cores; it allows resolving propositional problems in a (massively) parallel manner. Our
SAT solving engine scales up to two thousand cores (Schreiber & Sanders, 2021) using a
portfolio of established sequential SAT solvers (Audemard & Simon, 2009; Biere, 2017; Biere
et al., 2020) and a careful exchange of information among them. Our submissions of Mallob to

Sanders, & Schreiber. (2022). Mallob: Scalable SAT Solving On Demand With Decentralized Job Scheduling. Journal of Open Source Software,
7(76), 4591. https://doi.org/10.21105/joss.04591.

1

https://orcid.org/0000-0003-3330-9349
https://orcid.org/0000-0002-4185-1851
https://doi.org/10.21105/joss.04591
https://github.com/openjournals/joss-reviews/issues/4591
https://github.com/domschrei/mallob
https://doi.org/10.5281/zenodo.6890240
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/ARMartinelli
https://github.com/massimotorquati
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-12597-3_8
https://doi.org/10.21105/joss.04591


the International SAT Competitions (Schreiber, 2020, 2021b) won multiple prizes (Balyo et al.,
2021; Froleyks et al., 2021). Following this success, Mallob has been referred to as “by a wide
margin, the most powerful SAT solver on the planet” (B. Cook, 2022). Each distributed SAT
solving task is malleable, allowing users to submit formulae to Mallob at will, with scheduling
latencies in the range of milliseconds (Sanders & Schreiber, 2022b). Computational resources
are allotted proportionally to each job’s priority and also respecting each job’s (maximum)
demand for resources. Our scheduling approach is fully decentralized and uses a small part of
each worker’s CPU time (< 5%) to perform scheduling negotiations. As such, Mallob achieves
optimal system utilization, i.e., either all processes are utilized or all resource demands are fully
met. We achieve this feat by arranging each active job as a binary tree of workers and growing
or shrinking each job tree dynamically based on the current system state. For an in-depth
discussion of these techniques, we refer to Schreiber & Sanders (2021), Sanders & Schreiber
(2022a), and Sanders & Schreiber (2022b).

System Libraries
Message Passing Interface · Multithreading and Concurrency · Inter-Process Communication

Mallob Core

Hardware · Firmware · Operating System

Message handler · Basic communication protocols · Data serialization · System diagnostics

Worker Module Client Module
Scheduling protocol · Load balancing · Job database Job queue · Worker communication

Application Interface
Job tree protocol · Internal communication · Deployment

Mallob SAT Engine
Clause sharing · Incremental wrapper

Solver Interfaces

applications

JSON Interface
File watching · Job parsing

IPASIR bridge

Incremental SAT
applications

Further
interfaces

Further

Figure 1: Technology stack of Mallob.

The further development of Mallob is an ongoing effort. As such, we are in the process
of integrating engines for NP-hard applications beyond SAT, such as k-Means clustering or
hierarchical planning, into Mallob.

Acknowledgements
We wish to thank the numerous people whose code we make thankful use of, including Balyo et
al. (2015), Biere et al. (2020), Audemard & Simon (2009), Eén & Sörensson (2003), Lohmann
(2022), Goetghebuer-Planchon (2022), Ankerl (2022), and Dusíková (2022). The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG
at Leibniz Supercomputing Centre (www.lrz.de). Moreover, some of this work was performed
on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts
Baden-Württemberg and by the Federal Ministry of Education and Research. This project
has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 882500).

Sanders, & Schreiber. (2022). Mallob: Scalable SAT Solving On Demand With Decentralized Job Scheduling. Journal of Open Source Software,
7(76), 4591. https://doi.org/10.21105/joss.04591.

2

https://doi.org/10.21105/joss.04591


References
Ankerl, M. (2022). robin_hood unordered map & set. https://github.com/martinus/

robin-hood-hashing

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers.
International Joint Conference on Artificial Intelligence, 399–404.

Balyo, T., Froleyks, N., Heule, M. J., Iser, M., Järvisalo, M., & Suda, M. (2021). The results
of SAT competition 2021. https://satcompetition.github.io/2021/slides/ISC2021-fixed.pdf

Balyo, T., Sanders, P., & Sinz, C. (2015). Hordesat: A massively parallel portfolio SAT solver.
International Conference on Theory and Applications of Satisfiability Testing, 156–172.
https://doi.org/10.1007/978-3-319-24318-4_12

Biere, A. (2017). Cadical, lingeling, plingeling, treengeling and yalsat entering the SAT
competition 2018. SAT Competition, 14–15.

Biere, A., Fazekas, K., Fleury, M., & Heisinger, M. (2020). CaDiCaL, kissat, paracooba,
plingeling and treengeling entering the SAT competition 2020. SAT Competition 2020, 50.

Cook, B. (2022). Automated reasoning’s scientific frontiers. Amazon Science. https://www.
amazon.science/blog/automated-reasonings-scientific-frontiers

Cook, S. A. (1971). The complexity of theorem-proving procedures. ACM Symposium on
Theory of Computing, 151–158. https://doi.org/10.7551/mitpress/12274.003.0036

Dusíková, H. (2022). Compile time regular expressions. https://github.com/hanickadot/
compile-time-regular-expressions

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. International Conference on
Theory and Applications of Satisfiability Testing, 502–518. https://doi.org/10.1007/
978-3-540-24605-3_37

Feitelson, D. G. (1997). Job scheduling in multiprogrammed parallel systems.

Froleyks, N., Heule, M., Iser, M., Järvisalo, M., & Suda, M. (2021). SAT competition 2020.
Artificial Intelligence, 301, 103572. https://doi.org/10.1016/j.artint.2021.103572

Goetghebuer-Planchon, T. (2022). A C++ implementation of a fast hash map and hash set
using robin hood hashing. https://github.com/Tessil/robin-map

Goldberg, E. I., Prasad, M. R., & Brayton, R. K. (2001). Using SAT for combinational
equivalence checking. Proceedings Design, Automation and Test in Europe. Conference
and Exhibition 2001, 114–121. https://doi.org/10.1109/date.2001.915010

Hamadi, Y., & Wintersteiger, C. (2012). Seven challenges in parallel SAT solving. Proceedings
of the AAAI Conference on Artificial Intelligence, 26, 2120–2125. https://doi.org/10.1609/
aimag.v34i2.2450

Heule, M. J., Kullmann, O., & Marek, V. W. (2016). Solving and verifying the
boolean pythagorean triples problem via cube-and-conquer. International Con-
ference on Theory and Applications of Satisfiability Testing, 228–245. https:
//doi.org/10.1007/978-3-319-40970-2_15

Kleine-Büning, M., Balyo, T., & Sinz, C. (2019). Using DimSpec for bounded and unbounded
software model checking. International Conference on Formal Engineering Methods, 19–35.
https://doi.org/10.1007/978-3-030-32409-4_2

Lohmann, N. (2022). JSON for modern C++. https://github.com/nlohmann/json

Massacci, F., & Marraro, L. (2000). Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning, 24(1), 165–203.

Sanders, & Schreiber. (2022). Mallob: Scalable SAT Solving On Demand With Decentralized Job Scheduling. Journal of Open Source Software,
7(76), 4591. https://doi.org/10.21105/joss.04591.

3

https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing
https://satcompetition.github.io/2021/slides/ISC2021-fixed.pdf
https://doi.org/10.1007/978-3-319-24318-4_12
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers
https://doi.org/10.7551/mitpress/12274.003.0036
https://github.com/hanickadot/compile-time-regular-expressions
https://github.com/hanickadot/compile-time-regular-expressions
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/j.artint.2021.103572
https://github.com/Tessil/robin-map
https://doi.org/10.1109/date.2001.915010
https://doi.org/10.1609/aimag.v34i2.2450
https://doi.org/10.1609/aimag.v34i2.2450
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-030-32409-4_2
https://github.com/nlohmann/json
https://doi.org/10.21105/joss.04591


Sanders, P., & Schreiber, D. (2022a). Artifact and instructions to generate experimental results
for the Euro-Par 2022 paper: “Decentralized Online Scheduling of Malleable NP-hard
Jobs”. https://doi.org/10.6084/m9.figshare.20000642

Sanders, P., & Schreiber, D. (2022b). Decentralized online scheduling of malleable NP-hard
jobs. European International Conference on Parallel Processing.

Schreiber, D. (2020). Engineering HordeSat towards malleability: Mallob-mono in the SAT
2020 cloud track. SAT Competition 2020, 45.

Schreiber, D. (2021a). Lilotane: A lifted SAT-based approach to hierarchical planning. Journal
of Artificial Intelligence Research, 70, 1117–1181. https://doi.org/10.1613/jair.1.12520

Schreiber, D. (2021b). Mallob in the SAT competition 2021. SAT Competition 2021, 38.

Schreiber, D., & Sanders, P. (2021). Scalable SAT solving in the cloud. International
Conference on Theory and Applications of Satisfiability Testing, 518–534. https://doi.org/
10.1007/978-3-030-80223-3_35

Sanders, & Schreiber. (2022). Mallob: Scalable SAT Solving On Demand With Decentralized Job Scheduling. Journal of Open Source Software,
7(76), 4591. https://doi.org/10.21105/joss.04591.

4

https://doi.org/10.6084/m9.figshare.20000642
https://doi.org/10.1613/jair.1.12520
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.21105/joss.04591

	Summary
	Statement of need
	System overview
	Acknowledgements
	References

