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Summary
Propositional satisfiability (SAT) is the problem of finding a variable assignment for a given
propositional formula (i.e., a composition of Boolean variables using logical operators NOT,
AND, OR) such that the formula evaluates to true, or reporting that no such assignment exists.
The platform Mallob (Malleable Load Balancer, or Massively Parallel Logic Backend) enables
processing SAT jobs in a (massively) parallel and distributed system on demand. Mallob’s
flexible, fair, and decentralized approach to online job scheduling results in scheduling latencies
in the range of milliseconds, near-optimal system utilization, and high resource efficiency.

Statement of need
Despite SAT being a notoriously difficult problem (S. A. Cook, 1971), practically efficient
SAT solving approaches have empowered a wide range of real-world applications for SAT
such as software verification (Kleine-Büning et al., 2019), circuit design (Goldberg et al.,
2001), cryptography (Massacci & Marraro, 2000), automated planning (Schreiber, 2021a), and
theorem proving (Heule et al., 2016). With respect to modern computing paradigms such as
cloud computing and high-performance computing (HPC), the limited scalability of established
parallel and distributed SAT solvers has become a pressing issue (Hamadi & Wintersteiger,
2012). Moreover, since processing times of SAT jobs are unknown in advance, conventional
HPC scheduling approaches applied to such jobs can lead to prohibitively large scheduling
latencies and to suboptimal utilization of computational resources. Instead, we suggest making
use of so-called malleable scheduling. A parallel computing task is called malleable if the
amount of computational resources allotted (i.e., the number of cores or machines) can be
adjusted during its execution (Feitelson, 1997). Malleability is a powerful paradigm in the
field of job scheduling and load balancing as it allows scheduling incoming jobs rapidly and
continuously rebalancing the present tasks according to their priority and other properties.

We believe that a cloud service that combines a scalable SAT solving engine with malleable
job scheduling can significantly improve many SAT-related academic and industrial workflows
in terms of productivity and (resource-)efficiency. Moreover, our decentralized scheduling
approach is applicable to further applications beyond SAT where processing times are unknown
in advance and a modest amount of data is transferred between the workers.

System overview
Mallob is a C++ application designed for parallel and distributed systems between 16 and
10000 cores; it allows resolving propositional problems in a (massively) parallel manner. Our
SAT solving engine scales up to two thousand cores (Schreiber & Sanders, 2021) using a
portfolio of established sequential SAT solvers (Audemard & Simon, 2009; Biere, 2017; Biere
et al., 2020) and a careful exchange of information among them. Our submissions of Mallob to
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the International SAT Competitions (Schreiber, 2020, 2021b) won multiple prizes (Balyo et al.,
2021; Froleyks et al., 2021). Following this success, Mallob has been referred to as “by a wide
margin, the most powerful SAT solver on the planet” (B. Cook, 2022). Each distributed SAT
solving task is malleable, allowing users to submit formulae to Mallob at will, with scheduling
latencies in the range of milliseconds (Sanders & Schreiber, 2022b). Computational resources
are allotted proportionally to each job’s priority and also respecting each job’s (maximum)
demand for resources. Our scheduling approach is fully decentralized and uses a small part of
each worker’s CPU time (< 5%) to perform scheduling negotiations. As such, Mallob achieves
optimal system utilization, i.e., either all processes are utilized or all resource demands are fully
met. We achieve this feat by arranging each active job as a binary tree of workers and growing
or shrinking each job tree dynamically based on the current system state. For an in-depth
discussion of these techniques, we refer to Schreiber & Sanders (2021), Sanders & Schreiber
(2022a), and Sanders & Schreiber (2022b).
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Figure 1: Technology stack of Mallob.

The further development of Mallob is an ongoing effort. As such, we are in the process
of integrating engines for NP-hard applications beyond SAT, such as k-Means clustering or
hierarchical planning, into Mallob.
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