
DynamicOED.jl: A Julia package for solving optimum
experimental design problems

Carl Julius Martensen 1*¶, Christoph Plate 1*, and Sebastian Sager 1

1 Otto von Guericke University Magdeburg, Germany ¶ Corresponding author * These authors
contributed equally.

DOI: 10.21105/joss.06605

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @KBodolai
• @joshuaeh

Submitted: 29 February 2024
Published: 19 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Optimum experimental design (OED) problems are typically encountered when unknown or
uncertain parameters of mathematical models are to be estimated from an observable, maybe
even controllable, process. In this scenario, OED can be used to decide on an experimental
setup before collecting the data, i.e., deciding on when to measure and / or how to stimulate
a dynamic process in order to maximize the amount of information gathered such that the
parameters can be accurately estimated.

Our software package, DynamicOED.jl, facilitates the solution of optimum experimental design
problems for dynamical systems. Following ideas presented in Sager (2013), we cast the
OED problem into an optimal control problem. This is done by augmenting the user-provided
system of ordinary differential equations (ODE) or differential algebraic equations (DAE) with
their variational differential (algebraic) equations and the differential equation governing the
evolution of the Fisher information matrix (FIM). A suitable criterion based on the FIM is then
optimized in the resulting optimal control problem using a direct first discretize, then optimize
approach.

Statement of need
DynamicOED.jl is a Julia (Bezanson et al., 2017) package for solving optimum experimental
design problems. Solving OED problems is of interest for several reasons. First, all model-based
optimization strategies rely on the knowledge of the accurate values of the model’s parameters.
Second, computing optimal experimental designs before performing the actual experiments
to collect data allows to reduce the number of needed experiments or measurements. This is
important in practical applications when measuring quantities of interest is only possible to a
limited extent, e.g., due to high costs of performing the measurements.

Our package is designed for high flexibility and ease of use. For formulating the underlying
dynamical system, our package is based on the ODESystem from ModelingToolkit.jl (Ma
et al., 2022). This enables researchers and modelers to easily investigate and analyze their
models and allows them to collect insightful data for their parameter estimation problems.

To our knowledge, this is the first dedicated package for solving general optimal experimental
design problems with dynamical systems written in the Julia programming language. It may
therefore be a valuable resource to different communities dealing with experimental data and
parameter estimation problems.

Martensen et al. (2024). DynamicOED.jl: A Julia package for solving optimum experimental design problems. Journal of Open Source Software,
9(98), 6605. https://doi.org/10.21105/joss.06605.

1

https://orcid.org/0000-0003-4143-3040
https://orcid.org/0000-0003-0354-8904
https://orcid.org/0000-0002-0283-9075
https://doi.org/10.21105/joss.06605
https://github.com/openjournals/joss-reviews/issues/6605
https://github.com/mathopt/DynamicOED.jl
https://doi.org/10.5281/zenodo.12084055
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/KBodolai
https://github.com/joshuaeh
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06605

Problem statement and usage example
The problem we are interested in solving reads

min
𝑥,𝐺,𝐹,𝑧,𝑤

𝜙(𝐹(𝑡𝑓))

s.t. 0 = 𝑓(̇𝑥(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑝)
0 = 𝑓�̇�(̇𝑥(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑝)�̇�(𝑡) + 𝑓𝑥(̇𝑥(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑝)𝐺(𝑡)

+𝑓𝑝(̇𝑥(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑝),
̇𝐹 (𝑡) = ∑𝑛ℎ

𝑖=1 𝑤𝑖(𝑡)(ℎ𝑖
𝑥(𝑥(𝑡))𝐺(𝑡))⊤(ℎ𝑖

𝑥(𝑥(𝑡))𝐺(𝑡)),
̇𝑧(𝑡) = 𝑤,

𝑥(0) = 𝑥0, 𝐺(0) = 0, 𝐹(0) = 0, 𝑧(0) = 0,
𝑢(𝑡) ∈ 𝒰,
𝑤(𝑡) ∈ 𝒲,
𝑧(𝑡𝑓) −𝑀 ≤ 0,

where 𝒯 = [𝑡0, 𝑡𝑓] is the fixed time horizon and 𝑥 ∶ 𝒯 ↦ ℝ𝑛𝑥 are the differential states.
The first and second constraint denote the dynamical system and the sensitivities of the
solution of the dynamical system with respect to the uncertain parameters, respectively, and
are given in an implicit form. Here, 𝑓�̇�, (𝑓𝑥) denote the partial derivative of 𝑓 with respect
to ̇𝑥 and (𝑥). The objective 𝜙(𝐹(𝑡𝑓)) of Bolza type is a suited objective function, e.g., the
D-criterion 𝜙(𝐹(𝑡𝑓)) = det(𝐹−1(𝑡𝑓)). The evolution of the symmetric FIM 𝐹 ∶ 𝒯 ↦ ℝ𝑛𝑝×𝑛𝑝

is governed by the measurement function ℎ ∶ ℝ𝑛𝑥 ↦ ℝ𝑛ℎ , the sensitivities 𝐺 ∶ 𝒯 ↦ ℝ𝑛𝑥×𝑛𝑝

and the sampling decisions 𝑤(𝑡) ∈ {0, 1}𝑛ℎ . The latter are the main optimization variables
and represent the decision whether to measure at a given time point or not. In our direct
approach, these variables are discretized, hence we write 𝑤(𝑡) ∈ {0, 1}𝑁𝑤×𝑛ℎ , where 𝑁𝑤 is
the (user-supplied) number of discretization intervals on 𝒯. The sampling decisions are then
accumulated in the variables 𝑧 and constrained by 𝑀 ∈ ℝ𝑛ℎ

+ . The controls 𝑢 ∈ 𝒰 can either
be fixed or also be viewed as optimization variables after discretization.

For more information on optimal experimental design for DAEs and their sensitivity analysis,
we refer to Körkel (2002) and Li et al. (2000).

The functionality in this package integrates into Julia’s SciML ecosystem. The model is provided
in symbolic form as an ODESystem using ModelingToolkit.jl (Ma et al., 2022) with additional
frequency information for the observed and control variables. Both ODE or DAE systems can be
provided. DynamicOED.jl augments the given system symbolically with its sensitivity equations
and the dynamics of the FIM. The resulting system together with a sufficient information
criterion defines an OEDProblem, solveable using DifferentialEquations.jl (Rackauckas
& Nie, 2017). Here, all sampling and control decisions are discretized in time and can be
used to model additional constraints. At last, the OEDProblem can be transformed into an
OptimizationProblem as a sufficient input to Optimization.jl (Dixit & Rackauckas, 2023).
Here, a variety of optimization solvers for nonlinear programming and mixed-integer nonlinear
programming available as additional backends, e.g., Juniper (Kröger et al., 2018) or Ipopt
(Wächter & Biegler, 2006). A simple example demonstrates the usage of DynamicOED.jl for
the Lotka-Volterra system (Sager, 2013).

Figure 1 shows the solution of the example above including the differential states, sensitivities
𝐺 and the sampling decisions 𝑤. More examples can be found in the documentation.

Martensen et al. (2024). DynamicOED.jl: A Julia package for solving optimum experimental design problems. Journal of Open Source Software,
9(98), 6605. https://doi.org/10.21105/joss.06605.

2

https://sciml.ai/
https://mathopt.github.io/DynamicOED.jl/dev/
https://doi.org/10.21105/joss.06605

using DynamicOED

using ModelingToolkit

using Optimization, OptimizationMOI, Ipopt

@variables t

@variables x(t)=0.5 [description="Biomass Prey"]

@variables y(t)=0.7 [description="Biomass Predator"]

@variables u(t) [description="Control"]

@parameters p[1:2]=[1.0;1.0] [description="Fixed Parameters", tunable=false]

@parameters p_est[1:2]=[1.0;1.0] [description="Tunable Parameters", tunable=true]

D = Differential(t)

@variables obs(t)[1:2] [description = "Observed", measurement_rate=96]

obs = collect(obs)

@named lotka_volterra = ODESystem(

[

D(x) ~ p[1]*x - p_est[1]*x*y;

D(y) ~ -p[2]*y + p_est[2]*x*y

], tspan = (0.0, 12.0),

observed = obs .~ [x; y]

)

@named oed_system = OEDSystem(lotka_volterra)

oed_problem = OEDProblem(structural_simplify(oed_system), DCriterion())

optimization_variables = states(oed_problem)

w1, w2 = keys(optimization_variables.measurements)

constraint_equations = [

sum(optimization_variables.measurements[w1]) ≲ 32,

sum(optimization_variables.measurements[w2]) ≲ 32,

]

@named constraint_system = ConstraintsSystem(

constraint_equations, optimization_variables, Num[]

)

optimization_problem = OptimizationProblem(

oed_problem, AutoForwardDiff(), constraints = constraint_system,

integer_constraints = false

)

optimal_design = solve(optimization_problem, Ipopt.Optimizer();

hessian_approximation="limited-memory")

Extensions
Several extensions are planned for the future. First, a multiple shooting approach is planned.
Also, other steps to increase the efficiency of our implementation may be considered. For
example, in the case of fixed initial values and controls, the integration of 𝑥 and 𝐺 need to be
done only once and can be decoupled from the numerical integration of 𝐹 and the subsequent
optimization over 𝑤.

Martensen et al. (2024). DynamicOED.jl: A Julia package for solving optimum experimental design problems. Journal of Open Source Software,
9(98), 6605. https://doi.org/10.21105/joss.06605.

3

https://doi.org/10.21105/joss.06605

Figure 1: Differential states, sensitivities of the states with respect to the parameters and the optimal
sampling design for Lotka-Volterra system.

Acknowledgements
The work was funded by the German Research Foundation DFG within the priority program
2331 ‘Machine Learning in Chemical Engineering’ under grants KI 417/9-1, SA 2016/3-1, SE
586/25-1

References
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Rev., 59(1), 65–98. https://doi.org/10.1137/141000671

Dixit, V. K., & Rackauckas, C. (2023). Optimization.jl: A unified optimization package.
Zenodo. https://doi.org/10.5281/zenodo.7738525

Körkel, S. (2002). Numerische methoden für optimale versuchsplanungsprobleme bei nicht-
linearen DAE-Modellen [PhD thesis, Universität Heidelberg]. https://doi.org/10.11588/
heidok.00002980

Kröger, O., Coffrin, C., Hijazi, H., & Nagarajan, H. (2018). Juniper: An open-source nonlinear
branch-and-bound solver in Julia. In W.-J. van Hoeve (Ed.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (pp. 377–386). Springer
International Publishing. https://doi.org/10.1007/978-3-319-93031-2_27

Li, S., Petzold, L., & Zhu, W. (2000). Sensitivity analysis of differential–algebraic equations:
A comparison of methods on a special problem. Applied Numerical Mathematics, 32(2),
161–174. https://doi.org/10.1016/S0168-9274(99)00020-3

Ma, Y., Gowda, S., Anantharaman, R., Laughman, C., Shah, V., & Rackauckas, C. (2022).

Martensen et al. (2024). DynamicOED.jl: A Julia package for solving optimum experimental design problems. Journal of Open Source Software,
9(98), 6605. https://doi.org/10.21105/joss.06605.

4

https://doi.org/10.1137/141000671
https://doi.org/10.5281/zenodo.7738525
https://doi.org/10.11588/heidok.00002980
https://doi.org/10.11588/heidok.00002980
https://doi.org/10.1007/978-3-319-93031-2_27
https://doi.org/10.1016/S0168-9274(99)00020-3
https://doi.org/10.21105/joss.06605

ModelingToolkit: A composable graph transformation system for equation-based modeling
(No. arXiv:2103.05244). arXiv. https://doi.org/10.48550/arXiv.2103.05244

Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl – a performant and feature-rich
ecosystem for solving differential equations in Julia. The Journal of Open Research Software,
5(1). https://doi.org/10.5334/jors.151

Sager, S. (2013). Sampling decisions in optimum experimental design in the light of Pontryagin’s
maximum principle. SIAM J. Control Optim., 51(4), 3181–3207. https://doi.org/10.1137/
110835098

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Martensen et al. (2024). DynamicOED.jl: A Julia package for solving optimum experimental design problems. Journal of Open Source Software,
9(98), 6605. https://doi.org/10.21105/joss.06605.

5

https://doi.org/10.48550/arXiv.2103.05244
https://doi.org/10.5334/jors.151
https://doi.org/10.1137/110835098
https://doi.org/10.1137/110835098
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.21105/joss.06605

	Summary
	Statement of need
	Problem statement and usage example
	Extensions
	Acknowledgements
	References

