Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Thèse soutenue

Optimisation de transfert de données pour les processeurs pluri-coeurs, appliqué à l'algèbre linéaire et aux calculs sur stencils

FR  |  
EN
Auteur / Autrice : Minh Quan Ho
Direction : Bernard Tourancheau
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 05/07/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de Grenoble (2007-....)
Jury : Président / Présidente : Raphaël Couturier
Examinateurs / Examinatrices : Christian Obrecht, Benoît Dupont de Dinechin
Rapporteurs / Rapporteuses : Francisco Daniel Igual Peña, Joël Falcou

Résumé

FR  |  
EN

La prochaine cible de Exascale en calcul haute performance (High Performance Computing - HPC) et des récent accomplissements dans l'intelligence artificielle donnent l'émergence des architectures alternatives non conventionnelles, dont l'efficacité énergétique est typique des systèmes embarqués, tout en fournissant un écosystème de logiciel équivalent aux plateformes HPC classiques. Un facteur clé de performance de ces architectures à plusieurs cœurs est l'exploitation de la localité de données, en particulier l'utilisation de mémoire locale (scratchpad) en combinaison avec des moteurs d'accès direct à la mémoire (Direct Memory Access - DMA) afin de chevaucher le calcul et la communication. Un tel paradigme soulève des défis de programmation considérables à la fois au fabricant et au développeur d'application. Dans cette thèse, nous abordons les problèmes de transfert et d'accès aux mémoires hiérarchiques, de performance de calcul, ainsi que les défis de programmation des applications HPC, sur l'architecture pluri-cœurs MPPA de Kalray. Pour le premier cas d'application lié à la méthode de Boltzmann sur réseau (Lattice Boltzmann method - LBM), nous fournissons des techniques génériques et réponses fondamentales à la question de décomposition d'un domaine stencil itérative tridimensionnelle sur les processeurs clusterisés équipés de mémoires locales et de moteurs DMA. Nous proposons un algorithme de streaming et de recouvrement basé sur DMA, délivrant 33% de gain de performance par rapport à l'implémentation basée sur la mémoire cache par défaut. Le calcul de stencil multi-dimensionnel souffre d'un goulot d'étranglement important sur les entrées/sorties de données et d'espace mémoire sur puce limitée. Nous avons développé un nouvel algorithme de propagation LBM sur-place (in-place). Il consiste à travailler sur une seule instance de données, au lieu de deux, réduisant de moitié l'empreinte mémoire et cède une efficacité de performance-par-octet 1.5 fois meilleur par rapport à l'algorithme traditionnel dans l'état de l'art. Du côté du calcul intensif avec l'algèbre linéaire dense, nous construisons un benchmark de multiplication matricielle optimale, basé sur exploitation de la mémoire locale et la communication DMA asynchrone. Ces techniques sont ensuite étendues à un module DMA générique du framework BLIS, ce qui nous permet d'instancier une bibliothèque BLAS3 (Basic Linear Algebra Subprograms) portable et optimisée sur n'importe quelle architecture basée sur DMA, en moins de 100 lignes de code. Nous atteignons une performance maximale de 75% du théorique sur le processeur MPPA avec l'opération de multiplication de matrices (GEMM) de BLAS, sans avoir à écrire des milliers de lignes de code laborieusement optimisé pour le même résultat.